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The renormalization of the superconducting state is presented consistently and predictions for the
screened charges as well as for the mixing in the phonon-Coulomb system are derived.

I. INTRODUCTION

Field-theoretic calculations start with bare fields and
bare interactions. These bare quantities cannot be directly
applied for predictions of observed phenomenology.
Theoretical quantities that predict experimental results
can, however, be expressed in perturbation sums, which
include various radiative corrections to the bare theory.
In order to treat these terms consistently, the normaliza-
tion method has been developed. So far, no consistent
study on the renormalization of the microscopic theory of
superconductivity exists, although much effort has been
dedicated to the calculation of the electron self-energy and
the phonon polarization.

This paper is organized in the following way: Section
II introduces the bare theory. In Sec. III the coupled sys-
tem of equations for the renormalized Green’s functions is
enumerated, and field renormalization and the screened
charges are defined. Section IV deals with their actual
calculation and the approximations that must be made.
Finally, in Sec. V, results are discussed and experiments to
test the calculations are encouraged.

II. BARE THEORY

The Lagrangian of the electron-phonon system in the
two-component notation of Anderson and Nambu! may
be decomposed into three parts: (i) the Lagrangian ., of
the free (noninteracting) electron, phonon, and electrostat-
ic fields ¥, @, and @, (ii) interaction terms .#’; describing
the electron-phonon coupling as well as electromagnetic
forces approximated by static Coulomb contributions, and
(iii) counterterms .Z ¢ that are in the bare theory but must
be included to absorb radiative corrections:
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Electron fields W (x) (s is the spin index) are arranged in
a two-component vector W(x)=(¥,(x),¥_(x)). The 7
matrices are well known from the theory of angular
momentum: 73=diag(l,—1), 7; and 7, are normal on 1,
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73, and each other. Together with the unity matrix they
form a complete basis of the linear (2,2) space. The pho-
nons are represented by a scalar field ¢ with an effective
Yukawa-type coupling to the charge density of the elec-
trons. The Coulomb term is the electrostatic vector po-
tential Ay(X,0)=¢(X) that stems from the substitution
i9,—i0,+eom34,(X,t) in the free-electron Lagrangian,
where only longitudinal components have been kept.

The bare Green’s functions of perturbation theory may
be either read off directly from the Lagrangian .Z, or
taken from the literature.”? The bare-electron propagator
is denoted by Gy(p), the propagator of the acoustic pho-
non by By(go) and the bare Coulomb line by Vy(q). A
factor 73 should be inserted at each bare vertex. For the
complete composition rules the reader is referred to the
literature. Factors and functional dependences entering
the perturbation expansion are dropped if they are not
essential to the argument.

III. RENORMALIZATION

Since both the phonon as well as the Coulomb line cou-
ple to the charge density of the electrons, a mixing of the
phonon and Coulomb fields occurs due to an exchange
term from the proper polarization II with one phonon and
one Coulomb leg, respectively. Therefore, they cannot be
treated independently and must be arranged in a (2,2) ma-
trix in a linear space spanned by the Coulomb and phonon
fields. Taking the bare fields as the basis, the bare propa-
gator D, and the proper polarization can be written in the
following representation (the indices ¢ and ¢ refer to the
outgoing legs):

By 0
0 ¥,

HW H¢>¢
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The full Green’s functions G’ and D’ are obtained by the
summation of complete proper self-energy and polariza-
tion terms = and II, a sum that can formally be written as

G'=Gp+GoSGo+ " , (3.1a)
D'=Do+DoIDg+ * -+ . (3.1b)

Dy= , = .

