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Thc theory of 8 two-component quantum fluid comprised of spin- 2 fcrm1ons and BOPlz8'I'0 spin

bosons is examined. This system is of interest because it embodies a possible quantum liquid metal-

lic phase of highly compx'essed deuterium. Bose condensation is assumed present and the two cases
of nuclear-spin-polarized and -unpolarized systexns are considered. A significant feature in the un-

pol8rlzcd case 1S thc presence, of 8 PlOPtP22Qgtletlc IIlodc w1th quadrat1c dispersion ow1ng its existence

to nonzero boson spin. The physical character of this mode is examined in detail within a Bogo-
liubov approach. The specific heat, bulk modulus, spin susceptibility, and thermal expansion are all

determined. Striking contrasts in the specific heats and thermal-expansion coefficients of the liquid

and cox'xesponding normal solid metallic phase are predicted.

I. INTRODUCTION

Theoretical interest in the expected high-pressure states
of metallic hydrogen and deuterium has most often cen-
tclcd oil a possible solid clystalllllc pl1asc. Less fl'cqucll't-

ly considered are dense liquid metallic phases, which un-
doubtedly exist at sufficiently high temperatures. An in-

triguing possibility, suggested in a number of detailed
studies, is that the liquid metallic phase may, at a density
near that at the metal-insulator transition, continue to ex-
ist even at temperatures sufficiently low that the "ionic"
degrees of freedom must be treated quantum mechanical-
ly. The physical basis for this low-temperature liquidity
is attributable to the low ionic mass and concomitant high
zero-point energy (as is also the case in liquid He and
"He).

A theory of a "quantum" liquid metallic phase of dense
hydrogen (i.e., a two-component Fermion fluid of elec-
trons and protons) has been given earlier. 1 This paper
presents a corresponding study of the low-temperature
phase of liquid metallic deuterium (LMD). Liquid metal-
lic deuterium constitutes a two-component boson-fermion
flllld with, 111ost 1111portRIltly (RIld 111 co11'tlast to Hc- Hc
mixtures), the boson component having nonzero spin. The
presence of these bosonic spin degrees of freedom leads to
a new quasiparticle branch (a Goldstone mode) which, as
will be seen, has significant implications for both the
equilibrium and transport properties of the system. In
further contrast to He- He mixtures, LMD is dis-
tinguished by (i) long-range Coulomb forces and (ii) an
enormous component-mass ratio.

No definitive static metallization either of H or D has
been achieved, though there are some claims to the con-
trary. " Transient metallization involving dynamic tech-
niques has also been reported, but is also not definitive.
Aside from possible detection of metallic conductivity no

empirical knowledge of the preferred phase or its proper-
ties has been advanced. Several efforts aimed at metalli-
zation are, however, underway or envisaged. Thus it is
appropriate to attempt to anticipate properties of the
liquid metallic phase in order to provide a basis for exper-
imental discrimination between liquid and solid phases if
metallization is eventually achieved. The system is also of
intrinsic theoretical interest.

Section II discusses a model for LMD which is ap-
propriate for a first study. Two cases are considered:
deuterons both spin-polarized and unpolarized, respective-
ly. Section III describes the quasiparticle spectrum and in
particular clarifies the nature of the Goldstone branch.
We concentrate here on equilibrium properties, and these
are dealt with in Sec. IV. The nature of the quasiparticle
interactions in this system and their transport properties
are also of considerable interest. These are planned to be
discussed in a separate paper.

II. MODEL AND MAGNETIC PREPARATION

We consider a mixture of X spin- —, fermions (electrons)
of mass m, and charge —e, and of N spin-1 bosons
(deuterons) of mass md and charge + e. We assume the
interactions to be Coulombic, and we assume that there
are no spin-dependent interactions. Note that unlike
He- He mixtures no macroscopic fermion-boson phase

separation can be possible here, because of the long-range
nature of the particle forces. Further, unlike the case of
isotopic boson mixtures with isotope-independent interac-
tions, I.MD, viewed as an effective three-component
Bose Quid, will not undergo bosonic phase separation.

For purposes of this analysis we may assume the ex-
istence of a Bose-condensed but otherwise "normal" liquid
Q1etallic phase. Accordingly, we orn1t florn consideration
a number of open and interesting issues, e.g., the existence
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of electronic superconductivity, electron ferromagnetism,
liquid crystallinity, charge-density-wave formation, and
other states of order. Furthermore, since the first success-
ful experimental metallization will likely involve a very
small, possibly microscopic sample of LMD which will be
very much confined in the high-pressure maintaining ap-
paratus, we will not address the issue of superfluid hydro-
dynamics.

