New heavy-fermion system, NpBe₁₃, with a comparison to UBe₁₃ and PuBe₁₃

G. R. Stewart, Z. Fisk, J. L. Smith, J. O. Willis, and M. S. Wire

Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 23 March 1984)

We have prepared single crystals of NpBe₁₃, Np_{0.68}U_{0.32}Be₁₃, and PuBe₁₃ and measured their resistivity, susceptibility, and specific heat down to low temperatures. NpBe₁₃ has an itinerant-electron magnetic transition at 3.4 K, with a large temperature-dependent specific heat above this transition that is quite similar to that observed in the heavy-fermion superconductor UBe₁₃ and a $\gamma(T=0)$ of approximately 900 mJ/mole K². PuBe₁₃ may be described as a Kondo-type system, with certain inconsistencies. The data are compared to results for UBe₁₃ and are consistent with a narrow f band at the Fermi energy in UBe₁₃ moving lower in energy with the addition of f electrons in heavier actinide elements to create a Kondo resonance by PuBe₁₃.

INTRODUCTION

Superconductivity was first reported in CeCu₂Si₂ in 1978 by Franz et al., but ascribed to a second phase.¹ Steglich et al. reported² later on bulk superconductivity in CeCu₂Si₂ at 0.5 K, with the electronic specific heat γ $(C = \gamma T + \beta T^3)$ of 1000 mJ/mole K² and sizable specific-heat jump, ΔC , at T_c indicating that extremelyheavy-mass (m^*) electrons were responsible for the superconductivity. Although the same large increase in γ (and m^*) as observed in CeCu₂Si₂ below 10 K had also been seen³ in CeAl₃, no superconductivity was observed. Thus, the discovery of Steglich et al. marked a radical departure from all previous superconductors and started intense study of CeCu₂Si₂ and searches for other examples of "heavy-fermion" superconductivity. Bucher et al. reported⁴ unusual superconductivity in UBe₁₃ in 1975, but also ascribed the effect as due to second phase. In a collaboration between Eidgenössische Technische Hochschule Eurich and Los Alamos National Laboratory, this unusual superconductivity reported by Bucher et al. was recently found⁵ by Ott et al. to be due to bulk superconductivity again with a large γ (1100 mJ/mole K²) and sizable ΔC at $T_c = 0.85$ K, i.e., a second example of heavy-fermion superconductivity. Recently, our group at Los Alamos has reported⁶ bulk superconductivity in UPt₃, with a large m^* and low T_c (0.54 K), but with significant differences from CeCu₂Si₂ and UBe₁₃, including strong experimental evidence for the coexistence of spin fluctuations with the superconductivity in UPt₃.

A number of active materials investigations searching for more such systems are currently underway. We have prepared single crystals of $Np_{1-x}U_xBe_{13}$ ($0 \le x \le 1$) and ²⁴²PuBe₁₃ and characterized these compounds via resistivity, dc and ac magnetic susceptibility, and specific heat down to dilution refrigerator temperatures. The results revealed many insights about heavy-fermion systems.

SAMPLE PREPARATION

Samples were prepared by growth from a molten Al flux as in the preparation of UBe_{13} reported in Ref. 5.

The ²³⁷Np starting material had less than 100 ppm impurities, and various Pu isotopes whose sum was less than 0.1%. The half-life of 237 Np is 2×10^6 yr resulting in a self-heat (which affects the lowest attainable temperature of measurement) of approximately 0.073 mW/g. The isotope of Pu used was 242 Pu due to its factor of 13 lower self-heat (0.155 mW/g) than the next coldest isotope, ²³⁹Pu. The isotopic purity of the ²⁴²Pu is 99.91%, with less than 100 ppm other nongaseous impurities. Another reason for using ²⁴²Pu despite its scarcity is that alpha emitters in contact with Be form intense neutron sources, with the neutron flux varying approximately inversely with the half-life. The radiation dose at contact with a 1g charge of ²³⁹Pu mixed with Be would, in fact, be uncomfortably high, approximately 4 R/h. The lattice constants a_0 measured on the resultant single crystals were 10.260, 10.267, and 10.294 Å for Np_{0.68}U_{0.32}Be₁₃, NpBe₁₃, compared to 10.254 PuBe₁₃, respectively, and Å for UBe_{13} .

