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We present a formalism for the analysis of magnetic superconductors which includes, in a self-
consistent manner, the pair-breaking effects, induced by the d finte-raction, arising from the
scattering of the electrons by the localized-spin fluctuations and the polarization of the electrons by
the localized spins. We take into account the shielding of the localized spins by the persistent
current and the anisotropy of the localized-spin system. It will be shown how the effect of the spin
fluctuations may be realized by means of a straightforward scaling law. The formalism provides an
ideal basis for the analysis of the magnetic properties of reentrant materials such as ErRh4B4 in both
bulk and thin films. In addition, a brief analysis of the Meissner state is presented.

I. INTRODUCTION

The recent discovery of the reentrant phenomena in
ErRh4, B4 (Ref. 1) aild HOMo6Sg (Ref. 2) has stimulated a
considerable amount of research concerning the interplay
between magnetisrn and superconductivity. It is now well
established that the coexistence of magnetism and super-
conductivity in the rare-earth ternary compounds such as
RRh4B4 as well as RMo6S& and RMo6Se& is possible be-
cause of the relative weakness of the interaction between
the d-band conduction electrons and the localized spins
arising from the unfilled f-shell electrons of the rare-earth
ions.

There are two predominant effects in these materials.
The first concerns the electromagnetic interaction between
the superconducting electrons and the rare-earth magnetic
ions, in particular, the shielding of the localized magnetic
moments by the persistent current. This effect, observed
in the recent ultrasonic attenuation experiments, is now
generally believed to account for the modulated spin
phase ' ' observed in the narrow coexistence region above
the reentrant temperature T,2.

The second effect concerns the pair-breaking effect aris-
ing from the scattering of the d electrons by the rare-earth
spins through the d-f interaction. The terminology in the
literature regarding the interaction between the localized
electrons of the rare-earth ion and the conduction elec-
trons in the rare-earth ternary superconductors is some-
what confusing. Many of the earlier papers in this field
refer to this interaction as the s finteraction in analog-y
with other rare-earth metals and compounds. There ap-
pears, however, to be an increasing tendency within the
current literature to use the more accurate terminology
and refer to it as the d finteraction. It is-the latter mode
that we will employ here. While this effect is weak, it
does give rise to an increase in the superconducting transi-
tion temperature with the substitution of the magnetic
rare-earth ions by nonmagnetic ions' and may account
for the deviation from the BCS result of the supercon-
ducting gap, obtained from tunneling measurements, "
and the condensation energy, estimated from the magneti-
zation curves. ' Furthermore, calculations' ' indicate

that the d-f interaction is important in order to account
for the recent measurements of the magnetic properties of
single-crystal ErRh4B4. ' '

Previous work' regarding the magnetic properties of
the rare-earth ternary superconductors has emphasized
the effect of the electromagnetic interaction by assuming
that the effect of the d finteraction -(referred to as the
s finterac-tion in Ref. 17) could be absorbed in a
temperature independen-t renormalization of the physical
parameters. While Ref. 17 shows that the electromagnetic
interaction does have an important bearing on the mag-
netic properties of the rare-earth ternary superconductors
and can in fact account reasonably well for the properties
of the polycrystalline samples, it becomes immediately ap-
parent, in light of the more recent single-crystal measure-
ments, ' ' that the incorporation of the d finteraction-
solely through a temperature-independent renormalization
of the parameter is inadequate. There therefore exists a
need for a unified theory which includes both the elec-
tromagnetic interaction and the d finteraction in a m-ore
detailed manner than that presented hitherto. In this pa-
per we present such a formalism and examine the relative
importance of various mechanisms in different physical
conditions (such as the temperature dependence and field
dependence) in order that their consequences may be dis-
cussed and compared. They will provide a basis for the
interpretation and identification of possible mechanisms
in the observed magnetic properties. The application of
the present formalism to the analysis of the mixed state in
ErRhqB4 (Ref. 18) will be presented in a subsequent paper.
An extension of this work to consider the case of thin
films is currently in progress.

The arrangement of this paper is as follows. In Sec. II
we define the Harniltonian and discuss the various contri-
butions. In Sec. III we obtain the electron self-energy and
present an expression for the superconducting gap in
terms of the spin-splitting parameter p and the effective
coupling constant. We show how the gap may be ob-
tained from the scaling of a two-parameter function. In
Sec. IV we derive an expression for the free energy and
define the field-dependent condensation energy. We show
how the field-dependent condensation energy may also be
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obtained from the scaling of a two-parameter function. In
Sec. V we discuss the Maxwell equations and present the
scaling law for the London penetration depth. In Sec. VI
we present the calculation of the magnetization and the
susceptibility, including the shielding of the rare-earth
magnetic moments by the persistent currents. The results

of Sec. VII are then used to calculate the effective cou-
pling constant and the scale factor for finite field and
temperature. In Sec. VIII we present a summary of the
important results, while devoting Sec. IX to some con-
cluding remarks.

II. HAMILTONIAN

The dynamics of the system under consideration is assumed to be obtained from the following microscopic Hamiltoni-

an density given by

A (x)= ft(x)eo( i [V—
' (ie/—Pic ) A] }P(x)—Vg, (x )P,(x)g,(x)g,(x)+5' g (x)P(x)

——,
' M(x).yo( —iV)M(x) —IM(x) g (x)o.g(x) —M(x) B(x)

+@iieet(x )o @(x) 8(x)+ [ f

8(x)
f

'+
/

E(x)
f

'] . (2.1)

In the usual way f(x) denotes the electron field, A(x) is

the vector potential, with the magnetic induction field

B(x) given by 8= VX A(x), and M(x) is the density of
the localized-spin magnetic moment.

The first term corresponds to the gauge-invariant ex-

pression for the kinetic energy of the electron. The elec-

tron energy is denoted by eo and is assumed to be parabol-
ic. The second term corresponds to the phonon-induced
BCS coupling. The third term is to account for shift of
the chemical potential. The fourth term is the interaction
between the localized spins other than that mediated by
the dipole and the d finteractio-n. The fifth term
represents the d finteraction-, while the sixth and seventh

terms denote the interaction between the magnetic induc-

tion field 8 and the localized and electron spins, respec-

tively. The last term is the electromagnetic energy.

III. SUPERCONDUCTING GAP

In this section we analyze the effect of the d finterac--
tion on the energy spectra of the superconducting elec-

trons. There are two distinct mechanisms, both of which
serve to suppress the superconductivity. The first con-
cerns the scattering of the electrons by the fluctuations of
the localized spins. The second effect is the removal of
the electron-spin degeneracy caused by the splitting of the
electron spectra into two distinct bands due to the polari-
zation induced by the localized spins. It is the purpose of
this paper to present a theory in which both of the above

effects may be incorporated, together with the shielding of
the localized spins by the superconducting currents.

It will be shown that, while the splitting of the electron
spectra by the internal fields leads to a more complicated
functional form for the gap equation, the scattering of the
electrons by the localized-spin fluctuations may be real-

ized, in the inelastic limit, by a simple scaling law follow-

ing the definition of a temperature-dependent effective
coupling constant as distinct from the temperature-
independent effective coupling considered in Ref. 17.

In addition to considering the effects of the finite field
this work includes a somewhat general treatment of the

i B,g, = eo( i [ V (ie/Pic —)A])P, —V—P,P,P,

5eF P, +(IM ——pii B).( o ii ), ,

ti 8,1it, = eo( i [7 —(ie /Pic ) A] )p—,—Vtp, g,p,

5epg, +(IM——p~B) (og), .