We treat two cases: (A) "chemical" equilibrium among
all boson components, (B) "chemical" nonequilibrium
with a majority of bosons being in one spin sublevel (a)
and a small fraction ( & 10 ) in a second level (P). Case
A is expected to be realized experimentally, almost by de-

fault. Case B requires preparation of the sample through
the use of a large magnetic field. In practice, case B will

eventually relax to case A because of the presence of dipo-
lar forces in actual LMD. In both cases we consider the
temperature to be much lower than the Bose-condensation
temperature. Note that in case A all boson spin levels are
in general condensed, whereas in case 8 there is the possi-
bility that for sufficiently high temperatures, level a, for
example, will be condensed while level 13 is not; in case B
we restrict our attention to this situation.

The Bose-condensation (BC) temperature T for an ideal

Bose gas is given by'

3 3iknT—
g'"mk,

where g is the spin degeneracy, n is the density, m is the
particle mass, and k~ is Boltzmann's constant. We will
be interested in an r, range" of 1.0—1.6 thought to be
near the T=O metal-insulator transition boundary. For
the ideal case of A., g=3, m =md =3.34&&10 gm, and
the BC temperature T~~~-21 K (53 K) for r, =1.6 (1.0).
For the ideal case of B, it is relevant to consider two BC
temperatures T and Ttt for the a and P levels, respec-
tively. Then T =43 K (110 K) for r, =1.6 (1.0). For
minority-spin concentration c of 1% and O. l%%uo, Ttt=2.0
K (5.1 K) and 0.43 K (1.1 K), respectively, for r, =1.6
(1.0).

These results give a very rough guide to the correspond-
ing fully interacting BC temperatures (denoted here with
asterisks). We expect the T*'s to be somewhat lower, but
probably of the same order of magnitude as the ideal esti-
mates. A reasonable estimate for the deuteron effective
mass (md -2md) suggests by a simple estimate' that the
actual T"'s are a factor of & 10 lower than these results.
In any event it seems likely that the temperature regimes
1 «X~~A~ or T& & T &&T* will be easily attainable exper-
imentally.

Preparation for case 8. Assuming equilibrium condi-
tions and using pd ——0.857pz ——4.33&10 ergG ', a
spin sublevel ratio n&/n is produced with a magnetic
field H given by H ——3)& 10 T ln(nttln ) G. Using the
maximum presently available static fields ( —10 G) and
existing millikelvin techniques, a 0.1% "solution" will re-
sult. The thermalizing nuclear spin depolarization which
will then take place after the field is removed is primarily
attributable to the nuclear-spin —conduction-electron hy-
perfine interaction. The effect of nuclear dipole-dipole in-

teractions is somewhat smaller both because of the small-
ness of the ratio of nuclear to electronic moments
( —10 ) and because of the smallness of the internuclear
relative velocity as compared to the typical nuclear-
electron relative velocity. Accordingly, a longitudinal
magnetic relaxation time r may be estimated from the
Heitler- Teller formula, '3

64' r'ad&', AT
9 eF 6'F

(2)

where y, (yd ) is the electron (deuteron) gyromagnetic ra-
tio, e~ is the Fermi momentum of the electrons, and

~
f(0)

~ F is the Fermi surface average of the electronic
wave functions at the position of the nucleus. For a
rough estimate, it is sufficient to take

~
g(0)

~

to be its
value in the ls hydrogenic state:

~ g&, (0)
~

=2.1X10
cm . This gives rT=3 7&&10. (2.3)&10 ) sec for r, =1.0
(1.6). Thus for T & 1 K the nuclear magnetic relaxation
times should be more than ample to permit experimental
studies of LMD under case B conditions. We do not con-
sider the question of either the existence or the effect of
nuclear magnetic domains.

III. ELEMENTARY EXCITATIONS

We adopt in this initial description of LMD a
phenomenological approach; we first identify the quasi-

particle excitations and their approximate dispersions. In
the spirit of the Landau-Khalatnikov' approach used for
He, we determine the finite-temperature equilibrium and

near-equilibrium properties under the assumption that
these quasiparticles are distributed according to the equili-
brium or near-equilibrium quantum ideal-gas distribution
functions for the appropriate statistics.

A qualitative identification of the quasiparticles pro-
ceeds by first taking the point of view that LMD (case A)
is an effective three-component Bose fluid with short-
range species-independent effective interactions. Here of
course the electronic degrees of freedom are ignored ex-

cept insofar as they implicitly enter into the screening of
the effective deuteron-deuteron interaction. From the ap-
propriate effective deuteron Hamiltonian we expect to be
able to identify the form of those quasiparticle branches
possessing boson character. As will be seen, this approach
actually leads to the identification of two types of bosonic
branches. For small k, one is the expected longitudinal
phonon while the other is a particle-type excitation whose
presence is entirely a consequence of the nonzero boson
spin.

A complementary point of view is to regard LMD as an
effective electron gas moving in a "heavy" neutralizing
and dynamically responding background. The back-
ground augments the screening due to the electron gas it-
self. This does not, however, change the qualitative fact
that (renormalized) fermionic particle-hole branches will
continue to be present in the original problem, again, as-
suming no electronic ordering such as superconductivity.

