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Effect of parametric modulation on the onset of convection
in He- He mixtures near the A, line
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The onset of convection in He- He mixtures is considered with the temperature difference
sinusoidally modulated between the plates in the Rayleigh-Benard geometry. The system can show
stabilization or destabilization depending on the mean temperature. For oscillatory instability,
parametric resonances should occur. As a preliminary step, we obtain analytic results under ideal-
ized boundary conditions for the onset of convection in the unmodulated case. The results there are
in qualitative agreement with the experiments of Lee, Lucas, and Tyler.

I. INTRODUCTION

Convective motions can be produced in single-
component fluids by maintaining a vertical temperature
gradient (heating from below when the expansion coeffi-
cient is positive and from above when it is negative) that
affects the density gradient. In fluid mixtures or in a
fluid with a solute (e.g. , saline water), convection can
occur, even if the net density decreases upwards and the
system is hydrostatically stable in the sense of a single-
component fluid, provided the two diffusivities (of heat
and solute) differ significantly. This effect, first antici-
pated by Stommel et al. and subsequently refined by
Stern and Veronis, is called double-diffusive convection.
While these early works dealt with the case of a fluid con-
taining a dissolved solid, it was realized by Schechter, Pri-
gogine, and Hamm that the same effect could occur in
binary-fluid mixtures. '

Experimental advantages such as good temperature sta-
bility and resolution have motivated the study of convec-
tion in fluids at very low temperatures in recent years.
Ahlers investigated the convection in a single-component
fluid near the A, temperature of He. An interesting can-
didate for studying double-diffusive convection at these
temperatures is the mixture He- He near the superfluid
transition temperature Ti. This mixture differs from
usual binary mixtures in three striking ways: (i) the mass
diffusion of He into He becomes high near the A, point
and ultimately diverges at the transition, (ii) the thermo-
diffusion kz- is relatively large, reaching a limiting value
of about 0.57 at Ti, and (iii) at about 6 mK above the Tt„,
the expansion coefficient changes sign, " becoming posi-
tive for T & Ti + 6 mK. Lee, Lucas, and Tyler' have re-
ported on the Rayleigh-Benard instability in this system.

Note that because of (i) and (ii) the ratio of mass dif-
fusivity to the thermal conductivity (in the absence of
mass current) can change from a number much less than
unity (the usual situation) far from Tt„ to a number much
greater than unity very close to T~. This fact invalidates
the usual assumption of neglecting the effect of concen-
tration gradient on the heat current. %'hat is essentially
involved here is a more versatile form of double-diffusive
convection in which the ratio of diffusivities can be
parametrically varied over a wide range.

II. ONSET GF CONVECTION
IN ABSENCE OF MODULATION

The hydrodynamic equations for the temperature (T)
and concentration (c) variables in the binary mixture have
been obtained by Landau and Lifshitz' as

Dkz-
+(v V)T= V T+ V'c (2.1)

Dkz-
+(v V)c =DV c+ V T .

at T
(2.2)

Here v is the velocity of flow. The concentration c is the
mass fraction of He, D is the isothermal mass diffusion

The problems of onset of convection in such systems
have been treated at length by Gutkowicz-Krusin, Collins,
and Ross. ' In Sec. II we treat the problem in a simplified
form by assuming idealized boundary conditions. This
has the advantage of producing results in closed form —a
fact which is exploited in the following sections in dealing
with the parametric modulation of the temperature differ-
ence. It will be seen that results obtained on the basis of
the idealized boundary conditions are in qualitative agree-
ment with the experimental observations of Lee et al. '

An interesting problem to study is the effect of periodic
modulation of the temperature difference between the
plates. For the single-component fluid this modulation is
known to produce dynamic stabilization and delay the on-
set of convection if finite-size effects are ignored. ' ' It
has recently been pointed out' that for a double-diffusive
system such as salt solution, such parametric modulation
can lead to a far richer stability pattern. In this paper we
carry out a calculation of the effect of the modulation of
the temperature difference on the onset of convection in
the He- He mixtures. %'e believe that the various possi-
bilities of stabilization, destabilization, and resonances
will stimulate experimental work in the field. Our calcu-
lation follows closely that of Venezian' for the single-
component fluids.

