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Propagating modes in planar and XY spin glasses

1 AUGUST 1984

C. M. Grassl* and D. L. Huber
Department of Physics, Uniuersity of Wisconsin M—adison, Madison, Wisconsin 53706

(Received 6 February 1984)

The low-lying harmonic magnons in two- and three-dimensional (2D and 3D) planar and XFspin
glasses are investigated. Numerical calculations of the dynamic structure factor for 15X15&(15
(3D) and 30)&30 (2D) arrays confirm the existence of the weakly damped, propagating modes re-

ported earlier. In the case of the planar model, estimates of the spin-wave velocity inferred from the
shift in the peak in the dynamic structure factor are in agreement with values obtained from a direct
calculation of the stiffness by Grzonka and Moore. Numerical estimates of the densities of states
are compared with the results obtained with the assumption of plane-wave eigenstates with velocities
equal to the values inferred from the structure factor.

I. INTRODUCTION AND EQUATIONS
OF MOTION

It is now believed that systems showing spin-glass
characteristics have a highly degenerate manifold of
ground states separated by barriers of varying heights. '

This being the case, the low-lying excitations in spin
glasses generally can be subdivided into intraconfigura-
tional and interconfigurational modes. The latter involve
transitions between different equilibrium configurations,
each being a local miniinum in the space of spin configu-
rations. Intraconfiguration modes are excitations within a
particular ground-state configuration. The interconfigu-
ration modes are relaxational in character and are believed
to be the mechanism responsible for the slow relaxation of
the remanent magnetization. The intraconfigurational
modes of vector spin glasses, i.e., Heisenberg and planar
systems, are oscillatory being the spin-glass analog of
magnons in translationally invariant systems.

An important question relating to intraconfigurational
inodes in the vector systems concerns the nature of the
low-frequency excitations. According to hydrodynamic

arguments, ' there should exist weakly damped, long-
wavelength, propagating magnon modes with a linear re-
lationship between frequency and wave vector. Numerical
as well as experimental studies have failed to establish the
existence of such modes in Heisenberg spin glasses. ' In
contrast, numerical investigations have indicated that
there are propagating modes in one model of a planar spin
glass.

In Refs. 6—9 the results of numerical studies of the
linearized magnon modes associated with the planar
Hamiltonian

in which the dynamical matrix is given by

A;J =5;J.S$J;kcos(8; —Ok)
0 0

k

—(1 5;J )SJJ—cos(9, HJ ) . . — (1.3)

cok ——0.52k (planar, 3D), (1.4)

for a lattice constant equal to unity. In addition, the
damping of the modes, as measured by the full width at
half maximum of the peak in the dynamic structure fac-
tor, was found to be

I k ——0.24k (planar, 3D) . (1.5)

In (1.2) and (1.3), S is the spin, henceforth taken to be uni-

ty, 9; denotes the polar angle characterizing the spin
orientation in the corresponding classical planar equilibri-
um configuration obtained by minimizing the "potential
energy"

—g J,~.cos(8; —OJ. ),
(i,j)

and the P; denote the angles associated with the planar
projections of the deviations of the spins from their equi-
librium orientations. Spin-glass behavior was ensured by
taking the exchange interactions, limited to nearest neigh-
bors, to be a random variable having zero mean and unit
variance.

The work reported in Ref. 6 was confined to SX SX S
siinple-cubic arrays (512 spins) with periodic boundary
conditions. Despite the limited size of the samples there
was clear evidence for propagating modes with the disper-
sion relation [I=S=Var( J1 ) = I]:

are presented. The analysis was carried out in the limit
I '&~J, where the Villain transformation' can be used
to write the equations of motion in the form

d2$
(1 2)

j
cok ——0.50k (planar, 2D),

and full width at half maximum

(1.6)

The analysis begun in Ref. 6 was extended to two-
dimensional arrays in Ref. 7. Just as in three dimensions,
propagating modes were found in 24X24 square arrays
(576 spins). They had the dispersion relation
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I'k =0.5k (planar, 2D) . (1.7) which generates the dynamical equations

The results reported in Ref. 6 for the three-dimensional
arrays were called into question in an investigation of the
density of states which appeared to give evidence of a van-

ishing magnon velocity, and hence no propagating
modes. " It is now believed that this interpretation is in-

correct due to the insensitivity of the numerical method to
small eigenvalues. '

Recently Grzonka and Moore investigated the linear-
ized magnon modes associated with the dynamical matrix
(1.3) in arrays containing up to 22 =10648 spins in 3D
and 64 =4096 spins in 2D. They calculated the limiting
behavior of the density of states and found results con-
sistent with a finite spin-wave velocity in both two and
three dimensions. In addition, they made a direct calcula-
tion of the stiffness (square of the magnon velocity) by a
spin-rotation method. In 3D their results showed a
dependence on sample size which, when extrapolated to
the infinite systein limit, yielded a result equivalent to

d2$
Ail X tJ~J 'dt'

