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Analysis of the mixed state in ErRh484
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An analysis of the mixed state in ErRh484 is presented and the results are compared with the re-

cent measurements of the magnetic properties of single-crystal ErRh484. The analysis includes the
shielding of the Er magnetic moment by the persistent current, the polarization of the conduction
electrons by the Er magnetic moment, and the scattering of the conduction electrons by the spin
fluctuations. Good agreement w1th both the hard- and easy-magnet1zatlon-ax1s measurements 1s ob-
tained using a single value of x~ in both directions. Unlike previous analysis, the formalism em-

ployed permits the analysis of the region in which the transition from the mixed state to the normal
state is first order. The jump in the magnetization at H, 2 is computed as a function of temperature.

I. INTRODUCTION

Recent experiments on a single crystal of ErRh484, have
revealed many peculiar properties. The upper critical
field measured with respect to the easy-magnetization axis
is seen to have a peak value of about 2 kG at around
T=5.5 K, while the upper critical field relative to the
hard-magnetization axis is similar to that observed for
nonmagnetic superconductors with a peak value of about
10 kCi. Also, the magnetization curves measured with
respect to the easy axis show that the transition from the
mixed state to the normal state becomes first order at
around T 3.5 K. In this paper we present an analysis
of the mixed state based on the formalism presented in
Ref. 3, modified to take account of the d finteraction in-
the manner outlined in Ref. 4. The formalism presented
in Ref. 4 demonstrated how the polarization of the con-
duction electrons and the scattering by the localized-spin
fluctuations arising from the d-f interaction (sometimes
referred to as the s-f interaction) could be calculated in a
consistent manner and the resultant free energy evaluated.
In this analysis we assume that the superconducting prop-
erties of the system may be assumed isotropic and that the
observed anisotropy arises purely from the anisotropy of
the interaction between the rare-earth (RE) magnetic ions.

The arrangement of the paper is as follows. In Sec. II
we summarize the formulas derived in Ref. 4 to take ac-
count of the modification to the superconducting elec-
trons arising from the d finteraction in -the presence of
an apphed fiel. In Sec. III we outline how the results of
Ref. 3 may be extended to incorporate the d-f interaction;
in particular, how the free energy, the equilibrium flux
density, the magnetization, and the upper and lower criti-
cal fields are calculated. An important point in this work
is that the formalism presented in this section is able,
without modification, to treat the temperature domain
wherein the transition from the mixed state to the normal
state is first order. This allows us to analyze the magnetic
properties of the mixed state over the whole range of tem-
peratures. Section IV contains a discussion of the various
parameters required for the analysis and to what extent
they can be determined by existing measurements. In Sec.

V we present the upper and lower critical fields calculated
both with and without the effect of the scattering of the
conduction electrons by fluctuations in the localized spins.
The analysis includes the domain in which the transition
at H, 2 is first order In .Sec. VI several magnetization
curves, calculated both with and without the effect of the
scattering of the conduction electrons by the fluctuations
of tllc localized splils, aic plcsclltcd and discussed. Tlic
nature of the first-order transition is clearly seen and the
calculated jump in the magnetization is plotted as a func-
tion of temperature. Section VII contains some con-
clusions. The results presented in Secs. V and VI are seen
to be in good agreement with experiment.

II. SUPERCQNDUCTING PROPERTIES
AND THE INTERNAL FIELDS

The rare-earth ternary superconductors such as
ErRh48& may be described by the following Hamiltonian
dens1ty:

4 (x)=A Bcs(x)—2 M'yo( i V )M —IMQ of— '

M(x)= gg&JpsS5(x —R„), (2.2)

where t R„ I denotes the lattice points of the magnetic ions
and A ~cs is the 8CS Hamiltonian with the minimal elec-
tromagnetic interaction:

A Bcs(x)=1btc'( —i[7 (ie/Pie)A]j)g—

I'it tftkA'i+ o& A— (2.3)

The electron spectrum denoted by e(k ) will be assumed to
be parabolic and therefore we have

—M.B+pitgtog. B+ ( (8~ +
~

E
~

) . (2.1)
8%

The field f denotes the electron field, 8 denotes the mag-
netic induction (8= V & A), E denotes the electric field,
while M denotes the magnetic moment density of the lo-
cal1zed Sp1nS:
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e( i—[V —(ie /Ac) A] )= — ([V —(ie /Pic) A]2+ kF ) .
2m

AL(T;H)
=W(t/s(t;H);p/s (t;H)) .

