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Fully and partially frustrated simple-cubic Ising models: Landau-Gi»burg-Wilson theory
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Ising models are studied, with frustration covering either only the x-y planes, or all the planes of
a simple-cubic lattice. The former reveals a two-component (XY) order parameter subject to eight-

fold symmetry breaking. The latter has a four-component Hamiltonian with two fourth-order in-

variants. Renormalization-group analysis using d =4—e expansion indicates, respectively, XYcriti-
cality and, to order e, a first-order transition. Two connected networks, one ordered and one disor-

dered, can form in the fully frustrated system.

Ising spin systems with randomly distributed ferromag-
netic (J) and antiferromagnetic (—J) nearest-neighbor in-
teractions are simple and important exainples of spin
glasses. ' In such systems, intrinsic and removable ran-
domness have been distinguished. The latter type can be
eliminated by local redefinitions of spin directions and,
hence, does not affect the critical properties. Intrinsic
randomness has been associated with frustration:2 The in-
dividual local interaction energies cannot all be simulta-
neously minimized. The total energy is minimized equal-
ly by a large number of spin configurations, characterized
by the interactions that are violated. On a cubic lattice,
each elementary square composed of one and three bonds
of opposite signs (and equal magnitude) is frustrated.
Frustration is expected to affect strongly the cooperative
behavior of a system.

Highly frustrated, but nonrandom systems have been
studied as problems related to spin glasses. 4 'o The fully
frustrated Ising model on the square lattice is solved ex-
actly ' and remains paramagnetic at all nonzero tempera-
tures. A critical point occurs at zero temperature, where
the correlation function decays with a power law. The
ground state is highly degenerate, and the entropy per
spin is finite at zero temperature. It is of importance to
generalize this model to three dimensions, since, due to
the higher connectivity, a finite-temperature ordering of a
highly degenerate system appears possible.

Consider the fully frustrated Ising model on the square
lattice. Figure 1(a) shows the "comb" representation of
this model, which is equivalent, via redefinitions of spin
directions, to the model originally introduced by Villain.
One generalization to three dimensions (d =3) is to stack
d =2 models and to connect them by ferromagnetic
nearest-neighbor bonds along the z direction. ' In this
case, only the x-y planes are (fully) frustrated [Fig. 1(b)].
Another generalization is to proceed as before, but with
every other d =2 model shifttxl by one lattice constant
perpendicular to the combs. Every elementary square of
this latter system is frustrated [Fig. 1(c)]. In fact, by vari-
ously and repeatedly stacking and stagger-stacking, a
variety of d-dimensional hypercubic lattices frustrated in
d dimensions, d & d, can be created from the comb model.

Both of these d =3 models have highly degenerate

ground states, but their entropy per spin vanishes at zero
temperature. In the stacked model, at zero temperature,
the energy price of introducing a domain boundary along
the z direction dominates the concurrent entropy gain, '
so that one expects long-range order, presumably extend-
ing to finite temperatures. A Monte Carlo simulation of
the fully frustrated model suggests a finite-temperature
phase transition, which appears to be second order.

The construction of a Landau-Ginzburg-Wilson (LGW)
Hamiltonian is very profitable in phase transition studies,
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FIG. 1. (a) Comb representation of the fully frustrated
square lattice. Straight (squiggly) lines represent ferromagnetic
(antiferromagnetic) bonds. A m/2 rotation has to be combined
with spin reversals at the dotted sites to accomplish a symmetry
operation. Cubes from the stacked (b) and fully frustrated (c)
d =3 models.
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not only because there are well-developed techniques
treating such Hamiltonians, but also because this allows
the prediction of critical universality classes" and of
possible onsets of order as demonstrat'ed below. Our
present results were made possible by a new application of
LGW theory, in which combined usage is made of sym-
metry operations in position and spin spaces.

The analysis starts with the spin Hamiltonian

c$ = —g JIJS(SJ.
(~j)

where s; =+1 is the spin at site i of a simple-cubic (SC)
lattice, the sum is over nearest-neighbor pairs, and the
coupling constant J is periodically ferromagnetic (J&0)
or antiferromagnetic as specified above and in Fig. 1. The
matrix JJ is diagonalized after Fourier transforming.
This does not truly solve the many-body problem, since
the hard-spin condition s;=+1 translates into a con-

straint in momentum space N 'g-s(k)s(q —k) =5(q).
k

A basic hypothesis is that this constraint is not conserved
under rescaling and therefore is irrelevant to asymptotic
criticality. Thus it is inferred that the mode(s) with the
largest eigenvalue of the interaction matrix becomes criti-
cal as temperature is lowered from the disordered phase.
The number of critical modes gives the number n of com-
ponents of the order parameter, which, together with d
and the LGW invariants to be discussed below, determine
the universality class.