This should not be confused with the random-phase ap-
proximation, since it contains the complete proper terms
and not only their lowest-order approximations. G’ and
D’ in (3.1) are geometrical series that can be summed up
only in the radius of convergence, although the formal
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sums are assumed to be valid outside:

G'=(1—-Gy2)"1Gy , (3.2a)

D'=(1—D,II)~'D, . (3.2b)
The structure of the proper self-energy =, polarization II,
and vertex parts I' can be investigated by the following in-
tegral equations’ [sums in (@,$) space are not denoted ex-
plicitly]:

3= [ D'TG'ry, (3.3)
N=— [ Tr(nG'TG"), (3.4)
r=m— [ TGKG', (3.5)

where another proper diagram K has been introduced. K
itself will not give rise to any further renormalization,
since the only corrections entering are self-energies and
vertex insertions in the internal lines. =, I, and T will be
the central ingredients of the renormalization program,
and all other quantities in the theory such as the S matrix
and other Green’s functions will be expressed in terms of
these three. Equations (3.1)—(3.5) are graphically
represented in Fig. 1.

The central idea of renormalization is to rescale the
propagators (and thus the fields), vertex functions, and
charges so that near a certain renormalization point .#
and in the case of the vertex for zero momentum transfer
these quantities approach the corresponding bare quanti-
ties:

2 -

(a)

(b)
>
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FIG. 1. The complete system of Egs. (3.1)—(3.5) is represent-
ed by diagrams. Shaded areas indicate full Green’s functions.
The propagator of the phonon and the Coulomb line D is drawn
as a double line. Each diagram can be associated with an equa-
tion as follows: (a) with (3.1a), (b) with (3.1b), (c) with (3.3), (d)
with (3.4), and (e) with (3.5).
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G'=Z,G*,
Bl:Z,(Jl)B*

v'=z%v*,
3.6
r=zy'r* R

g =go(Zs)' 2,27,
e=e(ZP)N?Z,Z7!

so that for po—Ay=A(py) and qy—.#
G*(p)=G§(p),

B*(q)=By(q) ,
(3.6b)

V*(q)=V,(q),

I*(p,p)=7;.

G¢§ includes contributions from the counterterms in (2.1).
It can be seen easily that the renormalized couplings g
and e are defined to contain the renormalization factors
Z, and Z; from the electron, phonon, and Coulomb lines
(one-half of a phonon or Coulomb and half of each of the
two electron lines; the other halves of these lines join to
other vertices or are external). Therefore, at a particular
momentum .# the full Lagrangian containing the renor-
malized fields and charges may be written formally identi-
cal to (2.1); with the result that a tree-graph calculation of
some process, based on this redefined Lagrangian, already
contains all possible radiative corrections in a consistent
and well-defined way.

Complications arise because of the nondiagonal form of
D’ in the basis where D, is diagonal (and vice versa).
This indicates that the fields ¢ and ¢ are not multiplica-
tive renormalizable, as was assumed in (3.6). Owing to
the invariant form of the free Lagrangian .%, (since
9;6=0) it is possible, however, to rotate the fields such
that two new fields

__eop+8op
(e(2)+g(2))1/2 ’

__8op—eop
(e5+g5)1"?

decouple and become multiplicative renormalizable.

One of the formidable problems facing quantum-field
theory is the proof that G*, B*, V*, and I'* remain finite
to all orders of the renormalized couplings. It is thought,
however, that ultraviolet divergencies are logarithmic and
therefore weak and arise from the notion of a continuous
field, which is fortunately only an approximation in
many-body theory, since fundamental lengths (serving as
ultraviolet cutoffs) appear as Debye frequencies from
band structure, etc. Therefore, the major concern is with
the actual calculation of the renormalized quantities.

IV. CALCULATION OF THE RENORMALIZED
QUANTITIES

A theorem by Migdal* (recently discussed by Allen and
Mitrovié¢®) states that high-order phonon corrections to
the vertex function I' are of the order of V'm /M (where
m and M stand for the electron and ion masses, respec-
tively), resulting in a suppression of approximately 102,
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The Coulomb sector is generally more difficult to treat
and is often omitted. For the calculation of the electron
self-energy, a pseudopotential can be introduced that takes
into account the long-range nature of the Coulomb force.
In what follows it is assumed that for strong-coupling su-
perconductors these electromagnetic interactions yield
small corrections to the dominant phonon sector.