(3.1)

(3.2)

The BCS interaction may be treated by the usual Hartree

approximation to give

VA, V, =V&&,&, &V', +V&A, &V, (3.3)

Vfif~li= V&Wrfi &Pi+ V&fifi &Pi . (3.4)

If we introduce the four-component field P(x) defined by

(3.5)

with

0 =io2[4 1

the equation of motion may be written as

(3.6)

I

interactions present in the Hamiltonian; in particular, the

paramagnetic interaction between the electrons and the

magnetic field 8 is included together with the self-
interaction of the electrons with the electron-spin density
which arises through the phonon-mediated BCS interac-
tion. Such effects are included to provide a degree of
completeness to the work, and while they do not contri-
bute substantially in the case of ErRh484, for example,
they may give rise to important phenomena in other ma-
terials. Since such effects may be included simply
through a redefinition of the parameters, their inclusion
does not affect the essence of many of the arguments
presented here.

From the Hamiltonian of Eq. (2.1} we obtain the fol-
lowing equation of motion for the electron fields g, and



1296 H. MATSUMOTO, H. UMEZAWA, AND J. P. WHITEHEAD 30

where we have neglected the vector potential A and have
assumed the applied field to point in the z direction, and
where we have designated P o 3P as the electron-spin den-
sity in the z direction. The parameters p and Ao in Eq.
(3.7) are given by

and

p = ( [IM pa B—(V/—2)o ] ) ~ e 3

bp ——V(g, (x )g, (x)),

(3.8a)

(3.8b)

respectively, where e3 denotes the unit vector in the z
direction. The quantity bp may be thought of as the bare
unrenormalized gap and p is the effective magnetic field
experienced by the conduction electrons. It consists of
three terms, the term arising from the d finteractio-n due
to the polarization of the localized spins, the term arising
from the dipole interaction with the magnetic field B, as
well as the self-interaction with the electron-spin density
arising from the BCS interaction, essentially the last term
in Eqs. (3.3) and (3.4).

The expression for p may be written in terms of a re-
normalized d-f coupling constant I and bare induction
field Bp(x) created by vortices as

@=I(M) e3 —p~Bp(x). e3 .

If calculated in the linear-response theory we obtain

(3.9)

VI= 1 ——X I 4~pe(1 I—@AX~)—

p2

—(1 4n.p&X~)V +—A,l. C( i V)—

[ia, e—( i—V )r+apr, po]P
=(IM ij,—gB).og (—IM —pgB) oP, (3.7)

JM =I(M).e3

or equivalently that

I=I .

(3.11)

(3.12)

The term on the right-hand side of Eq. (3.7) corre-
sponds to the interaction between the electrons and the
spin fluctuations. The fluctuations give rise to self-energy
contributions which, in general, will serve to suppress the
superconductivity. Denoting the retarded Green's func-
tion S(p ) by

«[y( )y'(y)])

(2m )

and the self-energy X(p) by

where A,l is the London penetration depth, C( —i V ) is the
nonlocal kernel appearing in the Meissner current, 7 is
the susceptibility of the conduction electron, and n(x )P is
the vortex density. The derivation of this result is
presented in Appendix A.

In most situations the contribution to the effective field
p from the self-interaction of the electrons may be safely
neglected. As for the paramagnetic interaction it may
arise, particularly if the d-f interaction coupling constant
I is sufficiently small, that the contribution from the lo-
calized spin and the dipole interaction may be of compar-
able magnitude. This may result in a partial cancellation
of the magnetic field by the internal field if I is positive.
Such a mechanism was first pointed out by Jaccarino and
Peter. ' This, however, is not believed to be an important
effect in ErRh4B4, for example, and the paramagnetic in-
teraction may be safely neglected. Thus Eq. (2.8) reduces
to

and (3.10a) S (p) =pp —e( p )r3+ prl+p&3 —X(p), (3.14)

Al C( i V)—
Bp(x) = n(x)P, (3.10b)—(1 4npaX~)V +XI. C—( i V)—

we obtain to lowest order the following expression for
&(p):

I 2
e p(m+u) 1X(p)= f d k f dw dump, J(w;k)o;P'(u;p —k)oj

(2m ) (e~ 1)(e~"+1) (pp ——u —w+ie)

where P'(p) is the spectral function of the electron propagator S(p ), that is

(3.15)

S(p)= f daW(u;p)

so that

Po —U+lE' (3.16)

W(pp, p )= ——ImS(p),
1

(3.17)

and where p;J(k) is the spectral function of the spin-spin correlation function

(R[Mi(x)MJ(y)]) = f d ke " « X,"(k)
(2m )

(3.18)
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k;, (k)= f dip;, (w;k)
1

kp —w+le

The derivation of Eq. (3.15) is tedious, but relatively straightforward, and is presented in Appendix B.
To evaluate (3.15) we assume that the spectral density p,j (k) may be written in the hydrodynamical form as

1 wI
p; (w;k)= — X; (k)lJ v ~ 2+ p2 LJ

and expand the thermal weight in a low-frequency expansion:
T

(3.19)

(3.20)

ep' +"'+1 et"+1+Pwet'"+
(e —1)(e '+1) Pw(1 ——,'Pw+ )(e~"+1)

The self-energy X(p) may then be evaluated to give

+ p. +O(w) .
e~' —1

w 2(e&"+ 1)
(3.21)

2 ePX(p)=, f d'k f du&(v;p —k)QX;;(k) P
(2n. )' pp —u+i I 2(et'"+1) pp —v+iI (3.22)

There are two limiting cases where the gap equation assumes a rather familiar form. In the extreme elastic limit
I ~0, the gap equation reduces to the result for the impurity case, while in the extreme inelastic limit I ~(x) the gap
equation reduces to

I 2 et'" —1X(p)= — f d k f du&(v;p —k)gg;;(k)
(2n. ) 2(e~"+ 1)

(3.23)

which was first considered in Ref. 20 and further analyzed in Ref. 21, and provides the starting point for our discussion.
From Eq. (3.7) and the approximations outlined in the preceding discussion, we obtain the following gap equation in

the extreme inelastic limit:

d k
V I-2~ k

i)k(k) 1 P(E(k)+P) 13(E(k) P)— (3.24)

In order to simplify the above equation we approximate
b.(p) by its average value on the Fermi surface and use
the effective coupling-constant approximation. Thus Eq.
(3.24) reduces to

CtPD 1
1 =g(T;H)N(0) f de [1 fF(E+p)—f~—(E—p)]—

(3.25)

b(T p,gN) ~( )
b,p(gN )

and which is given as the solution of
—y VTe

in&(t;(u) = —@& &(t;P); Pt ' ' t

with

(3.29)

(3.30)

with

(e2+g2)1/2 (3.26)
C)&(x;y) =—Re f dz ln[z+(z —1)' ]

where the effective coupling constant g(T;H) is given by X cosh [—,
' (xz+y)] . (3.31)

g(T;H)=, f dQ~dQk
1

(4~) I 7 I

=
I

k
I
=kF

X V I gg;;(p——k)

(3.27)

The integrand is calculated along the contour shown in
Fig. 1 with the branch line running between z=+1 and
with

limln[z+(z +1)'i ]=ln[u+(u —I)'i ] for u &1,
u —+0

(3.32)
with the H dependence of g(T;H) arising from the H
dependence of 7;;.