In the stacked model, the Fourier transformed interac-
tion matrix couples modes of wave vectors q and q+my
(where y is the unit vector in reciprocal space). The larg-

est eigenvalue (1+V 2)J is associated with two degenerate
modes (n =2) at momenta (0,~/2, 0) and (~,m. /2, 0). The
corresponding eigenvectors give the spatial variations of
these critical modes,

P, =cos( —,
'

my ——,
'

m. )e'~,

$2= sin( —,
'

ny ,
'

m )e'+"——
(b)

0.9y, + 0.4 y,

as depicted in Fig. 2(a), with translational invariance
along the z direction. From the spatial dependence of
these tnodes, their transformation properties under the
symmetry operations of the system are extracted. Then
the LGW Hamiltonian is constructed by noting all invari-
ants under the symmetries, at each consecutive order in
Ni, 2 ~

Note, however, that the Hamiltonian has a lower sym-
metry than the underlying Bravais lattice, due to the vary-
ing interaction signs. The symmetry of the lattice is re-
stored by invoking local up-down symmetry in spin space,
a symmetry of the free energy. For example, a m./2 rota-
tion about the z axis restores the original system only
when accompanied by the spin redefinitions s;~—s; at
the dotted sites in Fig. 1(a). Under this combined opera-
tion, namely a spatial rotation and selective spin fiips, the
order parameter transforms as P& z~(P&+$2)/v 2. Per-
forming the remaining space-group operations of the sc
lattice with the appropriate spin flips, the LGW Hamil-
tonian is determined as

~=—X (~+~')[4'(q)+0'(q)]+ g ~ [0'1'
4

+ g u6[tt' ] + g Ius[f ] +u8gfg2(ff —P~) I,

where g, are modes nearby (();, the sums g are over p
conserved momenta, and [1( ]:—gf+g2. The eight-order
term takes a more transparent form with the substitution
f~ ——m sin& and l(tz

——m coso, namely, g I (u 8

+us/32)m —(us/32)m cos(88) I. Thus the LGW Hamil-
tonian of the stacked model is that of an XF (n =2)

4

V

&8 & 0 vs~0
FIG. 2. (a) Eigenmodes of the stacked model. Long and

short arrows represent magnitudes of M cos(m/8) and
M sin(m. /8). These are also, for v8 &0, two of the eight degen-
erate ordered phases. Violated bonds are slashed. (b) Ordered
phase for v8 &0. Long and short arrows represent magnitudes
of M and M/V 2. Sites without arrows are totally disordered.

FIG. 3. One of the sixteen degenerate ordered phases of the
fully frustrated model, for either sign of v4. Long and short ar-
rows represent magnitudes of {3—~3)' M and
(3 —V 3)'~~M/V 3 for v4 & 0, V 2(3—V 3)'~~M and
V 2(3 —V 3)'~2M/W3 for vq &0. Sites without arrows are to-
tally disordered. Violated bonds are slashed. Note the inter-
penetrating ordered and disordered networks for v4 & 0.
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model with eightfold symmetry breaking. Momentum-
space renormalization-group analysis to first order in
e=4—d indicates that us is irrelevant at d =3. Accord-
ingly, XY criticality is expected, for example, with a
cusped (a=—0.02) specific heat. '

The configuration of the ordered phases just below the
transition is given by M[pisin@+$2cos@], where
(M, cII)=(rn, g) minimize the LGW Hamiltonian. There
are eight degenerate phases. For vs & 0, 4=0,m/4, 2m/4,
etc. Each critical mode corresponds to an ordered config-
uration, which is characterized by the interactions of
every other row being violated, and the smaller of two
average-spin magnitudes [-sin(m/8), cos(n/8)] occurring
on this row [Fig. 2(a)]. The remaining six phases are ob-
tained by interchanging the roles of rows and columns,
and by global spin reversals. For vs &0, 4=m/8, 3Ir/8,
5Ir/8, etc. The critical modes are mixed in the ordered
configurations [Fig. 2(b)]. In an elementary square, +M
and 0 occur diagonally; the other diagonal has magnitude
M/v 2, with signs chosen to satisfy bonds with +M.
Thus some linear arrays of spins along the z direction
remain totally disordered inside the ordered phase. ' One
guesses that u8 &0 in the LGW Hamiltonian, since the

and

pi ——[cos( ,'ny)—+A cos( ,'my+—,'Ir)e'—],
$2——[sin( —,

' ~)—A sin( —,
' Iry+ —,

' m. )e' ],
Ijfl3 —[cos( —,

'
my }—A sin( —,

'
my + ,' Ir)—e' ]e'

p4 ——[sin( —,
'