RESULTS AND DISCUSSION

Alternating current susceptibility measurements on $U_{0.989}Np_{0.011}Be_{13}$ indicate a T_c of 0.62 K, a 0.3 K depression/percent Np. No superconductivity was detected in Np_{0.68}U_{0.32}Be₁₃, NpBe₁₃, and PuBe₁₃ down to 0.080, 0.080, and 0.4 K, respectively. Resistivity as a function of T, performed by a four-wire technique, for the latter three compounds plus UBe₁₃ are shown in Fig. 1. It is interesting to note that the peak and shoulder structure observed in UBe₁₃ are totally absent in Np_{0.68}U_{0.32}Be₁₃, and a peak of different shape appears to a small extent in Np_{0.85}U_{0.15}Be₁₃ (data not shown) and to a greater extent in pure NpBe₁₃. The resistance data for PuBe₁₃ show a broad peak at about 13 K.

The low-temperature dc magnetic susceptibility of MBe_{13} , where M=U, Np, and Pu has been measured by Brodsky and Friddle.⁷ At higher temperatures they report a Curie-Weiss behavior for all three compounds, with effective moments of 2.99, 2.76, and 0.74 μ_B , respectively, roughly consistent with electronic configurations of $5f^3$ for UBe₁₃, $5f^4$ for NpBe₁₃, and $5f^5$ for PuBe₁₃. The χ -

FIG. 1. Resistivity versus temperature for single crystals of UBe_{13} (lowest curve), $Np_{0.68}U_{0.32}Be_{13}$ (next curve up), $NpBe_{13}$ (third curve from the bottom), and $PuBe_{13}$ (top curve). The units for each curve are arbitrary; no intercomparison in absolute terms is possible between the four curves. The vertical axis does preserve the relative zero for each curve.

versus-*T* data for PuBe₁₃ are not monotonically increasing as for the other two compounds, instead going through a rather sharp peak (interpreted⁷ as an antiferromagnetic transition) at 11.5 K, with $\chi_{max} \simeq 15 \times 10^{-3}$ emu/mole. Because the rather broad resistivity feature in our data for PuBe₁₃ and the structure in our resistivity data for NpBe₁₃

FIG. 2. (a) Magnetic susceptibility versus temperature for NpBe₁₃. Note the break in χ versus T just above 3 K. The χ of UBe₁₃ is only about 0.015 emu/G mole at these temperatures. Thus, for χ/γ to be comparable in NpBe₁₃, γ for NpBe₁₃ would have to be over 3 J/mole K. (b) Magnetic susceptibility versus temperature for PuBe₁₃ with no peak at 11.5 K, in disagreement with Ref. 7.

FIG. 3. Specific heat between 1.3 and 11 K for UBe₁₃ (triangles), Np_{0.68}U_{0.32}Be₁₃ (open circles), and NpBe₁₃ (solid circles) showing clearly the increase of C/T as an additional f electron is added going from U to Np. The lines drawn are only to guide the eye.

seemed inconsistent with the susceptibility results of Brodsky and Friddle, as are our specific-heat data discussed below (i.e., their χ -versus-T data for NpBe₁₃ show no structure and their PuBe₁₃ susceptibility data showed too sharp a structure), we have measured the dc magnetic susceptibility of our $NpBe_{13}$ and $PuPe_{13}$ crystals. These data are shown in Fig. 2. For NpBe₁₃, our χ data show a slight break between 3 and 4 K, the same temperature where R-versus-T changes slope in Fig. 1, and are about 25% higher than in Ref. 7 at 2 K. For $PuBe_{13}$, our χ data show a rapid flattening out of χ -versus-T below about 10 K, reminiscent of Kondo behavior.⁸ The unlikely possibility that the collection of single crystals of PuBe₁₃ which we measured were actually antiferromagnetic and had the spin axis aligned perpendicular to the applied field would also give the same shape of χ versus T as we observed. However, ac susceptibility showed no antiferromagnetic transition between 4 and 18 K.