II. EQUATION-OF-MOTION METHODS

In applying equation-of-motion methods to the planar
and XY spin glasses we will find it convenient to circum-
vent the second-order differential equations (1.2) and
(1.11) and study instead the first-order equations

dut
i =I ' g AtjuJ

dt
(2.1)

and

with A,z given by Eq. (1.3). In subsequent sections of this
paper we will discuss the application of equation-of-
motion methods to the planar and XYmodels.

cok ——0.55k (planar, 3D) . (1.8)
Qg

/ Ag/ g AgJuJ
dt

(2.2)

In 2D they obtained results corresponding to the disper-
sion relation

tok =0.56k (planar, 2D) . (1.9)

A =—g J,J(S,"SJ"+SfSj"), .
(I',j)

(1.10)

In addition to calculating the stiffness Grzonka and
Moore compared the limiting density of states calculated
by direct diagonalization of the dynamical matrix with
the density of states obtained assuming eigenmodes with
the dispersion relations (1.8) and (1.9). From the analysis
they concluded that the propagating modes contributed
80% of the density of states in two dimensions and only
40% in three dimensions. However, they were unable to
identify the anomalous modes which gave rise to the
enhanced density of states.

The magnon dispersion relations given by Eqs. (1.4) and
(1.6) were inferred from a direct calculation of the dynam-
ic structure factor which utilized the eigenvectors and
eigenvalues obtained by diagonalizing the dynamical ma-
trix. 6 Such a method is impractical for arrays as large as
the ones studied in Ref. 8. However, the spin-rotation
method which was employed might yield misleading re-
sults in the sense that the modes could have a finite stiff-
ness and yet be overdamped. Such a situation appears to
occur in Heisenberg spin glasses where similar calcula-
tions for the stiffness give nonzero values, 'i' yet, as not-

ed, there is no evidence of propagating modes in the
dynamic structure factor. For this reason it is important
to calculate the dynamic structure factor directly. This
we have done for arrays of 15&&15~15=3375 spins in
three dimensions and 30X30=900 spins in two dimen-
sions using equation-of-motion techniques developed by
Alben and Thorpe. ' '

In addition to investigating the magnons associated
with the planar Hamiltonian (1.1), we have also studied
the linearized modes in the XY spin glass with the Hamil-
tonian

Since both the second- and first-order problems are
characterized by the same dynamical matrix, information
about the properties of the modes can be obtained equally
well from (2.1) and (2.2).

The Alben-Thorpe methods were originally developed
for disordered ferromagnets and antiferromagnets. ' '
We can make contact with their work by noting that
equations formally equivalent to (2.1) can be generated for
a ferromagnetic system with the magnon Hamiltonian

4 =I ' g aA~JaJ, (2.3)
l,j

where a; and a; are the magnon annihilation and creation
operators in the site representation. In transcribing the
equations of Refs. 14 and 15 to planar spin glasses we
make the following identification:

Sg Jtk~I 'A;g,
k

(2.4a)

(2.4b)

dVI 1/2—g (A;;AJJ ) AtJUJ,dt
(2.5)

with a corresponding identification in terms of exchange
integ rais.

The equations of motion for the Green function G;k(t)
which are integrated in calculating the dynamic structure
factor take the form

i Gg, (t)= g A JGJk(t),
dt

(2.6)

with initial conditions G;k(0) =5;k. The matrix A;J is
given by

Agj ——I 'A~ (2.7)

In the case of the XY model one makes the replacement
u; /A; ~u; obtaining the symmetrized equations of
motion
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FIG. 1. kk vs 1 —yk for the 3D planar model. The data are
from five arrays of 15' spins. The solid line„k, k

——1.71(1—yk),
is a least-squares fit. The data in this and the other figures have
calculated for models where I (planar model) =S=lattice
constant =Var( J;J.)=1.

FICx. 3. A,k vs 1 —yk for the 2D planar model. The data are
from three arrays of 30 spins. The solid line, A,k =1.40(1—yk),
is a least-squares fit.

for the planar model (1.1), and by The solid line, A,k
——1.71(1—yk), is a least-squares fit cor-

responding to the dispersion relation

A,q (A——I(Ajj )'~ A(j (2.8) cok ——A,k —+0.53k (planar, 3D), (3.2)

for the XI'spin glass (1.10). Since from this point on the
calculation of the dynamic structure factor parallels that
of the disordered ferromagnet, we will not discuss the nu-
rnerical analysis in any detail, ' presenting only final re-
sults in Sec. III. cok=0. 89k (XI; 3D) . (3.3)

in the limit as k —+0.
In Fig. 2 we show corresponding results for the 3D X1'

spin glass. The least-squares fit is A,k
——4.74(1 —yk) lead-

ing to the limiting dispersion relation

III. DYNAMIC STRUCTURE FACTOR

In our study of the spin dynainics we focused on the
small-k behavior of the dynamic structure factor, S(k,A, ),
calculated from the equivalent ferromagnetic magnon
Hamiltonian