The equation

1 =gN(0) f de —[1 f(E+p) f(E p—, )] (3.28)— —

has been studied in detail by Sarma. The resultant gap
can be written in terms of a two-parameter function
which we will denote by & ( t;P ),

where z =u+iu b,p(gN(0);con) . is given by

1
hp(gN(0);coD )=2coDexp-

gN 0

p is given by

p
Ap(gN(0);coD )

(3.33a)

(3.33b)
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and t is the reduced temperature where

t=T/T, . (3.33c)

=s(t;H)&(t/s(t;H);P/s(t;H) ),
hp(g( T„O))

Therefore, we then find that the solution to Eq. (3.25)
may be obtained simply by scaling the solution (3.29), i.e.,

and

A,i
—=g ep( i—V )P —Vf,f,g,f,

,' (I—M gg—p»iB) /to P, (4.2)

A ~= ——,'M yp( i—V)M ——,'(IQ crf+B) M, (4.3)

where

(3.34)
~'

~EM= (
I
E

I

'+
I
B

I
')+ i ' A — Vf

8m. e

1 1

g(T„O)N(0) g(T;H)N(0) , (M —gJptt—f o$) B, (4.4)

P =@/hp(g(T, )N(0);cop), (3.36)

and we have normalized the gap by bp(g(T„'0). The cal-
culation of the scale factor is presented in Sec. VII togeth-
er with several examples of the resultant gap.

where we have divided the mutual interaction terms
equally between the three contributions (e.g., —,M /to P is

included in A, i and —,M 1( o f is included in A M). Cor-
respondingly, we define U,i, UM, and UaM as

IV. FREE ENERGY x A ei =—Ue],
1

V
(4.5)

A (x)=A,l(x)+A ~(x)+A FM(x), (4.1)

We now turn our attention to the calculation of the free
energy. In evaluating the ground-state energy particular
care has to be taken to ensure that certain contributions
are not double counted. For example, the localized spins
of the rare-earth atoms renormalize the superconducting
electrons, in turn the superconducting electrons modify
the behavior of the localized spins. While both effects
must be included in the calculation of the ground-state en-
ergy, they both originate from the same term in the Ham-
iltonian. The approach used in this paper is to separate
the Hamiltonian into electronic, magnetic, and elec-
tromagnetic terms,

and

x A~ ——U~,
V

(4.6)

f d x (MEM) = UEM
V

(4.7)

Each of the above terms, U,i, U~, and UaM, may thenbe
evaluated using the renormalized quantities and making
the appropriate subtractions.

The contribution to the internal energy from the elec-
tronic degrees of freedom, U,i, may be calculated using
the approximations introduced in the preceding section to
give

d'k Q2
Ud — e—E+ 1 —F E—p —F E+p + E—p ~ E—p + E+p ~ E+p

(2n ) 2E

+ [f»« v) f» «+v )]——
2

(4.8)

(4.9)

Thus we obtain an expression for the electronic free energy F,i, defined as

Since the derivation of the above result is somewhat tedious, the details of the calculation are presented in Appendix C.
The entropy of the electronic states may be calculated to give

d k
p 'S,i ——p ' f &

[f(E+p)lnf»(E+p)+[I —f»(E+p)]In[1 fF(E+p)]j-
(2m )

+P f (f(E—p)lnf»(E —p)+[1—f»(E —p)]In[1 —f(E—p)]( .d k
(2m )3

+ei=Uei —p 'Se»
to be given by

(4.1N

+'.i =f, e—E+ [1 f« c) f«+u)]+ p —t»[1——fF«——V)l+»[1 —f«+W)l]
d k —1

(2m ) 2E

+ [f(E—p) f(E+p)]—
2

(4.11)
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where the superscript s denotes the superconducting state (i.e., 6+0). A similar calculation in the normal state (i.e.,
6=0) yields

d kI',t
—— , ln1 —~e+p + ln1 —F e—p + F e—p —I e+p

(2n )' 2

We now obtain an expression for the field-dependent condensation energy H, ( T;H )/8n. , defined by

H, (T;H) —:F,i ( T;H )—F',[(T;H )
8m'

(4.12)

o)~ g2= —2N(0) f de e E——
2E

E'+e'
2E [fs(E i4)+—fF«+f4)]+2&fr «)+ [fF« i4) —fF«—+fJ )]

2

=2E(0) —,E — E + f de [fy(E —p)+fp(E+p)] — f de[fan(E pl jp—(E+p—)]
E +E 00

6 2E 2

(4.13)

The above condensation energy reduces to the BCS result in the limits H~0 and p~O.
As in the discussion of the preceding section, the effect of the teinperature- and field-dependent effective coupling con-

stant may be realized through the scaling of a two-parameter function

H, (T;H)
=s(t;H)A (t/s(t;K);p/s(t;H)),~.o

where

(4.14)

me

2 3& (t;p) n.e r ~e
7T

3p&(t;p) m.e r ne.
(4.15)

Here the functions &(t;p) and s(t;H) are those defined
in the preceding section [Eqs. (3.30) and (3.36)]. The
functions @3(x;y) and @4(x;y) are given by

while the entropy may be calculated to give

~M 13 Nl~j(gJJPB
I HMF I

) —HMF (M)

43(x;y)= —Re f dzz(z —1)'~3 0 4 00

&(cosh [—,
' (xz+y)] (4.16)

(4.20)

where J is the spin of the localized spin, gJ and Lande's g
factor,

and
1

ZJ(x) =sinh x
2J'

1
sinh x2J+1

44(x;y) =—Re f dz(z —1)[~
4 00

Xcosh [—,
' (xz+y)],

while the normalization factor H, p is given by

H p= [47TN(0)!g(g( T '0))]

(4.17)

(4.18)

and HMF denotes the mean field experienced by the local-
ized spin and is given by

HMF ——yp( —iV)(M)+(B)+l($ of) . (4.21)

The contribution to the free energy from the localized
spins is therefore given by

——,'(1(y'~1() —(B)) (M), (4.19)

where hp is given by Eq. (3.33) with g replaced by
g(T, ;0). The integrand in Nz and @4 is defined in a
manner analogous to 4i.

The contribution to the internal energy from the local-
ized spins, UM, may be easily calculated in the mean-field
approximation as

UM ————,
'

(M)yp( —iV) (M)

FM = UM [-'] SM

Y(M) HMF l N I~J(gJJP'&&
I
HMF I

)

(4.22)

Details regarding the calculation of (M), (a), and HMF
will be presented in Sec. VI.

The contribution to the ground-state energy from the
electromagnetic field may be calculated by replacing the
fields by their thermal average. Thus we obtain
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{
~

&E& I'+ &B& ~') ——'&
3 ) (A) — Vf ~L, (T;H) Bf(E+p) Bf(E p—)

BE BEArj p

(4.23)

U, = f d'x(H) 'VXVf (4.24)

which, after some manipulation involving the Maxwell
equations, may be written as

where the normalization factor A,L 0 is defined as

8m.e U~N(0)
~L0 3hc

(5.3)

{5.4)

f d x(H) nP
1 1

V 8~
(4.25)

in the case of the superconducting state, where n denotes

the vortex density, P=hc/2e, and H is the internal mag-

netic field defined by H=B —4m(M —pzgto. g). This
above expression illustrates the well-known statement that
the vortex interaction is simply given by the vortex mag-
netic field.