The discrepancy between the χ data of Brodsky and

FIG. 4. Specific heat of $Np_{0.68}U_{0.32}Be_{13}$ between 0.38 and 1.9 K. The question of whether the sharp upturn at the lower temperatures is a magnetic transition is under further investigation.

Friddle and ours for NpBe₁₃ is easily explained—either our observation of a slight break is due to higher-quality samples in our single crystals or to the greatly improved temperature resolution of our data versus their ~2-K spacing between points. However, the large disagreement in our χ data and theirs for PuBe₁₃ seems irreconcilable. Even without our measurement of χ for PuBe₁₃, the resistivity and specific-heat data (discussed below) measured in this work argue strongly against antiferromagnetism in PuBe₁₃ around 11 K as claimed by Brodsky and Friddle.

Low-temperature specific-heat data between 1.3 and 11 K for UBe₁₃, Np_{0.68}U_{0.32}Be₁₃, and NpBe₁₃ are shown in Fig. 3. The large temperature dependence of γ below 10 K characteristic of $CeCu_2Si_2$ and UBe_{13} is seen in all the samples, with the magnitude of γ increasing with increasing Np content. For NpBe₁₃, a sharp transition at 3.4 K occurs, consistent with structure seen in the resistance and susceptibility data in Figs. 1 and 2. Below this transition, the C/T data fall back to an intercept γ of 0.9 J/mole K.² This is a significant decrease from the γ deduced from considering the scaling of the high-temperature data and the low-temperature γ values for UBe₁₃ (1.1 J/mole K²) and Np_{0.68}U_{0.32}Be₁₃ ($\gamma > 1.1$, see below). Considered with the slight change in χ at 3.4 K, this decrease in γ is consistent with some sort of itinerant magnetic transition. Using the specific-heat data for Np_{0.68}U_{0.32}Be₁₃ as an approximate background correction, the entropy associated with the specific-heat anomaly in NpBe₁₃ is approximately 40% of $R \ln 2$, also consistent with itinerant magnetism being the cause of the specific-heat, resistive, and susceptibility anomalies at 3.4 K.

The specific heat down to 0.4 K for Np_{0.68}U_{0.32}Be₁₃ is shown in Fig. 4. It is interesting to compare the relative temperature dependence of C/T for this material versus that for UBe₁₃. Above 3 K, the ratio

C/T (Np_{0.68}U_{0.32}Be₁₃)/C/T(UBe₁₃)

is approximately constant at 1.7 ± 0.15 (see Fig. 3). Below 3 K, the ratio starts to fall and around 1 K the specific heats for the two materials are approximately the same. This trend to a less rapid raise in C/T below 3 K for Np_{0.68}U_{0.32}Be₁₃ is clearly apparent in Fig. 4, where C/T, or γ , becomes almost constant down to 1 K. Then, below 1 K, C/T begins rising again for Np_{0.68}U_{0.32}Be₁₃, while UBe₁₃ goes superconducting. This rapid rise may be either a further increase in the γ and the effective mass of the electrons due to stronger heavy-fermion behavior, or due to a magnetic transition similar to the one observed in NpBe₁₃ but occurring at lower temperatures.

The specific heat of $PuBe_{13}$ is shown in Fig. 5. The solid line drawn uses the lattice contribution determined from higher-temperature data from $Np_{0.68}U_{0.32}Be_{13}$, where the Debye temperature is 580 ± 30 K and a T^5 lattice contributions enters for T > 20 K. This is consistent with the Θ_D determined⁴ by Bucher *et al.* for ThBe₁₃ of 618 K. Although the solid line is only an approximate background for the electronic and lattice specific heat of PuBe₁₃ without the transition, subtracting this background from the measured data shows clearly in Fig. 6 that this anomaly resembles a Kondo peak.⁸ The temperature dependence of the *C* data above the peak in Fig.