LO
(2.7)

b, ( T;H) =s (t;H)S'(t /s (t;H);p/s(t;H)),
0

(2.5)

(2.4)

The superconducting properties arising fram this Harn-
iltonian have been discussed in the preceding paper by
three of the present authors and may be summarized by
the following expressions for the gap, the field-dependent
condensation energy, and the London penetration depth: m.e ~ mein&(t;p) = —4& &(t;p }; pj ' ' j (2.8)

Here t denotes the reduced temperature t =T/T„H
denotes a certain internal field, which will be specified
later, and the functians &, A, and W are defined by the
expressions

and

H, (T;H) =s (t;H)P (t/s (t;H);p/s (t;H)),
co

(2.6)

and

(t;p) =1—42 &(t;p); p, (2.9)

2

2~2(t;p)e3 ' ~(t;p); '
pj

3p, ye ~ we~(t;p)44 &(t;p); p
m' j

(2.10)

where the functions I4; j may be expressed in terms of
the real part of certain complex integrals:

l

the electrons by the localized-spin fluctuations and may
be expressed in terms of the temperature- and field-

dependent effective coupling constant as

4;(x;y) =—Re J dz T;(z)cosh [—,(xz+y)]
g P 4 00

evaluated along the contour shown in Fig. 1 with

(2.11)
1 j

g (t;H)N (0) gON (0)
(2.16)

Ti(z) =ln[z+(z —1)' ],
z

T2(z}= 2 i n(z —1)

T, (z) =z(z' —1)'",
T4(z) = (z I }'/' . —

(2.12)

(2.13)

(2.14)

(2.15)

where g (t;H) was shown to be of the form

dQk
g(t;H)= f

X V I ggp —k
Qp

Ipl=lkl=kg

The scale factor s(t;H) arises from the scattering of

Imz&'
and gO is defined as

go= g(t =—1;H =0) .

(2.17)

(2.18)

Here P denotes the static susceptibility of the localized-
spin system calculated in the superconducting state.

The parameter p arises from the spin splitting of con-
duction electrons and is expressed by

Branch Cut +] Rez

P =1&~3&/~0.

The expression for the electron current is given by

(2.19}

j (x)= 2 C( i V )[A(x)—(iric/e—}Vf (x)], (2.20)
A,L(t;H)

where A denotes the vector potential, f(x) is one-half the
phase of the superconducting electrons, and C( i V )is-
the nonlocal kernel. Here C( —i V } is given by

FIG. 1. Contour for the complex integrals contained in the
expressions for t @;{x;y}j, i = 1,4.

C( —i V)=exp $2(t)
~
k ['

2
(2.21)
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(M3& =gii aJ»z(giJi aP I
H~

l
), (2.23)

where g(t;H) is the coherence length and is assumed to be
given by '

g(t;H) = Avr
(2.22)

~A(t;H)

The internal fields B, H(=B 4v—rM), and M may be
obtained by means of mean-field theory:

while aJ is given by

3J
&J(Pgji aJ

I
H~

I
),7+1

and y(k) is given by

XL C( k)
y(k)=y()(k)+I X +4m. 4~

~k~ +AL C(k)

(2.29)

H~ = (S, )+(yp+I'X. )(M, ),
which together with the Maxwell equation

(2.24a)

V &&H(x) = —
z C( i V—)[A(x)—(Pic/e) V'f], (2.24b)

that is

where BJ is the Brillouin function and H~ is the mean
field given by

(2.30)

The last term in Eq. (2.30) represents the shielding of the
magnetic spins by the persistent current.