In the normal state we obtain

AL (T;H)
2

W(——t/s(t;H);P Is(t;H)),
~I.0

where

(5.5)

Similar to the calculations presented in the preceding
two sections, the effect of the temperature-dependent cou-
pling may be realized through the scaling of a two-
parameter function. Specifically, we have

V, =—f, d'x( H). ( B) . (4.26) (5.6)

Combining the preceding expressions, we obtain the com-
plete expression for the free energy in the mixed state,

F, = — '+ '
(H& ny+ —,'&HMF) (M)

8~ 8~

13 'N 1n(g—&Jp&B
~
HMF

~
)+E„„. (4.27)

The expression for the magnetic field B is obtained
from the Maxwell equation

VX(B)= ( J )+4~VX((M) pg(P erg)) . —(5 1)

In the superconducting state the current j is related to
the vector potential A through the expression

The last term in Eq. (4.27), E„„,corresponds to the ef-
fect of the vortices on the energy spectra of the supercon-
ducting electrons. It is calculated in the manner outlined
in Ref. 23. It should be noted that the above expression
has an identical form to that presented in Ref. 17, al-
though the calculation of the individual terms is some-
what more complicated due to the effects of the finite
fields and magnetization arising from the d finteraction. -

V. MAXWELL EQUATIONS

with

@z(x;y)=—Re f dz, cosh [ —,
' (xz+y)] .2 1 )1/2

(5.7)

Here the integrand in 4z is defined in a manner analogous
to +).

The calculation of the nonlocal kernel C(k) is rather
involved when the polarization effect is included. Since
the polarization appears explicitly only through the Fermi
distributions, at T=0 K, the d finteraction man-ifests it-
self solely through the modification of the gap and the
coupling constant. Thus the result at T=0 K may be ob-
tained by simply scaling the results for the nonmagnetic
case.

At finite temperature complications arise since the
thermal distributions are now modified by the spin split-
ting due to the effective field p. However, since we expect
the effect of the d finteraction to be mo-re pronounced at
lower temperatures, it is reasonable to suppose that such
complications may be avoided by simply extending the
scaling arguments at zero temperature to finite tempera-
ture. In essence one is assuming that the correlation
length is related to the inverse of the superconducting gap,
which is at least qualitatively correct. Therefore, based on
the results of Ref. 24, we can write

(~ )=—X C( —iV) (A) — Vf
e e

(5.2) C(k) =exp —v[
/
k

f
g(T;H )]~, (5.8)

where C{k ) is the nonlocal kernel of the Meissner
current, A,L is the London penetration depth, and f(x) is
the phase of the order parameter. The combination

A~ ——A (bc le ) Vf appears —as a requirement of the
gauge invariance.

Using the approximations presented in Sec. III, we ob-
tain the following expression for the London penetration
depth A,L .

where

v= —0.4527g( T;H )N(0)+0.559,

rt = —0.7857g ( T;H )N(0) +2.207,

g(T;H)=
~b TH

(5.9)

{5.10)

(5.11)
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& M & =gzea~NII~(@gent a I
H~p I » (6.1)

where J is the spin of the localized spin, gj is the Lande g
factor, N is the density of magnetic ions, Bz is the Bril-

louin function, and H~p is given by

H~p ——(8)+y()( —iV')(M)+I(Q o Q) . (6.2)

The thermal average of the electron-spin density may be
obtained even in the case of finite polarization as

(g (x ) o g(x ) ) = J d y X (x —y )[I(M(y ) ) p~ ( B(y—) )],
(6.3)

where X (x —y) is a 3X3 matrix obtained from the
electron-spin correlation function (see Appendix A):

VI. MAGNETIZATION AND THE MAGNETIC
SUSCEPTIBILITIES

In order to complete the analysis of the preceding sec-

tions we require the magnetization M, the splitting pa-
rameter p, and the transverse and longitudinal suscepti-
bilities in the case of a finite field. The magnetization M
is easily calculated in the mean-field approximation as

X'=X =X (6.10)

The calculation for the susceptibility of the localized
spins is somewhat more complicated and is best achieved
by means of a linear-response-type argument. To this end
we modify the original Hamiltonian by including a small
perturbing field 5h,„,(x } that acts on the localized spins.
This will produce a change in the fields (8 ), ( M ), and

(g erg), which we denote by 5b(x), 5m(x}, and 5o (x),
respectively. The quantities 5b, 5m, and 5o are not, how-

ever, independent but are instead related through the fol-
lowing equations:

[—V +EL C( i V')]—5b= —4mV [T](5m—p~5o },

determines the magnetization as a function of the field

(H) once X is specified.
To evaluate 7 we will assume that the difference be-

tween 7 calculated in the superconducting state and the
normal state is insignificant and may therefore be neglect-
ed. This assumption is based on the results of the
Knight-shift measurements and is generally attributed to
the effects of the spin-orbit scattering. Furthermore,
when p is small compared to coD, the variation in the den-

sity of states may be ignored and hence

X (x —y);, = —' ()( g~, (x)tT, (y) )6"
k

—(R [o.;(x)o;(y)] ) (6.4)

C5m3= —a~(5hMp. e,),T

5m && H~p = ( M ) && 5h Mp

(6.11)

(6.12)

(6.13)

where R [ ] denotes the retarded product. Since the quan-
tities (M) and (8) are independent of time, then Eq.
(6.3) reduces to

(y'oy) =X.(I(M) —&,(8)), (6.5)

where X denotes the static spin susceptibility of the elec-
tron calculated in the presence of the finite field. The ex-
pression for the mean field, Eq. (6.2), may then be written

5o =X (I5m @~5b)—, (6.14)

5 h~p ——5b+ y()( i V')5m+I—5o +5h,„, ,

and where o,J is given by

(6.15)

where C denotes the Curie constant, 5h~p denotes the
change in the mean field induced by the external field

5h,„,(x) and is given by

H~p ——(1—IX p,~)(8)+[y()( iV)+I X ]—(M) . (6.6) 3J, Ãzpa J
~J g I J k T I HMpI (6.16)

(6.7)

Since (8 ), (H ), (M ), and (P erg) are related through

&8&=«&+4 (&M& —p. &q'-0&),
From (6.11) and (6.14), 5b and 5o may be eliminated
from (6.15) to give

the expression for the mean field may be written in terms
of H and M as

5 h~p ——y( i V )5m+ 5h,„, , — (6.17)

H~p= (H) +(yo+I X +4m)(M) (6.9)

In the case of ErRh48& we assume (6.9) together with (6.1)

1 p~IX-
HMp

1 4rrp~X—
z 4~(I @~IX)—

y, +I'X +, (M) . (6.8)
1 —4&pgg~

If we neglect the paramagnetic interaction, then the above
expression simplfiies to give

with y given by

(1—@~IX )'
y(k)=y(k) —4m.

(1 p~4rrX )—
X [T] (6.18)

(1 4~paXn)~r' —l"
l

'+«".)
and y(k) given by

(6.19)
(1 @~IX)'—y(k)=y (k)+I'X +4~, [T] .
1 —4vrpgX~
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Equation (6.17) together with (6.12) and (6.13) yields

5m =X( —i V )5h,„,

with

(6.20)

and

Cap
X33(k)=

T—aJCy33(k)
(6.22)

HMF

(M)
0 0

1X;;(k)= for i =1,2,
a„„x(M)—y, , (k)

(6.23)

X '(k) = ~MF

(M)
—y(k), (6.21)

neglecting the effect of the transverse operator [T] in

(6.18) and (6.19). Parametrizing y;;(k) as

T(i)
yg(k)= ——

I
k

I
(6.24)

which may be inverted to give we obtain

X33(k)=C T"'+—D
I
k I'+4 C

1 — IX

4irP&Xn (1 4mpgX—)
I
k

I
A,I. +C(k)

(6.25)

and

X;;(k)=C
1»IX0 C(H3 ) (3) (

~

)
~ 1 pgIX~+(T T')+D—

I
k I'+4~C C(k)

1 —4mrLi 2~X (M3 & ' —4~»X (1—4»'X. ) I
k I'X', +C(k)

When we neglect the paramagnetic contribution the analysis simplifies somewhat and we obtain
for i = 1,2 . (6.26)

X33(k)=C T(3)+D
I

k
I

2 4 C C(k)

I
k

I
'~i+«k)

(6.27)

X;;(k)=C

respectively.