In Sec. III we set up the equations of motion for the
modulated system in a perturbation approach. The first
correction to the critical Rayleigh number is obtained in
Sec. IV and a brief summary provided in Sec. V.
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coefficient, A is the thermal conductivity in the absence
of the concentration gradient, kr is the thermodiffusion,
Cp is the specific heat at constant pressure and concentra-
tion, and X is the susceptibility (Bc/B)M)r, p being the
chemical potential. The two diffusivities whose relative
magnitude drives this double-diffusive convection are the
mass diffusion D and the thermal diffusion in the absence
of mass current (1/Cp)(A Dk—z /XT). The velocity fol-
lows the usual Navier-Stokes equations, augmented by the
buoyancy term,

—AV 5T= w+ V5gT DkT

d XCp

DkT

t d T
D—V 5c= w+ V 5T,

(2.12)

(2.13)

I =z/d, tr=v/A, S, ) v/D——,
(2.14)

where A, =A/Cp is the thermal diffusivity. We introduce
the dimensionless variables

+(V V)v= — Vp+g +vV2v .
pm pm

(2.3) ag (b, T)d' v

A, v

Here p is the mean density, p is the position-dependent
density, v is the kinematic viscosity, and p is the pressure.
The fluid is assumed to be incompressible, i.e., Lw =0, (2.15)

and eliminate 5T and 5c from Eqs. (2.11)—(2.13) to obtain

V.v=0,

and the equation of state is

(2.4)
where

L =V 0. —V Si —V= 2 a 2 a 2

87 Br

p=p [I—a(T —T ) —P(c —c )], (2.5)

where T and c are the mean temperature and concen-
tration. The thermal expansion coefficient is

Dkz
V

AXCp T
a-V

BT

p
pm

(2.6) a—R Vi Si —V — —Vi 0. —V
i)7 aT D Bw

pm c
(2.7)

2

+— V)V — V)Vp kT , , kT

a T XCpT
(2.16)

measures the change of density of mixture with change in
He concentration. By our definition P & 0. In the steady

state (shown by subscript s) the velocity field is zero
everywhere and the temperature and concentration pro-
files are linear,

T,(z)= To hT —— (2.8)

c,(z) =co—hc —,z
d ' (2.9)

where To and co are the values at the lower plate, d is the
plate separation, and b, T and b,c are the differences in
temperature and concentration between the plates. The
fact that in the steady state there is no mass current im-

plies that

Sc kz-

AT T
(2.10)

V —vV w =agV)5T+PgV)5c, (2.11)

where b, T is positive when heated from below.
To study the onset of convection in the above system

one needs the linearized equations of motion. For the
velocity field m in the z direction, the deviation 6T and 5c
of the temperature from their steady-state values, respec-
tively, we have the equations of motion

d N =0 at z =0 and d .
Z2

(2.17)

While the quantitative results obtained from these boun-

dary conditions can differ significantly from those ob-
tained with more realistic ones, the qualitative features are
quite accurate. Furthermore, analytic answers at this
stage will simplify the study of temperature modulation in
the next section. The velocity field which obeys the boun-

dary conditions of Eq. (2.17) has the form

i(k„x+k y+cut)

where n is an integer and k = ( k„,k„) is a two-
dimensional vector. Defining

X=n H+k d =n ~ +it: (2.19)

we find the Rayleigh number of stationary instability
(co=0) to be

27m4
0 4

kT
1——

A, XCpT

aT D
1+ kT

XCpT

(2.20)

For the oscillatory instability, on the other hand,

Before pmceeding any further we need to prescribe boun-

dary conditions. Analytic answers are obtained for the
idealized free boundary conditions
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R 27m
0 4

k~2

+S +XTC.S + S TXC,

P kz 1 kr
1 —— 1+——

u T 0 S]TCpg

(2.21)

and the oscillatory frequency is

9~4o=
Dkz-1—

AXCp T

kg1++XC,T .T '+D (2.22)

Note that 27m /4 is the minimum value of the quantity
X /It

The above equations have been analyzed near the A,

point with the help of accurate data on the transport
properties of He- He mixtures that have recently become
available. '92o Ro &Ro close to T~ as long as cz&0. Con-
sequently the instability is oscillatory when heated from
below (hT ~ 0) and disappears when

P kz 1 kz.=1+——
a.'T o S)T+Cp

(2.23)