In order to compute the superconducting quantities 6,
H„and A,L, , we make the following approximations.
First, we replace the fields 8(x), M(x), etc. by their spa-
tial averages. Then the spin-splitting parameter p may be
calculated as a function of the average vortex density n

given by

—V' H(x) = —
2 C( —i V )[B(x)—()rtc /e) V y Vf]

~L

n= —I d x V X V'f(x) e3 (2.31)

(2.25)
from the equation for the mean magnetic moment per
unit volume obtained from Eq. (2.23) with HM given by

allows the calculation of the magnetization (M3) for a
given vortex density n(x) with n(x) defined as

H~ nP+——(yp+I X )(M3) . (2.32)

n(x) =—V X V'f (x) . (2.26)
Second, we assume that spin susceptibility 7 has the
same value in both the normal and superconducting state
and hence that yo may be parametrized as

H~/(M3 )
0

0

HM/(M3 )
0 T/Cai

—y( —i V),

(2.27)

where C denotes the Cur][e constant,

C =gjpgNJ(J+1)/3k'), (2.28)
I

The inverse susceptibilities (X;~ ) may be calculated
from a linear-response agreement within the context of
mean-field theory as

(yp+I X 4~)ig—
~{i)

——
I
k I'[1+ 2a(1 —cos 8)] 5,J, (2.33)

where T~ =T~"(T~") if i lies along the easy-a (hard-c)
axis and the parameter a provides for a degree of aniso-
tropy in momentum space. The angle 0 denotes the angle
between k and the direction of the spin modulation,
which may appear in sinusoidal phase. From Eq. (2.33)
together with Eqs. (2.27) and (2.30), we can compute
g(T;H) from Eq. (2.17) to give

I2 12
g (t;n) = 1 — [G"(ei'(t 'n) )+G "(e~~'(t;n)) —2G "(e'"(t= 1))]— [6"(eI'(t;n) ) —6"(e"(t= 1))] (2.34a)

Ro 8o

when the field is along the hard axis. Here

6(i)(e)
d" (1+a)+d"[e+d"(1+a)]+d "(e+c")

d (i)(e+ c (i)
)

{ )

8~de'(1+ a)

d(')(1+a) e 2d/'(1+a)+e+d/' (1+a)—[D;(e)]'
[D((e)]' ' 2df"(1+a)+e+df"(1+a)+[D;(e)]' '

when the field is applied along the easy axis, and

I I2
g(t n)=1 — [26"(ei"(t n)) —26"(e"(t=1))]— [6"(eI~'(t n)) —2G"(e"(t=1)))

Ro go
(2.34b)

e+dP'(1+a) —[D;(e)]'—ln
e+d/~'(1+a)+ [D;(e)]'

for D;)0, (2.35a)
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d" (1+a)+d"[e+d "(1+a)]+d "(e+c")
G"(e)=,. ' ln

s~df('(1+a) . d(()(&+c(())

d;(1+a) e— , 2df"(1+a)+e+df"(1+a)
+2 ' tan-'

[ D ( )]1/2 [ D (~)]1/2

e+df'(1+ a )

[ D (~)]1/2
for D; &0. (2.35b)

The dimensionless quantities used in the above expression
are given by

c'=
(, , i=(a ore)(;) 4nc

T(s

F,(n) =—f d x n(x)P (H(x) ) + —,
' HM(x). (M(x) )

I~J[gJt2tt~P
I
HM(x)

I ]
2 —2

(,.) Dkf (.) DAt.
df —4 (.), d —

(;)

D; (e)= [@+d "(1+a)] 4d; (—1+a)c;,

(2.35c)
H
8m.

+Ecore(x)

(3.1)

and eq and e 2J+1
Zz(x) =sinh

2J
X

1
sinh x

(')(t. )
(')

4~(M, )
(2.35d)

and

e(( (t;n)=(i) (2.35e)

where t =t~" (t") when the field is applied along the
easy (hard axis) and e"(t) is given by

As was noted in Ref. 4, this has an identical structure to
that presented in Ref. 3, although the individual terms are
more complicated due to the effects of the d finteraction-.
The similarity in the structure between this expression and
that presented in Ref. 3 means that many of the earlier re-
sults may be used with little modification. In particular,
if we assume a triangular array of vortices such that

n(x) = g e25'(x —g;), (3.2)
l

where I g; j denotes the position of the vortices, then, fol-
lowing Ref. 3, the first term appearing in Eq. (3.1) may be
calculated to be

e"(t)=e,"(t;n =0)=ALII'(t;n =0) . (2.35f) —f d3x n(x). (H(x)) = [nP 4m. (M3)+h(0—)],
V Sa 8m.

In deriving this expression for g (t;n), we have made use
of the London limit [C(k)=1] and replaced the anisotro-

py in the momentum dependence, —,a(1+cos20), by its
spherical average a as discussed in Ref. 4.