For the case of a mixture of spin-0 condensed bosons
and fermions a picture corresponding to that just given
for LMD is supported by microscopic theory' in which a
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kF
e, (k) = „(k kF)+p„k =k—~

me
(3)

joint random-phase approximation is made for both
species. It is concluded that there are two quasiparticle
types: phonons and fermion quasiparticle-hole pairs, each
renormalized by all the interactions in the problem. This
picture, even for the fully interacting case, can be estab-
lished by a fairly general diagrammatic analysis. Consid-
er the diagrammatic expansion of boson single-particle
propagators. " Since the system is condensed there will
exist two "anomalous" single-particle propagators involv-

ing, respectively, two creation and two annihilation opera-
tors. The three types of propagators will be coupled to-
gether via a Beliaev-Dyson equation. '

It is clear that the electron propagators will enter only
in the form of polarization insertions (see Fig. 1). Thus,
formally, the full diagrammatic expansion for the (cou-
pled) boson propagators in the presence of the electrons is
topologically identical to that for a system with bosons
alone. The basic interaction unit involved is not, however,
a static bare long-range interaction; rather it is a dynami-
cally screened short-range interaction. To the extent that
the electrons adiabatically follow the ions, it is reasonable
to take this effective interaction as a renormalized static
interaction, justifying the picture just given above.

A similar argument applies to the electron single-
particle propagators. Here, the boson propagators enter
only in polarization insertions within electron-electron
bare interaction lines (see Fig. 1). Unlike the previous
case, the replacement within a diagram of a basic bare
Coulomb interaction unit with the dynamic, ionically
screened effective interaction does not directly lead to the
view that the electrons are interacting via a new static
force.

Even though the effective electron-electron interaction
is dynamic, experience with the electron-phonon interac-
tion in metals' and the results of the calculation of Ref.
15 together give us some confidence that the above
viewpoint is nevertheless often correct. In some cases, of
course, it is distinctly incorrect, e.g. , when the effective
forces are attractive. Neglecting such possible effects, the
above argument at the very least furnishes a framework
within which we may predict the existence of normal fer-
mionic quasiparticles associated with the electron propa-
gator. The energy e, (k) of such a quasiparticle of
momentum k is given by

N

II

1

II

N

II

(c)

II

II

II
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where kz is the Fermi momentum, m,
' is the effective fer-

mion mass (renormalized by interactions with all species
in the system), and p, is the fully renormalized electron
chemical potential.

Bosonic modes. We now consider in some detail the bo-
sonic quasiparticle branches. The effective bosonic Ham-
iltonian H is

FIG. 1. (a), (b), and (c) show first-order contributions to "nor-
mal, " anomalous-"out, " and anomalous-"in" single-particle bo-
son propagators, respectively. Double solid lines and double
dashed lines denote bare boson propagators and "condensate
factors, " respectively (see Ref. 10). Single dashed lines denote
bare Coulomb interaction between like charges. In (d), (e), and
(f) the renormalization of a typical boson diagram, (a), due to
the electrons is indicated: (e) shows a typical screening of the
boson-boson interaction by an electron particle-hole pair [solid
single lines denote bare electron (hole) propagators]. (f) symbol-
izes the effect of all types of electron polarization insertions
within the given boson diagram topology, the double wavy line
denoting the fully electronically screened boson-boson effective
interaction. Such a procedure would apply to all boson dia-
grams. A similar argument applies to the bosonic renormaliza-
tion of the electron propagator, illustrated for a typical electron
diagram in (g)—(i). The dotted line denotes the bare electron-
boson Coulomb interaction.

k 1
M =Eo+ g g a -a -+ g g U(

~
k& —k3

~
)5 (k~+k2 —k3 —k4)a a, a, a

A, k3 A,'k4 A,'k1 ~k2
k

k3k4

(4)

where md is an electronically renormalized deuteron ef-
fective mass, v is the number of spin components (v=3
for LMD), U is the effective spin-independent short-range
interaction, V the volume, and a - (a -) the creation

A, k A, k
(destruction) operator for a boson of spin A, and momen-

tum k. Here Eo is a constant resulting from the elimina-

tion of the electron degrees of freedom.
The multicomponent Hamiltonian has been considered

in a number of studies: Nepomnyaschii analyzed the for-
mal structure of the Green's functions and, using an argu-
ment similar to that of Gavoret-Nozieres, ' established
the form of the quasiparticle spectra for k~O. ' Bas-
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sichis gave a very formal treatment of Eq. (4) for arbitrary
v within the Bogoliubov approximation. ' Colson and

Fetter also studied the somewhat analogous problem of
He- He Bose mixtures. And Halperin considered the

question of hydrodynamic m.odes. ' All of these authors

pointed out the existence of new particle-like modes.
In the present approach, as a qualitative guide to LMD,

we analyze in some detail Eq. (4) for y =3 within the Bo-
goliubov approximation. We utilize a less general, though
more direct, procedure than in Ref. 19. We also more ful-

ly discuss and clarify the physical meaning of the new

particle-like modes.