Iry) —A cos( ,
' Iry+ ,'—g)—e' ]e'

where A =(3/3 —1}/W2. Again the symmetry operations
involve combining the space-group operations of the sc
lattice and local spin redefinitions. The LGW Hamiltoni-
an, invariant under these operations, is

corresponding phases have a higher entropy, as estimated
by S-g,.(1—

~
(s;)/(s), „~ )ln2.

The fully frustrated model in d =3 is treated similarly.
Upon Fourier transforming, the interaction matrix
decomposes into 2 X2 blocks which couple modes of wave
vector q and q+my+mz. Diagonalizing these blocks, we
find that the largest eigenvalue, V 3J, is associated with
four degenerate modes (n =4). The spatial variations of
the four components of the order parameter are

24~= —,
' g (r+q') g g,'(q)+u4 g g f' +v4 g g 0 v3(ItI —It2 43+—04)(It102+4344)+3(PA'3+42It4) ~

4 i=1 4 i=1

We have subjected this Hamiltonian to momentum-space
renormalization group to second order in e=4 d. There-
are two fixed points: the unstable Gaussian fixed point
(u4 ——u4 ——0) and the isotropic "Heisenberg" fixed point
(u4&v4 ——0), which is marginal to order e, but unstable to
order e. The interpretation of such renormalization-
group runaway flows is a first-order phase transition. '

Hypothesizing that this is a weakly first-order transi-
tion, consistently with marginality to order e (also recall
the second-order interpretation of Monte Carlos), the con-
figuration of the ordered phases just below the transition
is given by

M [p Isin@Isin&2 —$2sin@I coscII2

P3cos@Isin@3+$4cosC IcosC 3]

4I ——tan '[2—(sgnu4)V 3o I]'~

cP2 ——[3crI +6o 2+ 12cr3+ 1]Ir/24,

0 3 ——[3cr I
—( sgnu4 )6o 2 + 12o 4 —1 ]Ir /24, cr; = + 1

Thus there are sixteen degenerate phases that are related
by up-down symmetry and corner-cubic (face-hypercubic)
symmetry for v4 & 0 (u4 & 0). For u4 & 0, lines of violated
bonds form a 2 X 2 structure for each direction and do not
intersect (Fig. 3). The smaller of two average-spin magni-
tudes (-1/V 3, 1) occurs next to violated bonds. Each ele-
mentary cube has

~
(s; )

~

-M at two diagonally opposite
sites,

~
(s;)

~

-M/v 3 at the other sites with signs fixed
so that three violated bonds do not touch

~

(s;)
~

-M.
For v4 &0, ordering occurs only in one of two connected
networks (Fig. 3). Each elementary cube has one

~
(s;)

~

-M connected to
~
(s; }

~

-M/v 3 via unviolated
bonds, and disorder in the diagonally opposite half. This
interpenetrating ordered and disordered portions, each
percolating with the full dimensionality of the underlying
lattice, is a noteworthy microscopic picture. As above,
one guesses by entropy consideration that U4&0 in the
LOW Hamiltonian.

It is seen from our study that frustration problems,
which derive from hard-spin conditions and discrete lat-
tices, can be addressed by continuum LGW theory, pro-
vided the lattice and local spin symmetries are combined.
Our results show that frustation affects the universality
class of the transitions, providing an example of an ap-
parently Ising (n =1) Hamiltonian accoinmodating n & 1

criticality. Needless to say, our method is applicable to
other arrangements of frustrated squares, and a variety of
results are obtained. For example, stacked planes in
which periodically two out of three consecutive rows of
squares are frustrated give n =1 criticality. In a real spin
glass, local frustration patterns occur randomly. Thus it
is tempting to speculate that a system of vector spins with
a randomly variable number of components (random n)
and random orientations is appropriate for the spin-glass
transition. This, in turn, should asymptotically reduce to
a random-axis model.
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