Thus p and s may be calculated for a given n at a par-
ticular temperature and the quantities b„H„daAnL may
be computed by means of Eqs. (2.5), (2.6), and (2.7),
respectively. Graphs showing the dependence of these
quantities on the internal field II=ng 4n. (M) were—
presented in Ref. 4.

III. FREE ENERGY IN THE MIXED STATE

where h (0) is given by

(3.3)

AL (t;n)C(K)
h O=n

K (& 0 ) [ I
K

I

'+ [1+4~&«)]~L '(t n)«K)
(3.4)

and the set [K[ denotes the reciprocal-lattice vectors of
the vortex lattice.

Similarly, the core energy, which represents the energy
arising from the nonlinear effect of the vector potential
and the phase f (x), may be approximated by

The expression for the free energy, obtained from the
Hamiltonian given by Eq. (2.1), was derived in Ref. 4.
The result may be written as

f d3x E„„(x)=n [E1—E2b'"'(n)],

where b'"'(n) is given by

(3.5)
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[1+4'(K)]EL (t;n)C(K)b'"' n =n 1+
K (~ 0 ) [ I

K
I
'+[1+4mX(K)]AL (t;n)C(K)

and E& is estimated using the virial theorem '7 and is given by

1
Ei ——

32e A,L(t;n)

Equation (3.5) may then be written as

[1+4mX(k)]AL '(t;n)C(k)

~

k
~
'+[1+4~X(k)]AL, '(t;n)C(k)

(3.6)

(3.7)

2

8irAL, (t;n) 4ir
—e,b;„,(n) (3.8)

The parameter ez, characterizing multiple vortex effects, is chosen by the requirement that there exists a second-order

transition point to the normal state.
The remaining terms, the condensation energy of the superconducting electrons and the free energy of the magnetic

ions, may be obtained from the expressions given in the preceding section. Thus we arrive at the following expression for

the free energy F,(n) for a given vortex density n:

F,(n) = nP+h (0}+nP 1

8~ L(n;t.) 4~
—ebb;„,(n ) +E (y;n)

H, (t;n)
8m'

(3.9)

where

E (y;n)=2y(k=o)(M, )'
The second-order transition to the normal state occurs
when n =n, , such that

——1nZJ t gyps JP[n P+y(0) (M3 ) ) I . (3.10)
G (n, )=G~(H, 2),
n, P=H, p+4nM o0 ~

(3.13)

(3.14)

G, (n)=F, (n) — H,
4m

(3.11}

by the thermodynamic requirement that G, (n) be mini-
mized with respect to the vortex density n. Thus we have

Before discussing the determination of the magnetic
properties, it is worthwhile to consider how the various
quantities appearing in the expression for the free energy
given by Eq. (3.9) are affected by d-f interaction. First,
the London penetration depth and the condensation ener-

gy, appearing in the third and fifth terms of Eq. (3.9),
respectively, now depend on the polarization of the RE
magnetic ions induced by the magnetic fields generated by
the vortex lattice. Second, the superconducting currents
generated by vortices will be modified by the change in
the coherence length given by Eq. (2.22}. Such effects
were not included in the analysis of the mixed state
presented in Ref. 3, where it was argued that the effect of
the d-f interaction was small and could be incorporated as
a temperature independen-t renormalization of the various

parameters.
With the free energy calculated as a function of the vor-

tex density, the applied field H may be obtained as a func-
tion of the vortex density from the Gibbs free energy

G, (n),

where H, z is defined by

H,', =H(n,'), (3.15)

H
G~ ——— +F (y;H) (3.16)

with

Fpg (y H )= 2 (yo +IX~+4m' )MH

1nZJ I gyps JP[H +—( yp+ IX~+4n )MIt ]I,
(3.17)

and M~ is obtained from

MH gjpa JNBs [gap——aJP[H +(yo+IX~+4rr)MH ] I .

(3.18)

Equations (3.13) and (3.14) serve to determine both the
critical flux density n, together with the parameter e2.