A. Case A

Assuming the most general form of Bose condensation,

we write

2
&0~ =&0U~ (5a)

3

g U', =I,
A, =1

(5b)

3

No=N —2No g g a a2 2
A, k A, k

k (~0)

we are then led to

where No~ is the condensate number in the A,th spin sub-

level, N0 is total condensate number, and U~ are the com-
ponents of an arbitrary real unit vector. As in the usual
spin-0 Bogoliubov procedure we treat the zero-momentum
operators as c numbers and retain terms of order No and

Xo only. Using

k' 3

H(~)=Eo+ g g a -„a -„+ N U(0)+2N g g U(k)a, a UkUk
k k (~0) A, A, '=1

k' —k+
(~ 0 ) Aping —1

In view of the form of Eq. (6) we introduce new boson operators a, a by

(6)

a-=QUka -,
k Ak'

A, =1

3

a —= g Uia
k A, k

It is trivially verified that the a, a satisfy the canonical Bose commutation relations [a-, a -,]=5--„
[a-,a, ]=[a -, a -,]=0. Using Eqs. (7) and adding and subtracting a kinetic energy operator in the new fields, wek' k' k' k'
have from Eq. (6),

H(A) -Eo+H1+H2, (8a)

H, =g g a -a —g a-a-,
md

A, k A, k 2~d k k
k k

(Sb)

kH2= g a -a-+ N U(0)+2N g U(k)a a-„+N g U(k)(a a +a „a -„)
md k k 2V

k k (~0) k (@0)
(Sc)

We observe that H2 has the same form as the full Hamiltonian (with Bogoliubov replacement) for the case of spin 0.
Evidently Hz is then diagonalized in the canonical representation of a defined by

1 1
a = 2, (a-+/Ika ), a = 2, (a-+ Aka ) .

k (I g2)&/& k —k ' k (I g2)&/2 k —k
(9a)

The inverse relations are

a-= ~, /2
(a- —AJ, a -), a-= ~, /2 (a -—Ak& -),

k (I g&)&/2 k —k ' k (I g&)&/2 k —k
(9b)

with

V
U(k)N 2md

—U(k) —+N
V

1/2

k 1V+ U(k) — — U(k)—
2md V V

(l0)
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Then,

H, = U(0)+ geb(k)a aN
2V k k

eb(k)=

where the bosonic excitation energy eb(k) in the Bogo-
liubov approximation is

k x '"
+ U(k) — —U(k) — . (12)

2md V V

—Ul U2
COSt912 =

Vl V2

—Ul U2

(U'+ U')'"(U'+ U')'" (19)

and

X» ——(Uz+ U3)' (20a)

X21 ——0 . (20b)

We may choose v i to be in the x direction [in the ( u„,u~ )

plane], for which

As is well known, in the limit of k~O these modes are
phonon-like with linear dispersion; for k~no, they are
particle-like quadratic modes.

We turn to the diagonalization of Hi which is rewritten

Then

—Ul U2
12 U2x U2COS012

(U, +U, )'" (20c)

H, = g g (5kka -a, —UkUka a, -„) .
k2

A. k A,'k A, k A, 'k
k

Next, operators haik and p2k are introduced by the defini-
tions

3

p.-—:g Xja.ik . jkj=l
p. :—g X,jaik . jkj=l

E' =1,2

where X,j are real c numbers to be determined by requir-
ing that Hl may be written as

+U,
22 ~2y U2 sin12 2 2 ~

(U + U )i/2

Similarly,

—U1U3

( U2+ U2 )1/2

—U2

(U +U )'

(20d)

(20e)

(20f)

2 I 2

H =XX
i 1 2'

k

(15)
(The determination of the relative sign between X22 and

X23 follows from the requirement v2 v3 ———U2U3. ) The
p;k are then written as

i.e., as a sum of two degenerate quadratic branches. Note
that each spin sum in Eq. (13) is over three components.

Substituting Eqs. (14) into Eq. (15), using Eq. (5), and
comparing to Eq. (13), we are led to the relations

P, „=(U,'+ U', )'"a

Ul
2k 3k2 i/2 (U2a -+U3a ) (21a)

and

X»+X21=U2+ U3 ~

2 2 2 2

X12+X22=Ul+ U3 ~

2 2 2 2

X13 +X23 —U 1 + U2
2 2 2 2

X11X12+X21X22= —Ul U2 ~

X11X13+X21X23 Ul U3

(16a)

(16c)

(16e)

X12X13+X22X23 U2 U3 (16f)

These coupled nonlinear equations are solved by introduc-

ing three two component vector-s v; defined as

v;—= (Xi;,X2;), i =1,2, 3 .