~equiv= g +iAij+j (3.1)
~ ~

where A;J is given by (2.7) or (2.8). Since the analysis in-
volves the integration of a set of coupled first-order dif-
ferential equations whereas the underlying equations of
motion, (1.2) and (1.11),are second order, the parameter iL

is identified with the square of the frequency. In all cases
studied S(k, A, ) was dominated by a single peak whose po-
sition we denote by A,k.

In Fig. 1 we display our results for A,k for the 3D pla-
nar spin glass. As in Ref. 6 we plot the data against
1—yk, where yk is equal to

( —,
' )[cos(k„)+cos(k„)+cos(k,)] .

In Figs. 3 and 4 we display the results for the 2D sys-
tems. In both cases the data are plotted against 1 —yk,
where now

yk = —,
' [cos(k„)+cos(k„)] .

cok ——0.59k (planar, 2D} . (3.4)

It should be noted that both (3.2) and (3.4) are in reason-
able agreenlnt with the estimates for the small arrays re-
ported in Refs. 6 and 7 [cf. Eqs. (1.4) and (1.6)]. In Fig. 4
we present our results for the 2D XY'spin glass. The solid
line is Ak =2.31(1—yk) which corresponds to

rok =0.76k (planar, XI'),
in the limit as k~0.

Figure 3 shows the data for the planar model. The solid
line, Ak ——1.40(1—yk }, yields the limiting dispersion rela-
tion

0 0.1 0.2
I-

0.3

0 0.2
1-

I

0.3

FIG. 2. A.k vs 1 —yk for the 3D XF model. The data are
from a single array of 15 spins. The solid line,
~k =4.74(1—yI, ), is a least-squares fit.

FIG. 4. A,k vs 1 —yk for the 2D XF model. The data are
from a single array of 30 spins. The solid line,
A,k ——2.31(1—yk ), is a least-squares fit.
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FIG. 5. Histogram for the distribution of eigenvalues,

, for the 3D planar model. The data are from three
arrays of 15 spins and the bin size is 0.05. The solid line is a
quadratic fit corresponding to p(~) =0.662co .

FIG. 7. Histogram for the distribution of eigenvalues,
cok ——A,k', for the 2D planar model. The data are from three
arrays of 30 spins and the bin size is 0.1. The solid line is a
linear fit corresponding to p(~) =0.655m.

IV. DENSITY OF STATES

In addition to the dynamic structure factor we have un-
dertaken a calculation of the distribution of magnon
modes using the negative eigenvalue theorem. ' ' The
normalized density of states p(co) was fit to the functional
form (D=dimension)

V. DISCUSSION

Prior to taking up the question of the enhanced density

of states we compare our magnon velocities and densities

of states for the planar model with those reported in Ref.
8. In that reference the stiffness parameter, or magnon

velocity squared, was found to depend on sample size in

3D varying according to

D —1

p(~) =
277 U

(4.1) vi=0. 308+ '
(planar, 3D),7S.728 (5.1)

which is obtained assuming only propagating eigenmodes
with the dispersion relation co=vk. Our results for the
planar and XY models in 3D and 2D are shown in Figs.
5—8, along with the fits obtained using (4.1).' From the
coefficient of fv

' we obtain the following effective ve-

locities: v,ff(planar, 3D)=0.42, v,ff(XY, 3D) =0.56,
v ff(planar, 2D) =0.49, veff(XY, 2D}=0.64. These values
are to be compared with the values obtained from the
dynamic structure factor in Sec. III: v (planar, 3D)=0.53,
v (XY, 3D)=0.89, v (planar, 2D)=0.59, and v (XY,
2D) =0.76. Since v,ff & v, we find, in agreement with Ref.
8, that the densities of states are enhanced relative to the
results obtained using (4.1} with magnon velocities in-

ferred from either the stiffness or the dynamic structure
factor. We return to this point in the next section.

200—

where N is the number of spins. For N =15 one obtains
v=0.57 which is approximately 8% larger than 0.53, the
value inferred from the dynamic structure factor. It
should. be noted that the latter value (0.53) is close to 0.55,
the N = oo limit of (5.1}. In two dimensions the magnon
velocities reported in Ref. 8 were independent of sample
size (1024 & N & 4096) with an average value equal to 0.56,
which is approximately 5% less than 0.59, the value in-

ferred from the dynamic structure factor of the 2D planar
model.