This is in agreement with Lee et al. ,
' who found that the

instability is oscillatory when heated from below and sta-
tionary when heated from above. Furthermore Eq. (2.23)
shows that the onset of the oscillatory instability disap-
pears at the temperature where a~0 as the concentration
of He approaches zero. This can be seen from the fact
that kr —+0 as the concentration vanishes; since the right-
hand side (rhs) is finite, the equality is satisfied when
a~0. At higher concentrations it is seen from Eq. (2.23)
that this onset phenomenon occurs at higher
temperatures —again in qualitative agreement with Lee
et al. ' When heated from above Ro &Ro (a &0), conse-
quently the instability is stationary. The occurrence of
the combination A, krD/gCzT in—the expression for the

I

I

Rayleigh number now makes it possible for convection to
occur very close to the A, point. This is because while A,

and D both diverge, this combination does not and, hence,
it is possible to go very close to T~ and yet observe the in-

stability. For pure He this instability is unobservable
near T~ owing to its divergent thermal conductivity. In
the next section we consider the hydrodynamic equations
in the presence of the modulation.

Tt =Ti +6'kT cos(cot), (3.1)

where e is a small parameter and AT = T& —T2, T2 being
the temperature of the upper plate. To obtain the steady-
state ( v =0) temperature and concentration profiles in this
case, we need to solve Eqs. (2.1) and (2.2) under this con-
dition and with the constraint of Eq. (2.10). Straightfor-
ward algebra yields the profile for T to be

III. EQUATIONS OF MOTION UNDER MODULATION

The effect of temperature modulation on the Rayleigh
number for onset of convective instability can be substan-
tial. However, its sign (i.e., whether it will increase or de-
crease the Rayleigh number) is not intuitively obvious. In
particular, if the system admits an oscillatory instability
there is the interesting possibility of a resonance. In the
double-diffusive systems, where both stationary and oscil-
latory instabilities are possible, the modulation therefore
leads to a rich stability pattern. %'e proceed to analyze
the effect by first establishing the equations of motion,
i.e., the analogs of Eqs. (2.12), (2.13), and (2.15) under
temperature modulation. The lower plate temperature TL
is considered to be modulated with frequency co as

sinh[(iso/Di)' (d —z)]
T = Ti+(T2 —Ti)—+Re 2 i~ +B

D sinh[(ice/D i )' d]

sinh[(iso/D2)'~ (d —z)] ei tote( gT)
sinh[(iso/Dz)' d]

(3.2)

where

4D k
Di 2

———, A, +D+ (A, —D) +
XCpT

Dk~2 —D, +A,
D) —D2 XCpT

(3.3a)

(3.3b)

cosh[a ~ (d —z) ]f (z, t) =Re Aaid-
slnh aia

cosh [a 2( d —z) ]
sinh(azd )

(3.5)

1 Dk,'8= D] —A, —
D) —D2 +CpT

This leads to the gradient

(3.3c)
Equations (2.12) and (2.13) for the fluctuating quantities
5T(r) and 5c (r) now take the form

AT Dkp
A,V' 5T = [1+ef(z, t)]i'+ V'5c,

ai d X p

with

~

VT
i

= e(b, T)f(z, t)/d, —
d

(3.4)
(3.6)

kz- aT Dkz-

Bt T d
DV' c = — [1+ef—(z, t)]ttt+ V 5T .

T
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Eliminating 5T and 5c from Eqs. (2.11) and (3.6) we now
obtain the equation of motion for w (r) as

IV. RESULTS FOR R2

A. Stationary instability
Lw =ERG(fw), (3.7)

where L is the operator defined in Eq. (2.16) and

G=V', S, —V' —~ ' —V', —V'k

c}7. a T D Br

2

V)V +— V)V
kz. p kT

X p a T
(3.8)

L OWO =0, (3.10)

To proceed further we expand the relevant quantities w

and R in powers of e to

W =WO+6'W& +E' W2+ ' '2

(3.9)
R =Ro+eR)+e R2+

We note that the odd corrections R~, R3, . . . in R must
vanish. This follows from the fact that correction to Ray-
leigh number should not depend on the phase of the
modulation and, hence, on the sign of e. This argument
breaks down, however, at the parametric resonance at
co=2coo, which is analyzed separately. Inserting the ex-
pansion (3.9) into Eq. (3.7) and equating equal powers of
E, we obtain

In this case the solution wo is time independent. From
Eq. (3.11}it is then apparent that the time dependence of
wi is sinusoidal with frequency co. The right-hand side of
Eq. (3.12) now consists of a time-independent part and a
part with frequency 2co. The time-independent part on
the (rhs) of Eq. (3.12) (which determines wz } will lead to a
singularity in w2 since Lwo ——0 has a time-independent
solution. This is the well-known secular term in perturba-
tion theory, ' and we remove it by choosing R2 such that
the time-averaged part of the rhs of Eq. (3.12) is 0. This
yields

Rp& wp
~
Gwo & = —

z Ro& wo
~
G(fw i ) &

= —2Rp&f G wp wi &

, Ro&f G"—wo
i
Gfwo/L&, (4.1)

kT L3 kT

XCpT a T D

where the angular brackets stand for the usual scalar
product. The functions G and L are given by

pkT X
G(co)= E.ico —Si —— er-

a D D

Lowi ——RoG(fwo),

Lowz ——R2Gwo+RoG(fwi) .