A. Electron self-energy

The sum in (3.1a) has been evaluated by Eliashberg® in
an approximation of the self-energy that essentially
decouples (3.2a) and (3.3) from the rest of the system (Fig.
2):

3= [ DorsG's . (4.1)
Equation (3.2a) can be written into a form often called
Dyson’s equation G’ ~!=Gg ' —= and

G' '=G5'— [ DorsG'1s, (4.2)

which is referred to as self-consistent perturbation theory.
The approximations made are supported by Migdal’s ar-
gument* for the electron-phonon sector that states that
I' =~73. ‘Coulomb contributions are more cumbersome and
are bypassed by the introduction of a pseudopotential, as
mentioned above. Recently the inclusion of the phonon
propagator (that may show resonances due to bound
states) into the system of equations has been suggested by
Machida.” Equation (4.2) can be solved by introducing

counterterms A, A, and X into the full propagator G’ and
arranging it into the form

G'(p)=Z,G*(p)
=Z,[pol —(€, +X)m3—A(p)r1 — Alp)r,+i8] 7" .
(4.3)
The phonon propagator Dy, is written in its spectral repre-
sentation which is inferred from experiment. This leads

to the Eliashberg equations® for the renormalization fac-
tor Z, and the counterterms (pg=w):

’

(0]
[(wr)Z__AZ(wl)]l/Z

—1 _ i Pe ’
Z, (co)—1+w on do'Re

xXK_(w,0'), (4.42)
o Alw’)
Aw)=2,() [, "do'Re o P ] ]
XK 4 (0,0'), (4.4b)
Aw)=~0, (4.4c)
X(0)=~€[Z,5(0)—1], (4.4d)
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FIG. 2. Approximate calculation of the electron self-energy.

where K_ and K | are kernels containing the phonon and
Coulomb structure. At the critical temperature [which
can be obtained from (4.4b)], the gap A(w) vanishes for all
frequencies w.

B. Phonon and Coulomb polarization

An approximate calculation of the proper polarization
in a superconducting medium was first performed by
Schuster® and has been used by Balseiro and Falicov’® to
explain Raman scattering in the presence of charge-
density waves. As has been pointed out earlier, the mix-
ing between the bare phonon and Coulomb lines compli-
cates the actual calculation of the effective charges. Since
both fields couple to the electron identically with different
coupling constants, the polarization can be written as

g5 goeo

2
€080 €o

Physically this means that phonons are no eigenstates of
the phonon-Coulomb system. Consequences can be de-
rived by rewriting the Schrodinger equation for the pho-
non and the Coulomb state in the interaction picture into
an integral equation that can be solved by an iteration
process similar to perturbation theory.!® If a phonon is
injected it starts to oscillate, and the probability that
it is in the phonon state after some time At is given by a
second-order calculation in e and 8o
[y =2(e+g¥)Im(P), e=(ej+g5)Re(P)]:
et +gte T 2edgle ~(1/D7%05(eAL)
(g5+ed)? '
This oscillation is observable if e; is not too small com-
pared to g, and the linewidth ¥ does not dominate the ex-
pression. The full propagator D’ for the phonon-

Coulomb system in the basis of the bare fields can be
computed from (3.2b):

, 1
D'= 2 2
1—(goBo+eoVo)P
(1—e3V,P)B,
eogoBoPV,

wy(AD) (4.5)

eogoBoPVy

(1—g2BoP)V, | ° (4.6)

For actual calculations the electron-Coulomb coupling eq
is assumed to be small compared to gg, so that the proper
polarization reduces to I1=diag(g3,0)P and (3.2b) may be
evaluated for a decoupled phonon-Coulomb system [see
Fig. 3(a)]:

B,
 1—g3BoP’
V': Vo .