The relations (16) can then be written as

(17)

2 2 ~ ~ 2 2 ~.~ 2 2Vl'V 1
= U2+ U3~ V2'V2= Ul + U3, V3'V3= Ul + U2

(18a)

and

1p-=
2 2, (U3a -—Uza -).

2k (U2+ U2)i/2 2k 3k
(21b)

aIld

a = 2, / g (Uka —Ak U~a ) (22a)
k (1 g2)i/& kk k, —k

As is readily verified, this choice of the new operators sat-
isfies canonical commutation relations: [y.-, y.-,]ik' jk
=[y.-, y. ,]=0, [y.-, y.-,]=515 -„where y, -ik' jk' ' ik' jk' 'J k k' i k

H Ia,P -,P I . Within the Bogoliubov approximation,k' l k' 2k
these new quadratic modes are unrenormalized.

The physical nature of the quadratic modes is clarified
by considering the two-component analog of Eqs. (8).
There are then two branches a and P (linear and quadra-
tic, respectively, as k~0), i.e.,

v 1 V2 Ul U2~ V 1 V3 Ul U3~ V2 V3 U2 U3
P-=U2a -—U, a

k lk 2k (22b)

(18b)

Denoting the angle between v; and vj by 0,J we then find

We express the longitudinal partial density and transverse
spin-density fluctuation operators in the Bogoliubov ap-
proximation, i.e.,
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and

p2k

ga a, =Np U1(a „+a, „), (23a)

q

pa - a =Np U2(a „+a „), (23b)
2, k+ q 7

q

1/2cr-= ga - a, =N() (U(a -+U2a -) .
k 2, k+q 2k 1, —k

q

( —) f f 1/2o = g a a2 -N p ( U2a + U)a ),
k 1, k+q 1k 2, —k

q

(23c)

S(k,co)—= g ] ((Ii„~pk ~

(lip)
(

5(p1 —to„p), (27)

tion contained in Eqs. (8) resulting from the electrons.
The analysis of Ref. 18 suggests that the form of the
dispersion relations for k =0 would, however, be
preserved. For larger k there is a possibility of a roton-
like feature in the phonon-like branch though since the
ion "cores" here are softer and the kinetic energy higher
than in He, such a feature is expected to be weaker. In
any case we consider temperatures sufficiently low that
only the k =0 modes are relevant.

Finally it is interesting to consider the T=O dynamic
structure factor S(k,co) for the multicomponent Bose
fluid:

1/2 't ( —)Np P = o — pk k U 2k

Similarly, by multiplying Eq. (23a) by U2/U1 and sub-
tracting Eq. (23d) from this,

Np P-= p -— o-.1/2 f 2 f (+ )

k U1 1 k k
(25)

Combining Eqs. (24} and (25), we have the symmetric
orTl1

By multiplying Eq. (23b) by U1/U2, subtracting this
from Eq. (23c},and using Eq. (22b), we have

where
~
%p} and %'„) are the many-body ground and

nth excited states and co„p is the difference in energy of
states

~

(I/p) and
~

'P„). Within the Born approximation
the scattering probability of a longitudinal density probe
(e.g., particle) transferring momentum k and energy co is
proportional to S(k,co). If we continue to work in the
Bogoliubov approximation, the total longitudinal density
fluctuation operator takes the form

p = g a ak -Np g(U2a -+U2a -)1/2
k A, , k+q ~q A., —k A, k

q, A,

=Np (a +a ) . (28)

1
~ k+ Nl/2

0

(-) t (+)
U1 1k U2 2kp ~— p ~ +( o'~ cr—~)

k k

Using Eqs. (9) in Eq. (28) we then have, from Eq. (27),
1/2

S(k,ci)) =Np1/2 1+Ak
5(co eb(k)) —. (29)

1 —Ak

Thus, for U1 ——U2, p- creates a combination of relative
k

longitudinal density fluctuations and relative transverse
spin fluctuations.

As noted earlier, ' these modes may be thought of as
broken-symmetry (Goldstone) modes: When the system
condenses into a particular direction in "U space, " the
ground state breaks a continuous symmetry of the Hamil-
tonian. This leads to a new excitation branch with disper-
sion and damping both tending to zero as k —+0. These
modes, since they are in addition quadratic, may be

thought of as "magnons" in U space. However, it is im-
portant to realize that they arise without the presence of
any explicit magnetic (spin-flip) interactions in the Hamil-
tonian.

From Eqs. (21} it is also evident that the P modes
represent a coherent superposition over the spin com-
ponents of bare particle excitations. In addition to the im-
portant spin coherence, these excitations are analogous to
those of the ideal Bose gas. Thus, if we consider, for ex-
ample, the spin-independent scattering of an electron
quasiparticle against a P mode, the relevant physical pic-
ture is one of the former scattering off a bare particle, and
is rather different from scattering off of a longitudinal
density fluctuation.