C(H, ) +(T~' T~ )+D
I

k—
f

+4~C
+C(k)

for i =1,2, (6.28)

Equations (6.25) and (6.26) together with the limiting
cases (6.27) and (6.28) illustrate how the effect of the fin-
ite field modifies the calculation of the spin susceptibility.
The expression given by Eqs. (6.27) and (6.28) represents
the generalization of the result of Ref. 25 to consider fin-
ite field. The last term in the denominator represents the
effect of the shielding of the localized magnetic moments
by the persistent current. As was shown in Ref. 25, in the
zero-field limit, the susceptibility given by Eqs. (6.27) and
(6.28) will diverge at some finite momentum k=Q at
some temperature T~ & T, giving rise to the appearance
of the spin spiral or sinusoidal phase. The divergence at

l

t

T= Tz results in an infrared divergence in the calculation
of the coupling constant and the quenching of the super-
conductivity at some temperature T&T&. In order to
avoid such a catastrophe, we modify our expression for
the function y(k) given in Eq. (6.24) to include the effect
of the anistropy in the momentum dependence. We there-
fore replace Eq. (6.24} with

(i)

y;;(k)= ——[1+—',a(1 —cos20)]
I

k
I

z,

where 8 denotes the angle between the vector Q and the
momentum k. Equations (6.27}and (6.28) then become

X33(k)=C —T' +D[1+ 2a(1 —cos 8)] I
k

I
+4nCa

C(k)

I
k

I
AL+C(k)

(6.30)

X;;(k)=C + (T' ' T")+D[1+—', a(1——cos 8)] I
k

I
+4m.C (6.31)

respectively.
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VII. EFFECTIVE COUPLING CONSTANT

T~(—'+D[1+a—,(1 co—s 8)]1 + z
1 AL+1

With the finite-field susceptibilities given by Eqs. (6.31) and (6.32), we can calculate the coupling constant g(T;h ) us-

ing Eq. (3.27) in the London limit [i.e., C(k) =1]as

4k~~

g(T h)= ~ f dl f dcos8. V I —C
F

—QI C
C(H )

3

+ D[1+—,'a(1 —cos 8)]l +
l AL+1

(7.1)

The presence of the anisotropy term ensures that for T & Tz, the coupling constant g(T;h) &0 fpt' a certain zange pf
parameters, and hence 5 remains finite at T= T~. Furthermore, calculations show that for T & T little errpr results in

the calculation of the coupling constant if the anisotropy term —', a(1—cos28) is replaced by its angular average, i.e.,

—', a(1 —cos 8)=a,
and thus Eq. (7.1) reduces tp give

4k2

g(Th)= f dl . V I C
4k 0

—gI' C

T —T' '+D(1+a)l + 4+C
m I AL+1

C(H, )
+T~ T~ +D(—1+a)l + 4mC

Nl Nl
l AL, +I

(7.2)

(7.3)

This inay be integrated to give an analytical expression for the effective coupling constant at finite field as

g(T;H)=V I G3[ell—(;H)]+ g G;[ez'(t;H)]
i =1,2

where

(7.4)

with

and

1 2df'(1+a)+[2 "(1+a)+e]—[II(,.)(e)]'~~I"(e)=, ln
[II(;)(e)]' ' 2df'(1+a)+[d "(1+a)+e]+[0(;)(e)]' '

d"'(1+a) +a+ [0(;)(e}]'~'

d "(I+a)+e—[0 (e)]'
for 0(;)(e) &0

df' ( I+a)+df"[e+d "(1+a)]+d "(e+C")
G(;)(e)= s~df(')(I+a)

ln d(i)(e+ C(i)} + [d"(1+a) e]I"(e)—

(7.6}

with

, 2d~'(1+a)+d "(1+a)+e
1/2[—0(;)(e)] [—0(;)(e)]

i e+d"(1+a)—tan 1/2[—Q(;)(e)]
for Q(;)(e) &0,

II;,( )=[ +d"(1+ )+2[d"(1+ )C"]' I f
—d"(1+ )+[d"(1+ )C"]'

The parameters d", dz', and C" are defined as
2

(
~

) 4+C (
~

) D ( )
4DkF

( j) ~ (I') 2 P F (j)

and ez'(t;H) and eI~ '(t;H) are given by

(3)
e(i (t;H)= (3)

—1
tm O'J

and

(7.8)

(7.9)
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(7.10)

We rewrite g(t;H) in terms of the renormalized coupling constant g(1;0) which is defined at T=T, and H=O.
Equation (7.4) then becomes

I 2

g(T;H) = g(1;0) 1 —
I G(3)[e)) (t;H)] —G(3}[eI)'(1;H=0)] Ig(1)

I 2

IG(;)[e"(t;H)]—G(;)[e"(I;H=O)]I . (7.11)

We note that

ett'(t;0) =e"(t;0)—:e"(t)= (,.)
—1

jm
(7.12)

g(1;0)= V I g G—(;)[e"(1)], (7.13)

The renormalized coupling constant g(1;0) is given by

H, (T;H)
=s(t;H)A (t/s(t;H)p Is(t;H)) .

aco
(8.2)

In Sec. V the London penetration depth AL was found to
be

In Sec. IV the field-dependent condensation energy was
found to be

where
AL (T;H)

=W(t/s(t;H);p /s(t;H)) .
LO

(8.3)

e"(1)+dF'(1+ o')
G(;)[e"(1)]= ln

4vrdF &(i)( 1 )
(7.14) The normalization parameters 60, H, o, and AL 0 are given

by

Here we used the fact that A,L
—+ ao at T=T, .

With the effective coupling constant given by (7.7), the
scale factor s(t;H) may be computed from Eq. (3.35) and
the superconducting quantities may be calculated from
the scaling laws which mill be summarized in the next sec-
tion.

and

—1

g(T„O)N(0) '

H, ()
——4n.hoN(0),

(8.4)

(8.5)

VIII. SUMMARY AND RESULTS

h(T;H) =s(t;H)&(tls(t;H);p ls(t;H)) .
Ap

(8.1)

In the preceding sections we have shown how the effect
of the magnetic ions on the superconducting properties
such as b„A,L, and H, may be calculated. In particular, it
was shown how the effect of the spin fluctuations may be
realized through a simple rescaling of certain two-
parameter functions involving the temperature and the ef-
fective field of the electrons, namely )M. In this section we
wish to summarize the relevant formula and present some
numerical results to illustrate the various effects arising
from the d finteraction. -

In Sec. III the superconducting gap h(T;H) was found
to be given by

At o = e vFN(0)
8m.

3C
(8.6)

I{M3(t;H))p(t;H)= (8.7)

where (M3(t;K) ) is determined in Sec. VI.
The two-parameter functions &(t;p), A (t;p), and

W(t;p) are given by

We wish to emphasize that the above normalization
constants do not correspond to the observable gap and
critical field at T=0 K. They are instead related simply
to the quantities for nonmagnetic superconductors with a
similar structure.