If it is the case, as one normally finds in nonmagnetic
type-II superconductors, that

while GN(H) is the free energy of the normal state given
by4

BG,(n) =0,
Bn

(3.12a) G, (n) (G~(H (n) ) (3.19)

which leads to 0
n (n~ (3.20}

4~ BE,(n}
H(n)=

Bn
(3.12b) then the transition from the mixed state to the normal

state will be second order and H, 2 given by Eq. (3.14) will
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G, (n) =G~(H (n) )

for certain n satisfying

0
n &nc ~

(3.21)

(3.22)

In this situation the observed critical flux density n, is
determined from Eq. (3.21) rather than (3.13) and (3.14).
Then we have

correspond to the physically observed upper critical field
which we denote by H, 2.

It can happen, as we will see later in specific instances,
that

I

I

I

l
I
I
I

I

I

i
I
I

I
I

/

0
nc &nc ~ (3.23)

while the observed upper critical field H, z is given by

H, 2 H(n, —)—)H, z (3.24)

H, i H(n =0——) . (3.25)

and the transition is first order, being accompanied by a
jump in the magnetization similar to that shown in Fig. 2.
We will discuss these rather peculiar effects in greater de-
tail in later sections when we report on the results of vari-
ous numerical calculations. It should be emphasized that
the above change of the order of transition does not re-

quire any modification of the present formalism. What is
assumed is that there is a point at which the second-order
transition occurs. This determines the parameter e2, thus
the theory naturally predicts the first-order transition if it
occurs.

The value of the applied field from which transition
from the pure Meissner state to the mixed state occurs
may also be determined from Eq. (3.12b) as

FIG. 3. Schematic illustration of the magnetization curve in

the neighborhood of H, ~ for a type-II~; superconductor.

It may occur that the free energy in the mixed state may
actually increase as the vortex density increases. In such a
situation the magnetization curve will be similar to that
shown in Fig. 3 and the transition will be of first order,
and we will have that the observed lower critical field H, i

wi11 be such that

0~c1 ++c1 (3.26)

Hc2 c2H

I I

Calculations in both nonmagnetic and magnetic supercon-
ductors indicate that the difference between H, i and H, i
is small and may be neglected for all practical purposes.

IV. PARAMETERS FOR ErRh4B4

I
I

I
I
I

I
/

/
/

/
///

'I

FIG. 2. Schematic illustration of the magnetization curve in
the neighborhood of H, 2 for a type-II; I superconductor.

TABLE I. Experimental values for ErRh484.

T, ) ——8.7 K
T,2 ——0.7 K

T"=—20.0 K

Tp ——0.8 K

H, p
——1.4 kCx

15J=—
2
6gJ= 5

C=0.184 K
4m.gag JX =10.11 kOe

dT, (x) = 10.11
Tc dx

In order to apply the formalism summarized in the
preceding sections to the analysis of ErRh4B4, we need to
know the various parameters that characterize the mag-
netic system, the superconducting system, and the degree
of coupling between the two systems. The Curie constant
C and the saturation magnetization may be obtained from
the observed lattice constant, together with the values of J
and gJ which may be assumed to have the same value as
the free Er ion. The values given in Table I are in reason-
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able agreement with those estimated from the inverse sus-
ceptibility measurements. The Curie temperatures for
the hard axis, Tm, and the easy axis, Tm", may be ob-
tained from an extrapolation of the inverse susceptibility
measurements measured with respect to the hard and easy
axes, respectively. The condensation energy H, o/8n
may be estimated from the value obtained for LuRh4B4
[K,o(LuRh4B4)=1. 85 kOe] from specific-heat measure-
ments using the relation

T, (Lu) H, o(Lu)

T, (Er) H, o(Er)
(4.1)

This yields a value for Er of around 1.4 kG. The parame-
ter ~z has been estimated experimentally to be around 4. '
The value of the field normalization P/A, r 0 may then be
obtained from the relation

T" =T (1—x) . (4.2)

This can be used with Eqs. (2.17), (2.27), and (2.33) to ob-
tain the x dependence of the superconducting transition
temperature T, ,

2 2
3 &a

co 42 ~ ~LO

0
With the above values we have estimated Zap 825 A.
The value of goN(0) is chosen to be around 0.3. The ra-
tio I /go may be estimated from the increase in the tran-
sition temperature as nonmagnetic impurities are added to
ErRh4B4. In the measurement on Y„Er~ „Rh4B4 (Ref.
11) it is observed that for low concentrations of Y (i.e.,
x &&y), the impurity concentration dependence of the
magnetic transition temperature is given by

4mgoN(0) (1—t~ ) t 1+t~"[df"(1+a)—1]I (d/dx)lnT, (x)

gp C zt" 1+(d /dx)ln T, (x)
(4.3)

where Z is given by

1 —r'" t" df'(1+a)+e"(r =1)Z=2+
1 t" t'" d—"(1+a)+c"(t=1) (4.4)

lnT, (x)d =0.14 .
x=0

(4.5)

Thus Eq. (4.3) together with Eq. (4.4) may be used to es-
timate the value of I /go once dJ' and a are specified.