Naturally, if one goes beyond the Bogoliubov approxi-
mation, me expect both the normal bosonic dispersion and
what may be considered as an "impurity"-like dispersion
to be further renormalized, i.e., beyond any renormaliza-

Thus in this approximation a longitudinal density probe
mill see only a normal bosonic excitation branch contribu-
tion. The multicomponent Bose liquid is in this respect
analogous to He. It may seem strange that the
impurity-like modes do not contribute to S(k,co): They
are somewhat analogous to "particles" excited out of the
condensate and are thus similar to the excitations of an
ideal Bose gas. These do contribute to the structure fac-
tor, i.e.,

S;d„)(k,a)) =N5(co —k /2m) . (30)

1
nb(k) =

p (k), k -k) (32)

n;"(k)=, k =0
Pd (k)

e —1

The point is that the impurity-like modes are a coherent
superposition of particle modes in different spin states.
As seen from Eq. (29), such a superposition is not excited
by a longitudinal density probe; it mould be excited, how-
ever, by a spin-discriminating probe.

Finally we remark that in case A in equilibrium (and at
finite temperatures) we have three types of quasiparticles
present with quasiparticle distr}bution functions given by
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where P=(kz T) '. In Eqs. (31)—(33) all quasiparticle en-
ergies are now fully renormalized.

B. Case B

For this case we have condensation only in the A, = 1

spin sublevel, and the effective Hamiltonian analogous to
Eq. (6) is applied only to that selected level. This Hamil-
tonian is again diagonalized in the Bogoliubov representa-
tion. In addition, the impurity spin gives rise to a quadra-
tic impurity branch with a shift (the Landau-
Pomeranchuk spectrum )

H(B) y ~b(k)+k +k+ y ~(k)+ 2k~2 k+@6
k k

(34)

Here the impurity quasiparticle energy is e; (k }
=@0+k /2m d, and e&(k) and m ~ are the normal boson-
ic excitation energy and deuteron impurity effective mass
in the limit in which the impurity concentrations tend to
zero. Note that eo is the impurity chemical potential, also
in the low-impurity-concentration limit. Finally, EG is
the ground-state energy of the effective one-component
Bose fluid of majority spins.

Note that the number of impurity excitations in case B
is temperature independent whereas in case A the number
of "impurity"-like excitations is temperature dependent.
Further, the impurity excitations of case B lack the spin
coherence of the "impurity"-like modes and moreover are
not classified as broken-symmetry modes. Thus even
though the impurity and "impurity"-like modes share
quadratic dispersion, they are physically rather different.

For the low concentrations of impurities characteristic
of case B we can clearly justify a direct single-particle
one-to-one correspondence between impurity quasiparticle
excitations and boson impurities. The usual combinatoric
arguments for the entropy then lead to the impurity
quasiparticle distribution function n; which has the same
form as that for the ideal Bose gas. For T ~~T~ we thus
may express the number N~ of impurities as

A. Specific heat

The low-temperature specific heat at constant volume
includes contributions from each of the three quasiparticle
branches. The phonon and quasielectron contributions
are of the usual form, i.e.,

3
AT

cp' ~ kg
ph 5

(3&)

, k~2T
c& -0.642m,*

A' r

where s is the fully renormalized phonon velocity. The
new feature in LMD (case A) is the "impurity"-like con-
tribution. In view of Eq. (33) this corresponds to the
specific heat of a condensed ideal Bose gas with two iden-
tical components. Thus '

ci '=0.639 (mdk~T) i (40)

where md is fully renormalized deuteron mass. This re-
sult is independent of volume except insofar as md is it-
self volume dependent. In case 8, however,

(&)cy = —,en' .
C

We estimate s from the Bohm-Staver formula:
s =(kf/3m, md )' . For m,*=m„md*=2md, we have
s=3&&10 /r, cm/sec. (The Debye temperature OD is
given approximately by Oz-1&&10 /r, K.) We then
have (in erg/cm ),

IV. EQUILIBRIUM PROPERTIES

The low-temperature specific heat, bulk modulus, spin
susceptibility, and thermal-expansion coefficient for the
model of LMD described above are contrasted with those
both of a normal solid metallic phase of deuterium and of
a normal liquid metallic phase of hydrogen.

—P[@«)—w;1Z,.=wc = ~~e
k

(35) cr „-5X10 (Tr, ) (42)

Using the form for e; given above this leads to
cp- -2~10 —,3T

S
1 Nc 2MP

p; =so+ ln
P 2I' md

eo+p (A) 2 ~ )06T3/2
7 (44)

Thus the impurity-mode "chemical" potential p; is shift-
ed by eo from the ideal classical chemical potential p
evaluated at the impurity effective mass m d. This in
turn leads to the distribution function,

and

c,")-3XIO' ' .
l r3

S

(45)

n; (k)=Nc
2Am g

3/2 —(k /2m g)Pe (37)

and is quite different from the number nonconserving
form Eq. (33) appropriate to the "impurity"-like excita-
tions of case A.