(3.11)

(3.12)
and

E(Gii—co+Gz), (4.2)

Here Lp is the operator L of Eq. (2.16) with R =Ro. In-
tegration of the above set of equations will yield the
corrections to the Rayleigh number Ro which marks the
onset of convection in the absence of modulation.

Before ending this section, we introduce for later use
the following Fourier transform for f (z, t)w p..

L (co)=Li(co)+iL2(co),

with

2

Li(co) =%co (c7Si+cr+Si ) —X 1 ——2 D kT

A, XCpT

(4.3)

00f (z, t)wo ——g a„sin(nvrzld)e' "''+"", (3.13)
2

+R0K X 1+ kT

X p

13kT D
(4 4)

for static instability, where

(aid)
a„=4m. n

(n —1) m +aid (n+1) n. +aid

+&(ai ~a&)

2
3 D

L2(co) =%co o'Si —X co 1 —— +c7+Si
A, YCt T

+coROE SI —— —apkT X

T D

(3 14} We now obtain the correction R2 as

(4.5)

Note that

a) ——4m
4~ +a )d 4m +a~d

(3.15)

and in the limit of low frequencies, n& and o,2 tend to ap-
proach zero and a& —+1. For oscillatory instability we re-
place co on the right-hand side of Eq. (3.13) by co+cop, as
the case may be. We have normalized the amplitude of
wo to unity as it drops out of the subsequent analysis.

R ~o
~
a„~ 'G (co)

Re
4 „Li(co)+iLz(co)

RpK fa„ i2
2 z (62L i coLzGi ) . —

4 n L)+L2
(4 6)

The K appearing in the above equation is to be evaluated
at its optimuIn value for the instability at Ro. Approxi-
mating Eq. (4.6) by the leading term (n = 1) we obtain in
the limit of zero frequency
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R2(co=0) =

pkrXoG2(oSi+o+Si) —Gi RoÃ S& ——
a T D

D
1 —— +o.+S)

XCpT

2 (4.7)

p kT X
ROE S& —— —o.

n T D
kT

1 —— +cr+Si
X pT

The interesting thing is the versatility of this expression
since all the different quantities o., s&, k, D, kT, and a
have strong temperature dependences as the temperature
is varied near the A, point. Note that both the numerator
and denominator are capable of having zeros. The
numerator thus can be both positive and negative. Hence,
at low frequencies one can expect stabilization or destabil-
ization depending on the mean temperature of the system.
The possibility of a zero in the denominator indicates that
these stability effects can be made very pronounced by
suitably varying temperature. At high frequencies, as is
obvious from Eq. (4.6), R2~0, which is what one would
expect.

B. Oscillatory instability

We first treat the nonresonant situation co&2coo. For
an oscillatory instability the solution mo has time depen-
dence of the form cos(coot), and hence from Eq. (3.11) w~

will have the two frequencies co+coo. The right-hand side
of Eq. (3.12) now consists of two parts: one with frequen-
cy coo and the other with frequency 2co+coo. The part
with frequency coo will cause a spurious resonance in the
determination of w2 since Lwo Ohas ——a solution with
frequency coo. This is remedied by choosing R2 ——R2 such
that the coefficient of e on the rhs of Eq. (3.12) van-
ishes. The analog of Eq. (4.6) now becomes

Ro 2 ~
a„~ [G2(co—coo)L ) (co —coo) —(co —coo)L2(co —coo)G ) (co —coo)] + I co~ —coj

8 L
~ (co coo) +L 2(co —coo)— (4.8)

Keeping only the first term in the expansion, we find after
straightforward algebra

R2 ~ [( —~o) —~ol (4.9)

Thus we have a parametric resonance at co=2coo. This is
probably the most striking feature of a double-diffusive
system under parametric modulation of the temperature
difference. The infinity in the above expression at co =2coo
is an artifact of dropping the first correction, R~. The
parametric resonance produces a correction at 0 (e). Our
previous argument for R& ——0 is not valid at co=2coo, and
Eq. (3.11) must be modified to