The spin-splitting parameter p is also a function of t
and H and is given by

me r m.e r
1n&(t;p) = —@, &(t;p); pj ' ' t (8.8)

2 2~ (t;p )=& (t;p )
j2

m.e r
3& (t;p ) n.e r m.e

m'

3p &(t;p ) m.e r ~e
(8 9)
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and

—y m.e
(t;P )=1—N &(t;P); P, (8.10)

i ' ' i

where the functions (4; ) may be written as

4;(x;y )=—Re I dz T;(z)cosh ,
' (—xz+y) .l & 4 00

(8.11)

The functions [T~(z)] are complex functions and all are
defined on the Riemann sheet with the branch line run-

ning between z =+1 shown in Fig. 1 with

lim T;(z) = T;(Rez) for Rez & 1,
Imz —+0

where

T)(z)= ln[z+(z —1)' ),
Z

&z(z) =
(

2 1)1/2

T (z)=z(z —1)'~

T4(z) =(z 1)'i—
The scale factor s(t;H) is given by

(8.12)

(8.13)

(8.14)

(8.15)

(8.16)

1

g(1;0)N(0)
1

g(t;H )N(0)
(8.17)

where g(t;H) is the effective coupling constant evaluated
in Sec. VII.

We now wish to present the results of certain numerical
calculations illustrating the temperature and field depen-
dence of these fundamental physical quantities. We first
consider the limit where H =0. In this limit the functions
&, A, and W reduce to those obtained in the familiar

BCS theory. Thus we find that the properties of the
Meissner state (in which the field 8 is excluded) may be
obtained from the BCS results by means of a simple scal-
ing law. The temperature dependence of the gap, the con-
densation energy, and the London penetration depth in
the case of zero field are shown in Figs. 2, 3, and 4,
respectively, for the parameters shown in Table I which
are felt to be appropriate to the case of ErRh484, together
with the results of the BCS theory. (A detailed discussion
of the particular choice of the parameters will be given to-
gether with a detailed analysis of the magnetic properties
of the mixed state in ErRh484 in a forthcoming paper. )

These results clearly show the effect of the suppression of
the superconducting quantities at low temperature due to
the increase in the strength of the localized-spin fluctua-
tions.

Estimates of the condensation energy have been made
in the case of polycrystalline ErRh484 samples from both
bulkz6 and thin-film measurements. While these results
do indicate a substantial deviation from the BCS result at
low temperature, certain difficulties inherent in the vari-
ous measurements prevent them from providing us with
any precise conclusions regarding the temperature depen-
dence of the condensation energy. More recent measure-
ments based on the magnetizaton curves of single-crystal
ErRh484 (Ref. 28) have been made and give more reliable
results although the uncertainties arising from pinning ef-
fects are still considerable. The single-crystal results are
in reasonable agreement with the curve shown in Fig. 3 if
we choose a value of H, o 1 4kG, a v.alue consistent with
similar measurements on LuRh484 obtained from
specific-heat measurements which give H, o1.85 kG.
Accurate determination of the condensation energy for
various temperatures would be extremely useful in that it

I I

0 w

Im z"
0.8—

O4 — ----- B C S
Scaling

Branch Cut +1 Rez
0.2—

df = 20
I2/g = 10.1
n =5

0
0

I I I

0.2
I

0,4
I I I

0.6
I

0.8 1.0

FIG. 1. Contour for the complex integrals contained in the
expressions for IP;(x;y)I, i =1,4.

FIG. 2. Temperature dependence of the superconducting gap
including the effect of the spin fluctuations (solid curve) and the
BCS result for comparison (dashed curve). The parameters used
are those given in Table I together with df ——20, +=5, and
I jg=l0. 15.
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10---

0.8—

6-

CI
OJ V

0

eaC 04

O4 V

Scaling
df=20, @=5 tg m 0

TQ
g(T, )X(0)=0.3

T'
m T.

d:—
q

——0.452& 10
Tm ~I.

T
tp = — — ——0.092

TQ

C=— „=2.312

TABLE I. Parameters which are appropriate to the case of
ErRh484.

0
0 04 0.8

The parameters df, U, and I are defined as

4ak~f= Tg

FIG. 3. Temperature dependence of the condensation energy
including the effect of the spin Auctuations (solid curve) and the
BCS result (dashed curve) for comparison. The parameters used
are those given in Table I together with df ——20, +=5, and
I /g =10.15.

C)

4—
C)

~ Wt

we~~~~ B C

Scaling

'I
I
I
I
I
I
I
I
l
I
I
I

I

I

I
I
I

I
I

0
0

I I l

0.2 0.4
I I I l

0.6 0.8

FIG. 4. Temperature dependence of the London penetration
depth including the effect of the spin fluctuations (solid curve)
and the BCS result (dashed curve) for comparison. The parame-
ters used are those given in Table I together with df ——20, o.=5,
and I2/g =10.15.

would provide information regarding the strength and the
role of the spin fluctuations in modifying the supercon-
ducting state as we approach the coexistence regime at
T T 0

The temperature dependence of the superconducting
gap also shows a reduction from the BCS value at low
temperature, in particular, we find that 26,„/AT, have
a value of 3.03 in contrast to the BCS value of 3.52. Since
the effective coupling constant g(T) is always smaller
than g(T, ), because of the suppression due to the spin
fluctuation, b, (t) is always less than b,Bcs(t).

Tunneling measurements have been performed" for
both polycrystallme and single-crystal ErRh484. . The re-
sults show that the value of the superconducting gap in-
ferred from the dI/dV-versus- V curve does in fact differ
markedly from the predictions of the BCS theory; in par-
ticular, it is found to be flat with respect to temperature at
low temperature. However, the observed ratio
24,„/k~T, appears to be in the region 3.8 to 4.2, in con-
trast to the results presented here.

The London penetration depth shown in Fig. 3 does not
show such a dramatic change. %'hile it is the case that
the London penetration depth may be obtained from
surface-independence measurements, the exact nature of
thc I'clatloIlshlp ls complicated by thc possible appearance
of surface magnetization states. Further analytical work
in this direction is in progress.

We can also discuss the effect of an internal field on the
supclcondUctlng qUantltlcs 5, H~, and A,L . From thc
preceding analysis we see that the presence of an internal
field H will lead to two quite distinct effects:

(1) It will suppress the spin fluctuation, leading to an
increase in the effective coupling constant g( T;H ) and
therefore enhancing the superconductivity.
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0.6—

KB =4
d) = 20

I2/g = 10.15
e =5
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04

3—

0
0 0.2 04 h=0.2

FIG. 5. Temperature dependence of the gap for various
values of the reduced internal field h(:H/PA, l.o—). The parame-
ters used are those given in Table I together with dy ——20, a=5,
I /g =10.15, and kg ——4.

0
0

h=o

i i

0.2
l I I i

0.4 0.6
I I I

0.8 1.0

(2) It will polarize the localized spins which will result
in a finite value for the spin-splitting parameter )M which
tends to suppress the superconductivity.

Thus we see that the application of an internal magnet-
ic field may result in an increase or decrease in the super-
conducting quantities depending on which mechanism
dominates.