Because of the very large deuteron-electron mass ratio, the
"impurity"-like contribution in case A dominates for all
but extremely low temperatures. (The crossover tempera-
ture T;, where ci '=ci is given by T~, —10 /r, K.)

8

A distinct and novel feature is the resulting T behavior
of the specific heat of unpolarized LMD over a large (and
experimentally accessible) temperature range.
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In case 8, the impurity contribution dominates for con-
centrations c »10 r, T. For the expected temperature
range T & 1 K and for r, —1.5, the lowest concentration
available with current magnetic fields (see Sec. II) fall well
within this range. Nuclear polarized, partially condensed
LMD would therefore exhibit a substantial temperature-
independent specific heat.

The specific heat of normal solid metallic deuterium
will possess only electron and phonon contributions, each
with roughly the magnitude and form given in Eqs. (42)
and (43). The crossover temperature where cI =cI is

e ph

approximately T, ~h-2&&10 /r, K. Hence under the ex-
pected temperature conditions, solid normal metallic deu-
terium will have a specific heat markedly smaller than
that for unpolarized LMD: cI,, /cv, ,

—10 /T'~ r,
as T +0. O—f course, ultimately, as T tends to zero,
e~ -e~. , —T. For polarized LMD in case 8,

solid liquidcI, /cI, —10 Tr, /c, again a fairly small value for

the likely attainable concentrations.
Finally, for normal liquid metallic hydrogen (LMH), a

two-Fermion component proton-electron fluid, the specif-
ic heat is given by'

m,*'"(k,T)'"V .

For the ideal case, the pressure P = —(BF/BV)r is
volume-independent, implying that 8; vanishes. In the
present case a new feature is that md is volume-
dependent. Accordingly 8; is nonzero, and in fact,

a(lnm,') 3 a(inmd')
8; =025 (ksT) i

I) (inn„')

I)(ln V)

For LMI3 parameters and on the assumption that the log-
arithmic derivatives are no more than order unity, we find

8;—10 T ~ dyn/cm, which is negligible compared to
8, . The impurity contribution to 8 in case 8 is also
clearly negligible for small concentrations.

The phonon contribution to the free energy ( F~h
= ——,

'
E~h) is given as usual by

mp
~LMH ~e

Pl~
+ (AT)

+ph =-— V.
(sA)

(50)

-7)& 10 —erg/cm
T 3

Pg

m~ being the proton effective mass. As in LMD there is
here a dominating "ionic" contribution. The temperature
dependences are quite different, however, a direct conse-
quence of the different quantum-mechanical origins (pro-
tonic Fermion quasiparticles in LMH versus deuteronic
"particle"-like excitations out of a condensate in LMD).
Of coul'sc, 111 co11'trasf, 'to flic case of LMD, 111 LMH, cp.

solid

and c~. . do not ultimately become comparable as T—+0,
liquid

the ratio always remaining about nI,*/m~ .

B. Bulk modulus

As in most metals we would expect that the electrons
will make an important contribution to the isothermal
bulk modulus 8—:—V(BP/i) V)z., with P being the pres-
sure. We estimate this electronic contribution on the basis
of a free-electron-like modd for which 8, = ', neF, whe—re
e~ is the Fermi energy evaluated with the effective mass.
In reahty there will be further "Fermi-liquid" renormali-
zations beyond those contained in this simple formula.
In any case B, is temperature independent for T=0, i.e.,

The corresponding contribution to the bulk modulus is
nonzero because of the volume dependence of s. In fact,

+(ka T) B(lns) 8(lns) 8 ins—3 +
10(&irI)' Bin V Bin V g(ln V)'

(51)

For I.MD, Bph 10 T, and again it is negligible com-
pared to 8~.

The zero-point kinetic energy of the ions, although im-

portant in many respects (e.g. , in the determination of the
prefered phase ) will not be comparable to the dectronic
kinetic energy. There remains the ion-ion repulsive part
of the energy. This should be comparable to the corre-
sponding contribution in the solid phase, or in LMH.

Very roughly, we therefore expect B-B,. Our major
conclusion is that there will be no major consequences for
the bulk modulus that are attributable either to the boson
character of the ions, or to the presence of the several spin
degrees of freedom. Indeed solid and liquid metallic deu-
terium and liquid metallic hydrogen should all have
roughly comparable bulk moduli.