1.2

1.0—
H~& = 1.4 kOe

0.8—

and the various dimensionless parameters are those de-
fined in Eqs. (2.35c) and (2.35f).

The value of (d/dx)lnT, (x) may be estimated from ex-
periment as

The remaining parameter d" may be estimated from
the coexistence temperature Tp, since Tp is given by'

' 1/24~~"
Tp Tm 2

DA,I

Tm 1 2
( j

1/2

d(a)
(4.6)

The value of Tz shown in Table I is estimated from the
neutron scattering data on single-crystal ErRh484. ' The
parameters a and df cannot as yet be obtained from any
experimental values and are therefore adjusted to provide
a reasonable overall fit to the data. If we choose a = 5 and

df —20, then the thermodynamic critical field may be
calculated as a function of temperature. The results are
shown in Fig. 4. The resultant value ofI(:Ig&Jp&N/bo) i—s 3.555. This gives

—=I =1.5&& 10 eV
gJPa&

somewhat lower than other estimates. ' The experimental
parameters are summarized in Table I.

0.6—
OT

0.2—

0
0

I

0.2 0.6 0.8 1.0

FIG. 4. Thermodynamic critical field calculated by using the
parameters given in Tables II and III(a) including the effect of
the spin Auctuations.

V. UPPER AND LOWER CRITICAL FIELDS
FOR ErRh484

In this section we wish to present the results of our nu-
merical calculations of the upper and lower critical fields
based on the parameters discussed in the preceding section
and compare them with the recently published single-
crystal data for ErRh4B4. We present the results of two
separate analyses. In the first analysis we simply apply
the parameters determined in Sec. IV and presented in
Table II together with those in Table III(a), and proceed
as outlined in Secs. II and III to compute the critical
fields. In the second analysis we neglect the effect of the
scaling and modify the parameters ~z and I to obtain a
good fit to the experimentally observed upper and lower
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m
—Z

(a)

(,)= - r'T, =0.115
m'/T, =

~P/T =0 092
—4~CyZ-(~)

m =2.3]2 J=7.5

goN(0) —() 3
d =(Dg~m Lp) —Q

The p rameters df~ U, and Iar
df =4ak2~Z

are defined as

u =gjpg JN/(Pligo)

I= IgJPg JN 8
' 1/2

N(0)—
go &a

TAB E mens&o 1a parameters theoreti ' ' &ations.
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FIG. 9. Easy-axis-magnetization curves for various values of
the reduced temperature calculated by using the parameters
given in Tables II and III(a) including the effect of the spin fluc-
tuations.

FIG. 10. Jump in the magnetization at H, ~ and hM~, calcu-

lated from curves similar to those shown in Fig. 9.

comes so pronounced that the curve exhibits a supercool-
ing portion around H, q and hence a first-order transition
at H, z. This is clearly seen in the curves calculated for
t =0.3 and 0.2. Second, the magnetization curves also
show the appearance at low temperature of a first-order
transition at H, &

as the temperature is lowered. This be-
comes quite pronounced below t=0. 15. The appearance
of the first-order transition at H, i may be attributed to
two reasons: the modification of the vortex-vortex in-
teraction induced by the dipole interaction' and the
temperature- and field-dependent change in the supercon-
ducting current and the condensation energy arising from
the scattering by the localized-spin fluctuations.

These results indicate that the sequence of phase transi-
tions as the temperature is lowered is given by

arise from the flux pinning and the fact that the slope of
the magnetization curve around H, i would be infinite
were it not for the pinning, it is quite likely that such a
small jump would be extremely difficult to observe.