In Figs. 5, 6, and 7 we present graphs showing the tem-
perature dependence of the gap, the field-dependent con-
densation energy, and the London penentration depth

FIG. 7. Temperature dependence of the London penetration

depth for various values of the reduced internal field

h( =H/Pl I).oThe parameters used are those given in Table I
together with dy ——20, o, =5, I /g =10.15, and k~ ——4.

under the presence of an internal field. In Figs. 8, 9, and
10 we present the field dependences of the gap, the con-
densation energy, and the London penetration depth,
respectively, for various temperatures. It would appear
from the graphs that 6, H„and A,L are in fact insensitive
to the internal field until a particular temperature is
reached, where there is a rapid decrease as the tempera-

0.8—

C)
VIV

0.6—

04 —h
NO

0.2—

KB =4
= 20

I2/g = 10.15
e =5

0.8—

0.4—

0,2—

d) = 20
I2/g = 10.15

=5

0
0 0.2 0.6

I

l.0
Q

0 0.2
I I

Q4
I I I

0.6
I I

0.8 l.0

FIG. 6. Temperature dependence of the field-dependent con-
densation energy for various values of the reduced internal field
h(=H/PA, I.O). The parameters used are those given in Table I
together with dy ——20, a= 5, I /g = 10.15, and k~ ——4.

FIG. 8. Field dependence of the superconducting gap for
various values of the reduced temperature. The parameters used
are those given in Table II together with d~ ——20, a=5,
I /g =10.15, and k& ——4.
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TABLE II. Field dependence of the condensation energy.
Calculated values of the condensation energy H, (t;h)/H„ for
various values of h(=H/PAI. ) and t(=T/T, ). The parameters
used are those given in Table I together with df ——20, a=5, and

kg ——4.

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

t =0.2
0.523 616
0.523 638
0.523 702
0.523 805
0.523 940
0.524097
0.524 261
0.524 410
0.524 512
0.524 519
0.524 365

t =0.4
0.466 289
0.466 290
0.466 295
0.466 303
0.466 313
0.466 327
0.466 342
0.466 359
0.466 377
0.466 395
0.466 414

t =0.6
0.269 145
0.269 145
0.269 147
0.269 149
0.269 152
0.269 155
0.269 160
0.269 165
0.269 170
0.269 176
0.269 182

ture is lowered further. This arises from the increase in
the spin-splitting parameter p due to the increased order-
ing of the magnetic iona. A closer examination of the nu-
merical results, however, reveals that as H is increased for
a given temperature, H, is seen first to rise due to the in-
crease in the effective coupling g(T;H) before decreasing
rapidly at higher values of the field. While the actual in-
crease is very small for the present choice of parameters
(see Table II) and is not discernible on the graphs present-
ed in Fig. 9 which shows the field dependence of
H, ( T;H ) for various temperatures, such an increase at
low-field values may be important when one considers the
nature of the transition around the lower critical field H, i
in a type-II superconductor.

While the direct observation of the effect of the internal
field on the superconducting properties is extremely diffi-
cult, the effect on the magnetic and thermodynamic quan-
tities will be quite marked. A detailed study of the mag-

netic properties of ErRh4Bq using this formalism has been
completed and a report on the results is currently in
preparation and will include a detailed comparison with
the recent experimental measurements of single-crystal
ErRh4B4. ' ' Also, since the polarization effect is quite
drastic when the internal field reaches a certain critical
value, the magnetic properties of thin films may be affect-
ed considerably. Such an analysis is in progress.

IX. CONCLUSIONS

t= 0.4 t= 0.6

=4
df = 20

I /g = 10.15
=5

There are several results which are of interest here.
First we find that, in the effective coupling-constant ap-
proximation, the effect of the localized-spin fluctuations
and the spin splitting of the conduction electrons, arising
from the d finteract-ion, on the superconducting gap fac-
torize. As a result the gap equation can be expressed in
terms of a certain two-parameter function by means of a
simple scaling law involving the temperature- and field-
dependent coupling constant g ( T;H ). A similar result
was also obtained for the field-dependent critical field and
the London penetration depth. These results, summarized
in Sec. VIII, provide a somewhat straightforward method,
whereby the effect of the localized magnetic moments and
the induction field on the superconducting properties of
the conduction electrons may be considered. In particu-
lar, the method may be applied to consider the properties
of the Meissner state. In the Meissner state (i.e., p =0) the
temperature dependence of the superconducting gap, the
condensation energy, and the London penetration depth
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FIG. 9. Field dependence of the field-dependent condensa-
tion energy for various values of the reduced temperature. The
parameters used are those given in Table II together with

df ——20, a =5, I /g = 10.15, and k~ ——4.

FIG. 10. Field dependence of the London penetration depth
for various values of the reduced temperature. The parameters
used are those given in Table II together with df ——20, a=5,
I /g =10.15, and k& ——4.
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may be obtained from the BCS result by means of a sim-

ple scaling rule. Such quantities are in fact experimental-
ly accessible and should provide us with information re-
garding the nature of the localized-spin fluctuations.

Second, it is both interesting and somewhat surprising
that the resultant expression for the free energy given in
Eq. (4.27) has the same form as that presented in Ref. 17,
although the expression for the various terms involved is
somewhat more complicated due to the d fan-d the
paramagnetic interactions. The close analogy that exists
between the two expressions means that the results
presented in this paper can be used to extend work
presented in Ref. 17 to include the effects of the d-f in-
teraction on the magnetic properties of the mixed state in
ferromagnetic superconductors in a perfectly straightfor-
ward manner.

The third, rather interesting, feature is the effect of the
finite internal field H on the superconducting quantities.
Specifically, we see that the reduction in the localized-spin
fluctuation and the increase in the spin-splitting parame-
ter p with the application of an internal field H tends to
enhance and suppress, respectively, the superconducting
nature of the conduction electrons. The resultant com-
petition between these two mechanisms manifests itself in
the slight increase in the field-dependent condensation en-

ergy H, (H; T)ISn for increasing H, for low values of the
field proceeded by the rapid decrease for high values of
H, shown in Fig. 9. This suggests that the response of the

localized-spin fluctuations to an applied field will be of
importance in determining the behavior of the system as it
makes the transition from the Meissner state to the mixed
state, at H, ], while the polarization effect will be of im-
portance at higher field values, in particular, as the system
makes the transition from the mixed state to the normal
state at H, 2.

In conclusion, therefore, we have presented a method
whereby the effects of the d fan-d the paramagnetic in-
teractions together with the electromagnetic interaction in
the analysis of magnetic superconductors. The results ob-
tained show several interesting features and allow for the
extension of previous work on the mixed state to include
the effect of the d fand th-e paramagnetic interactions.
The application of the present formalism to a specific ma-
terial (such as ErRh484) will be presented elsewhere.
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APPENDIX A: RENORMALIZED COUPLING I
In this appendix we show how the expression for the renormalized coupling constant I given in Eq. (3.10) may be cal-

culated. We begin with the equation of motion for the S;(t) defined as

S;(t)= f d'x et]to;ctr, (A 1)

which is given as

a,S;(t)= —~; k f d'x[1M, (x) i,ai(x)]«(x—) .

Thus we have

(A2)

r

, R][[(rr). x( r)r] r]]](r r)([S,tr),—rr;,(x)]]—xr„(R rr;(x] f d'y[IMr(yi IrxBr[y)]rrr[y)— (A3)

Here R denotes the retarded operator product. Integrating with respect to t on both sides, we obtain after some straight-
forward algebra

(o;(x) ) =—.(5jt5k —5jk5t) f d y(R Icri(x)crk(y)[IMt(y) pgBt(y)]J ) —.
2l

Calculating this in the mean-field approximation yields the result of Eqs. (6.3) and (6.4):

(~, (x)) = f d'y X"(x y)[I(M, (y))—pg&, (y)]—
where g is a 3)&3 matrix;

(A4)

(A5)

X'J(x —y)= —51 g (R[ok(x)ok(y)]) —(R[oj(x)cr;(y)])
k

Thus the expression for p may be written as

(A6)

@=I(M3)—p~(8) — (cr, ) = 1 ——X—(i8) (I(M3) —][],~(8 )) .
V V
2 2 J (A7)

Now from the Maxwell equation of (5.1) and (5.2) we have
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[Vz—AL C( —i V )]B(x)=AL C( —i V)n(x)/+4~V ((M) —ps(o ) )

C( —'V') ( )/+4 V (1 p—IX )(M)+p X 4 V (&( )) .