8.5~ ao"
8,= 5' dyn/cm

r, (m,*jm, )
(47)

C. Magnetic susceptibility

The "impurity"-mode contribution (case A) to the ener-

gy E; is obtained using Eq. (33) and has the same form as
fo1 thc 1dcal coIldcllscd Bose gas (g=2). Thc free energy
F;=E —TS;=—, E; (where S; is the "impu—rity"-mode

entropy) and is given by'

For LMD under the assumed conditions, X=—BM/BH,
with M the total magnetization, will be dominated by the
electronic contribution (p, jp~-md/I, ). Our modd im-

plies that there will be temperature-independent paramag-
netic (Pauli) and diamagnetic (Landau) contributions of
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the same order, e.g. , Xp,„h 0.049iii&), /(1+ Fo)r, . The
computation of the Landau enhancement factor 'Fo re-
quires a detailed microscopic treatment; thus we cannot be
certain now of how close LMD actually is to the magnetic
instability associated with the condition 1+ Fo ——0. For
the small r, values relevant here we might expect on the
basis of previous estimates for jellium that I'0 is not too
close to —1. (Recent Monte Carlo studies for jellium sug-
gest magnetic instabilities only at a much higher r,
value. ) Accordingly our preliminary expectation is that
7 should be temperature independent and comparable
among our models for LMD, solid metallic deuterium,
and LMH, with no major consequence arising from the
bosons.

a ——ycy -6& 10 yr, T1 —i6 8 3
~ph g ph

(53)

in units of K ', where y is the dimensionless Gruneisen
parameter (y —1).

Ignoring the voluine dependence of md in computin~
the "impurity"-mode contribution to the pressure I'
[using Eq. (48)] we find for case A,

gp(A)
=0.43m' k T3~ /iii (54)

T
Because of the large deuteron-electron mass ratio, the
"impurity"-like modes dominate the expansion coeffi-
cien't, i.e. (iil llilits of K ),

(A) 2~ 10—9 5T3/2
JPg S

This interesting behavior is in marked contrast to that of
the solid metallic phase which as usual is expected to have
a linear dependence on T comparable to that given in Eq.
(52). This also contrasts with LMH where the protons
give a dominating linear term uz -(mz/m, ")uz

&pmton &dec~ron'

which may actually be negative (again a consequence of
Fermi-liquid effects in the proton fluid). Finally, in case
8, dP;/dT =cnkz It follow. s that

D. Thermal expansion

The isobaric thermal-expansion coefficient az= V '(BV/BT)p —8 '(BP/BT)i also contains the fami-
liar electron and phonon contributions

cv -2&10 r, T2
&e 3g e

of the corresponding solid metallic phase, or with those of
a quantum liquid metallic phase of hydrogen. A major
aspect of LMD is the presence of inore than one bosonic
spin degree of freedom. For the Bose-condensed (al-
though otherwise normal) phases considered, this leads to
the presence of an additional quasiparticle excitation with
quadratic dispersion. It is shown that this must follow
even though there are no spin-dependent terms in the
Hamiltonian. These excitations together with the phonon
and electron quasiparticle-hole pair excitations are in-
volved in predicting low-temperature thermal properties.
When chemical equilibrium among the three boson spin
levels is present these "impurity"-like excitations, whose
number is temperature-dependent, are seen to resemble
"bare" particles removed from the condensate. Spin-
coherence effects are involved, however, in these excita-
tions as well. Conditions under which LMD might be
prepared I a way that one spm level 1s predommantly oc-
cupied and condensed (while the other minority levels are
noncondensed) have also been discussed. Here of course
the additional impurity modes directly correspond to

gcQulnc, number-conserved, dI'csscd 1IIlpur1ty particles.
For both unpolarized and "partially condensed" cases

we find the "impurity"-like excitations to play a signifi-
cant role under the expected experimental conditions of
temperature and dcns1ty. FOI' cxamplc, 1Q uIlpolar1zcd
LMD the "impurity"-like modes lead to a dominating
T contribution for both specific heat and thermal ex-
pansion. Very interestingly, both quantities are in fact
much larger and have different temperature dependences
when compared to the corresponding quantities in the
normal solid metallic phase. Within our model, however,
the bulk modulus and spin susceptibility, both receiving
significant contributions from the electrons, appear to ex-
hibit no new behavior.

It is interesting to note that in LMH the heavy„"ionic"
modes also contribute decisively to c~ and a~, although,
because of the Fermi statistics governing the protons they
are of rather different form than we have found for LMD.
We stress that were LMD to involve spin-zero bosons, the
fermionic modes would immediately dominate the specific
heat and thermal expansion. There would also then be no
major differences between the model liquid-metallic and
normal solid-metallic phases, at least insofar as static
equilibrium properties are concerned.

More detailed microscopic studies may be helpful in
solidifying this qualitative picture. In a future paper we
will address the questions of quasiparticle interactions and
transport properties.

Ap 1.1 Q 10 rsc

1Q UIl1tS Of K

(56)
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