Low, =ROG(fwo)+R, Gwo . (4.10)

2l Not
Since wo-cos(coot) and f-e, the right-hand side has
the frequencies coo and 3coo. The frequency coo gives the
secular term which now must be removed by choice of
R ~. This yields

& wo I
Gfwo &t

R i
————,RORe

& wo i
Gwo)

(4.11)

R ) ———RORe(a ) /2)

Ro
2 1+eood /4n D) 1+eood /4vr D2

(4.12)

where the factor —, comes from time-averaging. The in-

tegration over z yields

I

Thus for the resonant case at co=2coo, the correction
occur" at O(e). When one takes into account this non-
vanishing R&, the divergence at O(e ) for co=2coo in Eq.
(4.9) is removed. ' The width of the resonance region is
of O(e'coo). ' This concludes our discussion of the stabili-
ty pattern.

IV. SUMMARY

We have derived analytic expressions for the critical
Rayleigh number for the double-diffusive convection in
He- He mixtures by using the idealized free boundary

conditions. Although this makes the results lose some
quantitative accuracy, the qualitative features should be
reliable and seem to agree with the experiments of Lee
et al. ' The onset of convection is then studied by modu-
lating sinusoidally the temperature of the lower plate.
The first nonvanishing correction to the Rayleigh number
has been obtained for both stationary and oscillatory in-
stabilities. For stationary instability the correction can be
positive or negative, depending upon the mean tempera-
ture of the system which determines the values of the
various transport coefficients. For the oscillatory instabil-
ity parametric resonance occurs for m=2coo, where coo is
the frequency of the oscillation of the velocity and tem-
perature fields. It should be possible to carry out experi-
mental studies on the system and observe the various sta-
bilization and destabilization patterns.



30 EFFECT OF PARAMETRIC MODULATION ON. . . He- He MIXTURES. . . 1341

See, for instance, S. Chandrasekhar, Hydrodynamic and Hy-

dromagnetic Stability (C)arendon, Oxford, 1961).
H. Stommel, A. Arons, and D. Blanchard, Deep Sea Res. 3,

152 (1956).
M. E. Stern, Tellus 12, 172 (1960).

4G. Veronis, J. Mar. Res. 23, 1 (1965).
5R. S. Schechter, I. Prigogine, and J. R. Hamm, Phys. Fluids

15, 379 (1972).
R. S. Schechter, M. G. Velarde, and J. K. Platten, in Advances

in Chemica/ Physics, edited by I. Prigogine and S. A. Rice
(Publisher, City, Year), Vol. 26.

7D. T. J. Hurle and E. Jakeman, Phys. Fluids 12, 2704 (1969).
G. Ahlers, Phys. Rev. Lett. 33, 1185 (1974).
E. D. Siggia, Phys. Rev. B 15, 2830 (1977).
OH. Meyer, G. Ruppeiner, and M. Ryschkewitsch, in Proceed-

ings of the International Conference on Dynamic Critical Phe

nomena, edited by C. P. Enz (Springer, New York, 1979).
R. W. H. %ebeler and G. Allen, Phys. Rev. A 5, 1820 (1972).

~26. Lee, P. Lucas, and A. Tyler, Phys. Lett. 75A, 81 (1979).
3D. Gutkowicz-Krusin, M. A. Collins, and J. Ross, Phys.

Fluids 22, 1443 (1979).
S. H. Davies, Annu. Rev. Fluid Mech. 8, 57 (1976).

5G. Ahlers, P. C. Hohenberg, and M. Lucke, Bull. Am. Phys.
Soc. 26, 1271 (1981) (and unpublished).
J. K. Bhattacharjee and K. Banerjee, Phys. Rev. Lett. 51, 2284
(1983).
G. Venezian, J. Fluid Mech. 35, 243 (1969).

~8L. D. Landau and E. M. Lifshitz, I'luid Mechanics, Vol. VI of
Course of Theoretical Physics (Pergamon, New York, 1959).

~9R. P. Behringer and H. Meyer, J. Low Temp. Phys. 46, 407
(1982).

20D. Gestrich and H. Meyer, Bull. Am. Phys. Soc. 27, 516
(1982); H. Meyer (private communication).
N. Minorsky, Nonlinear Oscillations (Krieger, Huntington,
New York, 1974).