For the density of states Grzonka and Moore report
the following: p(co}=(0.666+0.012)co for the 3D planar
model (N=4096) and p(co) =(0.660+0.014}co for the pla-
nar model in two dimensions (N=1600). Our results take
the form p(co) =0.662co (N= 3375) and p(fo) =0.655co

(N=900) for the equivalent models. From these compar-
isons we conclude (1) that both the stiffness calculation
and the equation-of-motion methods give comparable re-

sults for the magnon velocity, and (2) the spin-relaxation

procedures used to obtain the equihbrium configurations
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FIG. 6. Histogram for the distribution of eigenvalues,
cok ——A,k', for the 3D XYmodel. The data are from a single ar-
ray of 15 spins and the bin size is 0.25. The solid line is a
quadratic fit corresponding to p(co) =0.296co~.

FIG. 8. Histogram for the distribution of eigenvalues,

cok ——A,k, for the 2D XYmodel. The data are from three arrays
of 30 spins and the bin size is 0.1. The solid line is a linear fit
corresponding to p(ar )=0.383co.
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in our work and in that of Ref. 8 lead to virtually identi-
cal excitation spectra.

The results reported in this paper, along with those of
Refs. 6—9, support the prediction of weakly damped,
propagating modes in easy plane spin glasses. '9 The ob-

servation of the modes in both the planar model [Eq.
(1.2)] and the XF model [Eq. (1.11)] suggests they are a
universal feature of such systems. As noted, the magnon
velocities inferred from the dynamic structure factor for
the planar model differ from the values obtained from a
numerical calculation of the stiffness by less than 10%%uo.

Because of this agreement our results do not shed any
direct light on the enhancement of the density of states.
It was suggested in Ref. 8 that this enhancement could re-
flect the presence of low-lying, nonpropagating modes.
Although we cannot rule out this explanation, the fact
that these modes must have a density of states with the
same functional dependence on frequency as that of the
propagating modes is difficult to understand. It is possi-

ble that the discrepancy arises because the propagating
modes have a non-negligible width at finite k [cf. Eqs.
(1.5) and (1.7)] and hence are only approximate eigenvec-
tors of the dynamical matrix. As a consequence they may
not give a quantitatively accurate representation of the
eigenvalue spectrum. The fact that the exact density of
states and the density of states obtained from (4.1) have
the same frequency dependence would indicate a one-to-
one correspondence between the low-lying eigenstates and
the propagating modes with the corresponding frequencies
being related by a scale factor (which is perhaps equally
difficult to understand).

ACKNOWLEDGMENTS

We would like to thank R. B. Grzonka and M. A.
Moore for providing us with a copy of the report on their
work prior to publication. The research was supported by
the National Science Foundation under Grant No. DMR-
82-03704.

'Present address: Sperry Corporation, Egan, MN 55121.
A. J. Bray and M. A. Moore, J. Phys. C 14, 2629 (1981).
D. L. Huber and W. W. Ching, Amorphous Magnetism II, edit-

ed by R. A. Levy and R. Hasegawa (Plenum, New York,
1977), p. 39.

3B. I. Halperin and W. M. Saslow, Phys. Rev. B 16, 2154 (1977).
4W. Y. Ching, D. L. Huber, and K. M. Leung, Phys. Rev. B 23,

6126 (1981).
~W. Y. Ching and D. L. Huber, Phys. Rev. B 27, 5810 (1983).
D. L. Huber, W. Y. Ching, and M. Fibich, J. Phys. C 12, 3535

(1979).
~D. L. Huber and W. Y. Ching, J. Phys. C 13, 5579 (1980).
R. B.Grzonka and M. A. Moore, J. Phys. C 16, 1109 {1983).

9A. J. Bray, R. B. Grzonka, and M. A. Moore, J. Magn. Magn.

Mater. 31-34, 1293 (1983).
oJ. Villain, J. Phys. (Paris) 35, 27 (1974).
A. J. Bray and M. A. Moore, Phys. Rev. Lett. 47, 120 (1981).
P. Reed, J. Phys. C 12, L475 (1979).
R. E. Walstedt, Phys. Rev. 8 24, 1524 (1981).
R. Alben and M. F. Thorpe, J. Phys. C 8, L275 (1975).

~5M. F. Thorpe and R. Alben, J. Phys. C 9, 2555 (1976).
6For the details of the calculations see C. M. Grassl, Ph.D.

thesis, University of Wisconsin —Madison, 1983.
~7P. Dean, Proc. R. Soc. London A254, 507 (1960); A260, 263

(1961).
P. Dean and J. L. Martin, Proc. R. Soc. London A259, 409
(1960).

~9S. F. Edwards and P. W. Anderson, J. Phys. F 6, 1927 (1976).