The results of several magnetization curves computed
for various values of the reduced temperature by using the
parameters given in Table II together with those in Table
III(b) and neglecting the effect of the spin fluctuations,
are presented in Fig. 11. The behavior in the vicinity of
H, z is seen to be qualitatively similar to that obtained in
the previous analysis. However, the transition at H, &

was
found to be second order, indicating that the sequence of
the transitions as the temperature is lowered in this in-
stance is given by

type II& &~type II~ &~type II~ ~~type I, type II»~type II»~type I .

where we have defined the type II;J (i,j= 1,2) in the fol-
lowing way: i = 1 ('j = 1) means a first-order transition at
H, i (H, z) and i =2 (j =2) implies a second-order transi-
tion at H, i (H, z).

Regarding the jurnp in the magnetization at H, ~, which
will be referred to as b,MI, and illustrated in Fig. 10, it
should be noted that for t &0.15 the calculated jump is
relatively small. Given the difficulties inherent in the
measurement of the magnetization curve around H, ~ that

The jump in the magnetization at H, q, which will be
denoted by bMn, may be obtained from the magnetiza-
tion curves. The resultant curves, together with some ex-
perimental points, are shown in Fig. 12. The lower curve
(labeled A) is that obtained by using the parameters of
Table I including the spin fluctuations; the upper curve is
that obtained by using the parameters of Table II neglect-
ing the spin fluctuations. The points are somewhat lower
than those observed experimentally.
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FIG. 11. Easy-axis-magnetization curves for various values
of the reduced temperature calculated by using the parameters
given in Tables II and III(b) neglecting the effect of the spin
fluctuations.

Several features are worth noting. First, the appearance
of the first-order transition at H, 2 appears to be a direct
consequence of the polarization of the superconducting
electrons induced by the d finteraction. -This result is
consistent with other calculations' which show that the
magnetization curve develops a convex curvature around
H, 2, although no calculations, apart from those presented
here, have considered the temperature domain where the
transition becomes type II; ~. The second point worth not-
ing is the fact that while the scaling effect induced by the
localized-spin fluctuations does not play a crucial role in
determining the nature of the transition around H, 2, it
does, together with the dipole interaction, have important
consequences regarding the nature of the transition
around H, i. This is clearly shown by the fact that the
jump in the magnetization appearing in Fig. 7 disappears
when the scaling effect is neglected. Therefore, in order
to draw any precise conclusion regarding the nature of the
transition at H, ~, it is necessary to examine, in more de-
tail, the pair-breaking effect of the localized-spin fluctua-
tions and the long-range structure of the vortex current.

VII. CONCLUSIONS

The results of this analysis reveal that many of the re-
cently observed magnetic properties of ErRh484 may be
adequately described in terms of the existing analysis pro-

FIG. 12. Jump in the magnetization at H, 2 and AM~&. The
lower curve (labeled A) is calculated from the parameters given
in Tables II and III(a) including the effect of the spin fluctua-
tions. The upper curve (labeled B) is calculated from the param-
eters given in Tables II and III(b) neglecting the effect of the
spin fluctuations.

vided the d finteraction -is included. This includes the
region where the transition to the normal state at H, 2 is
first order and the observed magnetization curve is
discontinuous. It is also important to note that reasonably
good agreement with both the hard- and easy-axis
critical-field curves was obtained with a single value of

This indicates that the large anisotropy observed in
critical-field curves is largely due to the anisotropy in the
magnetic interaction between the Er ions rather than any
anisotropy in the properties of the superconducting elec-
trons. This seems to be supported by experimental mea-
surements. '

The results of our analysis also show that while the
scaling induced through the scattering of the electrons by
the spin fluctuations can substantially affect the conden-
sation energy and the detailed nature of transition around
H, i, its effect on the qualitative behavior of the upper
critical-field curves and of the magnetization curve in the
neighborhood of H, 2 is negligible. Indeed, as is shown
when the scaling effect is neglected, one may obtain good
quantitative agreement regarding the latter two quantities
by a rather minor modification of the parameters used.
This is somewhat unfortunate since the measurement of
the magnetization curve around H, &

and the temperature
dependence of the condensation energy in ErRh484 is ex-
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tremely difficult due to the amount of flux pinning
present, making it very difficult to draw any definite con-
clusions regarding the effect of the spin fluctuations on
the superconducting properties from the magnetization
measurements. A corollary of this last observation is that
the dominant effect arising from the d fin-teraction ob-
served in the existing magnetization measurements on
ErRh4B4 arises from the polarization of the superconduct-
ing electrons by the Er moments.
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