’

(4.7a)

(4.70)

An approximation for the proper polarization (3.4) is ob-
tained by setting I' =73 [Fig. 3(b)],

P=— [ Tr(1;G'mG") . 4.8)

Since the full electron propagators appear in this expres-
sion, (4.7) and (4.8) are not complete. For practical pur-
poses, however, G’ is assumed to be known and the gap
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(b)
FIG. 3. Approximate calculation of the phonon and the

Coulomb propagator.

even constant, although the complete structure is much
richer and can only be deduced by a simultaneous solution
of (3.2)—(3.5). From the definition of the scaling laws
(3.6) and from (4.7), the renormalization factors Z; are
seen to be

Z{" =(1—g3BoP) !,
z9=1.

(4.9a)
(4.9b)

For the explicit calculation of P the reader is referred to
the literature.”

C. The proper vertex function
and charge screening

Migdal’s theorem* states that phonon corrections to the
proper vertex (3.5) can be neglected due to a strong
supression of the order of 10%. Coulomb corrections are
generally omitted, consistent with the approximations
made for the calculation of the self-energy and polariza-
tion terms. This reduces the proper vertex part drastically
to its bare contribution I' =73, which implies

Z,=1. (4.10)

We conclude with the remark that, since only the electro-
static potential has been included into the Lagrangian
(2.1), a generalized Ward identity!! that would establish
Z,=2Z, for the electromagnetic corrections cannot be ap-
plied.

From the approximate calculation of the renormaliza-
tion factors the renormalized charges may be obtained ac-
cording to their definition in (3.6). Since the resulting
theory is effectively (up to Z factors) a free theory, this
rescaling is very similar to the classical definition of the
static dielectric constant: (effective potential) = (bare
potential) /(dielectric constant). The classical concept is
refined by quantum theory to include certain fine struc-
tures (such as the gap) that can only be understood on the
quantum level. Therefore, the identification of the dielec-
tric constant

6“)=[(Zgi))1/22221—1]_2 , (4.11)
where (i) denotes either g or e renormalization, is a for-
mal one that has only an exact classical limit (h—0). If
the renormalization point .# is chosen to be identical to
the energy flow Q across the vertex, all propagators

reduce to a convenient bare form, and g and e may be
written as

R g5
g4Q) TQ) , (4.12a)

2

0
eZ(Q)——(Z‘)za , (4.12b)

where in the approximation of McMillan'? Z, ~(1+4A)~!
for Q=A

eNQ)=[1—g3By(Q)P(Q)] (14+1)?,
€?o=(1+172,

and for Q >>A, Z,~1 (A is the effective electron-phonon
coupling that includes both the bare coupling g, and the
phonon spectrum).

(4.13a)
(4.13b)

V. CONCLUDING REMARKS

We have discussed the renormalization of the micro-
scopic theory of superconductivity. This procedure repro-
duces the well-known Eliashberg equations for the gap
and the electron renormalization. New structures appear
in the phonon and photon (Coulomb) sector, since both
fields couple to the charge density of the electrons and be-
come a hybrid state. It is also interesting to note that the
electron renormalization Z, must be included in charge
screening; an effect that is observable only in the low-
energy region near the gap. The gap parameter A shows
some similarity with the mass of relativistic field theory
[the excitation spectrum of the quasiparticle states is
Epzzeg + | A|*p)] and is not obtained by spontaneous or
dynamical symmetry breaking (such that a scalar field
similar to the phonon would acquire a nonvanishing vacu-
um expectation value), but rather by a self-consistent
evaluation of the electron Green’s function.

Some questions have been left out. It would be interest-
ing to know the full structure of the phonon-photon sys-
tem for the case when go~ejy. Results from relativistic
field theory'® indicate that mass counterterms for the pho-
non and the photon would need to be included very much
like the counterterms for the electron field in .Z .

Whereas computations of the gap have already been
confirmed experimentally, an empirical examination of
the renormalized charges (4.12) as well as oscillations in
the phonon-Coulomb system (4.5) still remains to be done
and would be welcomed as a test for the theoretical ap-
proach.
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