Here all fields lie along the z axis and n (x)p = (kc le )[V X V'f(x )].e 3. Thus we obtain

(A8)

8(x)= (1 4np—AX )V 2—C( i V—) C( i V—)n(x)/+4~V (1 p~—IX )(M ) (A9)

and hence that

p= pi3 —1 ——X [—(1 4mp—&X )V2+At. C( —iV)] 'Al C( i%—)n(x)p
CT

+ 1 ——X~ II 4mps—(1 Ip~X—~ )( —V' )[—(1 4mpti—X~ )V +At, C( —i V)] 'j (M) . (A 10)

APPENDIX B: ELECTRON SELF-ENERGY

In order to discuss the calculation of the electron prop-
agator at finite temperature, we use the formalism of ther-
mofield dynamics (TFD). The TFD formalism is dealt
with extensively in the literature ' and its relation to
other techniques such as the Matsubara method and the
C' algebra approach is now well understood. Briefly,
TFD introduces temperature by doubling the number of
degrees of freedom; for example, the electron field g(x) is
now generalized to a doublet field g (x) (a=1,2) which
satisfies the usual canonical anticommutation relations
and which satisfies Eq. (3.7), namely,

[iai —e(i V)r3+ korl+ p~3]4

=I(M —(M)) of pti(8 (8—)) oP .— (81)

The relation between thermal doublet is constructed in
such a way that the thermal expectation value of a partic-
ular operator A may be relaized within a canonical field
theory as the vacuum expectation value of A =', specifi-
cally

(»=-&Pl~ ='IP&, (82)

where (p I
denotes the "thermal vacuum. " In particular,

the thermal expectation of the time ordered -product
T[P(x)P (y)] may be obtained from the TFD Green's
function as

(83)

From Eq. (81) and neglecting the 8 field contribution, we
obtain

—e( i V )~3+bori—+p~3 &p I T[4 (x)p~(y)t]
I p& =m 4{x y)+IiJ &p—I

TI[M'(x) —&M (x) &]y (x)y~(y)'j
I p

In the lowest order of perturbation we have

&P I TI[M (x)—&M (x) &]0 (x)[0~(y)]'j IP&
T

=—iI f d'z& pl T gM'(z)[f'(z)] ~1((z)'[M;(x)—(M;(x))]p (x)[p~(y)]
I p) .

a
I

iI f d zg (P I Tr [M, (x—) (Mi(x))][M—J(z)—(MJ(z))]j
I P)

x&pl TIy (x)[yp(z)] j I p&i7;(pl TIy (z)[y~(y)] j I p&, (85)

where we have used the relation P op = P, crag, .
If we now define the momentum Green's functions as

&Pl TIN (x)[4 (y)]'j
I P&

f d pe 'i'" ~'S ~(p) (86)
(2~)

(PI TI [M, (x)—(M.(x))][M (y) —(MJ(y))] j I P)

d 4k e
—ik(x —y )X~t3(k ) (87)

(2~)

with p x=p x —pot„, then Eq. (84) together with Eq.
(85) yields
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S '(p) = [po —e(p)r3+hort]S p
0

f d~k gX;j~(k)cr;S ~(p —k)o; .
(2n')

(88)

with

sinh 8(w) =2 = 1

e~ —1

aIld

(812)

The propagators Xtj~(k) and S ~(k) may be written in the
spectral representation as

X j~(k) = f dw pj(w;k)[Ujt(w)~(ko —w+i5r)
with

cosg( v ) sing( u }
UF u = —sing(v) cosg(u) (813)

and

XUjt(w)] ~ (89)
sin g(u)=

1

eP +1
(814)

S i'(p) = f du P'{u;p)[UF(u)(po —w+i5~) 'Uj;(v)]

where

(810)

while ~ is a matrix operating on the thermal doublet

(815}

cosh8(w) sinh8(w)

sinh8(w) cosh8(w) (811) Using the integration formulas given in Ref. 34 we ob-
tain

0

X ~(p):— f d kX j (k)o;S ~(p k. )oj= —fdip(~;p)[UF(~)(po «+i5r) 'Uj;(jr)] ~

with

I elk+ 1p(x;p)= 3
d k dwdup; (w;k)o;P'(u;p —k)crj5(a w ——v)

(2tr) (e~ —1)(e~ +1)
If we now define the matrices S(p) and X(p) as

S{p) ~=[UF(p'o)S(p»)Uj. (po)l p

and

&(p) ~=[UF(po»(p»j-(po) l p

(816)

(817)

(818)

(819)

then we can easily show that S(p ) and X(p) are diagonal with respect to the thermal indices with the upper component
given by the retarded function and the lower component given by the advanced function.

Thus we obtain the result of Eqs. (3.14) and (3.1S):

S '(p ) =po —~( p )t 3++o&t+po 3
—&(p) (820)

12 eP(u+w)+ 1 1g(p)= f d k f dw f dupjj( wk) '~0t(
y
v—p k)cTj p p„(2tr)' ' (e~ —1)(e~"+1) po w —u+j~—

APPENDIX C: CONDENSATION ENERGY

The electronic contribution to the Hamiltonian was defined in Eq. (4.2) as

=P e( i P')g —Vftftf, ft —,
' [I—M gzpj—jBI P a P . —

We define F~ as

[i',—e( i r7)r3+—b~t+Ijo3]Q=Fp,
where F~ is given as

VgÃtgr+(IM3 gjPjj 3 P)Pt—+2(™—gPjj—B )g, i3$&—
Vgtgtg, (IM3 gjpjjB3 ij,—)g, +2(IM+ gp—jjB+)ft+bgt—

VPtftgt +{IM3 gJPBB3 P 5 t 2{IM— gPBB W t ~Pt—
VftfA'i+(I 3 gjP jjB3 VW t+2{I—M+ gP j—jB+)4t 4t— —

(821)

(Cl)

{C2)

(C3)
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With F~ thus defined we may write the expression in (Cl) as

d kf d3x~,
~

——V f (e+p)+ f d xP [e'( iV—)r3 b—r~ —po3]P+ f d xP o3(()
(2~) 2

+—f d xPtr, P+ —,
' f d x(gtFp, +$2Fp, $3—Fp, $4F—p, ) . (C4)

Taking the thermal expectation value, we obtain

—d x(A,))=f, (e+p)—1 3 d k
V

'
(2m)

d k Tr IS(k )[e( k ) —Ar ) —pcr3] I(2~)' +

+ —,
' f d kTr[(po3+br, )S(k)]+ f d x Re(QF&) . (C5)

The last term in this expression represents the contributions to the internal energy arising from the renormalized elec-
tron self-energy correction. If we now calculate the electron self-energy and the corresponding propagator in the manner
outlined in Appendix B, then this term will not contribute since the self-energy and the counter terms b, and p will exact-
ly cancel. The resultant expression for the self-energy is

d3k
x Aei = 6—E + 1 —F E—p —pE+p + E—/l E—pV

'
(2~)3 2F.

(&+p)f—p(E+p)+ [f~(E p) f~(F—+p)—]I,2

which is the result given in Eq. (4.8).

(C6)
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