FIG. 5. Low-temperature specific heat of 10 mg of 242 PuBe₁₃. The addenda correction rises to 50% at 25 K. Although data below 1.5 are needed to be certain, it appears that the low- and high-temperature γ 's are approximately equal.

6 is approximately T^{-8} , definitely ruling out a Schottky peak (where $CXXT^{-2}$). Thus, the data as shown in Fig. 6 support our susceptibility results for PuBe₁₃.

SUMMARY AND CONCLUSIONS

As an additional f electron is slowly added to UBe₁₃ by substituting Np for the U, superconductivity is suppressed while the temperature-dependent heavy fermion γ remains all the way over to pure NpBe₁₃. Adding a further f electron by going on to Pu destroys the large temperature dependence γ . Furthermore, in going from UBe₁₃ to NpBe₁₃ superconductivity is apparently replaced by some form of itinerant-electron magnetism. This itinerantelectron magnetism turns into Kondo-type behavior in PuBe₁₃. The occurrence of magnetic behavior in NpBe₁₃

FIG. 6. Using the approximate extrapolation indicated by the solid line in Fig. 5, $C^{\text{magentic}} = C^{\text{measured}} - C^{\text{extrap}}$ is shown versus log *T* here. The shape is not unlike a Kondo peak (Ref. 8).

where the f electrons are so highly correlated is not surprising. What is interesting to note is that in the continuous change of properties in Np_{1-x}U_xBe₁₃, a quite large replacement of U by Np (at least over half) is required before this magnetic behavior is manifested, even though superconductivity is quite rapidly depressed. Thus, the heavy-fermion ground state with such highly correlated high-mass f electrons is not particularly unstable to the formation of a magnetic ground state.

The trend in properties we observe in MBe_{13} , where M=U, Np, and Pu, is consistent with there being a narrow f band at the Fermi energy in UBe_{13} which narrows as Np is added. Perhaps this narrower band, with its necessarily higher electron-electron correlations, is respon-

sible for the suppression of superconductivity well before the onset of magnetism in Np-rich compounds in $U_{1-x}Np_xBe_{13}$. This narrower f band gradually moves lower in energy until it causes a Kondo resonance at PuBe₁₃.

ACKNOWLEDGMENTS

We would like to thank A. L. Giorgi for performing the ac susceptibility measurement on $PuBe_{13}$, M. Baker for calculating the neutron fluence from $NpBe_{13}$ and $PuBe_{13}$, H. R. Ott for helpful discussion on the susceptibility of $PuBe_{13}$, and R. B. Roof, Jr. for performing the lattice constant measurements.

- ¹W. Franz, A. Griessel, F. Steglich, and D. Wohlleben, Z. Phys. B **31**, 7 (1978).
- ²F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Phys. Rev. Lett. **43**, 1892 (1979).
- ³K. Andres, J. E. Graebner, and H. R. Ott, Phys. Rev. Lett. 35, 1779 (1975).
- ⁴E. Bucher, J. P. Maita, G. W. Hull, R. C. Fulton, and A. S. Cooper, Phys. Rev. B **11**, 440 (1975).
- ⁵H. R. Ott, H. Rudigier, Z. Fisk, and J. L. Smith, Phys. Rev.

Lett. 50, 1595 (1983).

- ⁶G. R. Stewart, Z. Fisk, J. O. Willis, and J. L. Smith, Phys. Rev. Lett. **52**, 679 (1984).
- ⁷M. B. Brodsky and R. J. Friddle, *Magnetism and Magnetic Materials*—1974 (San Francisco), proceedings of the 20th Annual Conference on Magnetism and Magnetic Materials, edited by C. D. Graham, G. H. Lander, and J. J. Rhyne (AIP, New York, 1975), p. 353.
- ⁸V. T. Rajan, Phys. Rev. Lett. 51, 308 (1983).