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Superconductivity under a ferromagnetic molecular field is investigated theoretically based on a
one-dimensional electron-band model. By using an exact solution which takes into account infinite
numbers of higher harmonics for the Bogoliubov—de Gennes equation, it is demonstrated that the
spatially modulated superconducting state with a distorted sinusoidal wave is stabilized in the high-
field region. A key feature of the solution is a soliton lattice structure which has a two-energy-gap
structure and is accompanied by a spin-density polarization of the conduction electrons. The coex-
istence phase observed in ErRh,B,, which consists of ferromagnetism, superconductivity, and a
sinusoidally modulated magnetic state, is successfully interpreted in terms of this modulated super-

conducting state.

I. INTRODUCTION

There has been much attention focused on the problem
of the interplay between magnetism and superconductivi-
ty. The antiferromagnetism carried by the 4f localized
moments is found to coexist with superconductivity in
rare-earth ternary compounds such as SmRhyB, and
RMoeSy (R is Gd, Tb or Dy). We understand quite
thoroughly this coexistence phenomenon theoretically.!
On the other hand, there is much controversy about the
possibility of the coexistence of ferromagnetism and su-
perconductivity.

Recently, a remarkable neutron experiment has been
done by Sinha et al.? using single crystalline samples of
the ferromagnetic superconductor ErRh,B, (ERB) which
will underlie the future theoretical development of this
field. Their results and experimental data accumulated so
far'~* are summarized as follows. Upon decreasing the
temperature from the upper superconducting transition
temperature T,,~8.7 K ferromagnetism appears at
T =Ty~1.2 K, accompanied by a sharp lambda-type
peak in the specific heat.> The sinusoidally modulated
phase also sets in at almost the same temperature, which
is evidenced by the appearance of satellite peaks associat-
ed with the main ferromagnetic peaks. This sinusoidally
modulated phase is characterized by a wavelength ~100
A, which is almost temperature independent. With fur-
ther decrease of temperature, the system reenters the nor-
mal state at T,, (~0.7 K, cooling; and 0.76 K, warming),
showing hysteretic behavior. The ferromagnetism persists
down to T'=0 while the sinusoidally modulated phase
abruptly disappears at T,,. Similar successive phase tran-
sitions are also observed in another ferromagnetic super-
conductor HoMogSg (HMS).* It is important to note that
at T =T,, the magnetization of the ferromagnetic com-
ponent reaches ~70—80 % of the saturation value of the
4f localized moment. This fact is also observed in the
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previous neutron experiment? using polycrystalline sam-
ples of ERB.

It is impossible to conclude solely by neutron experi-
ments whether or not the two scatterings of the satellite
and ferromagnetic components come from the same place
in the sample. This experimental ambiguity causes much
controversy among theorists. Almost all existing
theories’™° on ferromagnetic superconductors lead to a
spatially modulated magnetic phase supplemented by a
domain structure of ferromagnetism, assuming that the
two scatterings come from different places and denying
the coexistence of ferromagnetism and superconductivity.
In view of the facts that the widths of the satellite and
ferromagnetic peaks are resolutionally limited, exhibiting
a true long-range order with the magnetic correlation
length? extended over 10000 A and that a sharp lambda-
type anomaly in the specific heat at T, is observed, we
take an alternative view of accepting that the three order-
ings of the superconductivity, sinusoidally modulated
phase, and ferromagnetism really coexist within the same
place in a system. We pursue this possibility further'®!!
in this paper.

Suppose that the coexistence of ferromagnetism and su-
perconductivity is achieved in ERB, then the ferromag-
netic molecular field (~ order of a few hundred kG) exert-
ed by the 4f localized moments through the so-called sf
exchange interaction between the conduction electrons
and localized 4f electrons becomes essential. We can safe-
ly neglect the dipolar field (~a few kG) coming from the
electromagnetic interaction. In fact, the antiferromagnet-
ic molecular-field effect'? of the sf exchange interaction
explains the essential features of the experimental data on
several antiferromagnetic superconductors.

Fulde and Ferrell'* and Larkin and Ovchinnikov!* in-
dependently studied the problem of superconductivity
under a uniform field which acts on the electron spin.
They conclude that a spatially nonuniform superconduct-
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ing state is stabilized in a certain field region. In particu-
lar, Larkin and Ovchinnikov claim that among various
solutions the sinusoidally modulated phase of the order
parameter is most stable near its transition temperature by
using a three-dimensional Fermi-surface model. Takada
and Izuyama'’ give a detailed calculation for the helical
solution investigated by Fulde and Ferrell.

The purposes of the present paper are twofold: By con-
fining ourselves to a one-dimensional electron-band model
and utilizing the mathematical equivalence!® of the
present problem to the one-dimensional Peierls-Frohlich
system, where an exact solution was found,'’~!° we will
give an exact solution of the problem within the mean-
field approximation which takes into account infinite or-
ders of higher harmonics. We will investigate detailed
physical properties of the sinusoidal solution which will
be proved to be more stable than the helical solution down
to T=0. The other purpose is to examine the experimen-
tal data on ERB, especially the recent neutron work in the
context of the present complete solution. We have already
given a rough analysis of the experimental data on ERB
and HMS in previous papers!®!! in terms of the same idea
of the spatially modulated superconductivity state.

The arrangement of this paper is as follows. In the
next section we formulate the stability problem of the su-
perconducting state under a ferromagnetic molecular field
in a one-dimensional electron-band model and demon-
strate that the derived Bogoliubov—de Gennes (BdG)
equation?® is the same as that of the one-dimensional
Peierls system where several authors!’—!° have obtained
the exact solutions. We briefly summarize their results in
Sec. III in order to set up the basic self-consistent equa-
tions that will be used later. The various physical proper-
ties of the solution are investigated in Sec. IV, including
the phase diagram, energy-gap structure, and supercon-
ducting order parameter. We calculate the conduction-
electron spin polarization associated with the solution in
Sec. V. An interpretation of the experimental data on
ERB is given in Sec. VI. The final section is devoted to a
summary and discussion.

II. FORMULATION

We start with the following sf exchange Hamiltonian
which describes the interaction between the localized 4f
moment system of rare-earth ions embedded in periodic
lattice sites and the conduction electrons:

K=K+,

ﬁfs=fd3x Etp:r,(x)e(ﬁ)t//a(x)

—§ S OB (%) |

2.1)
Hyp=—3Ig —1) 3 T T L RIVR,)
i,pu,v
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where g is the attractive electron-electron interaction, I is

the exchange constant, g; is the Landé factor, and Tis
the total angular momentum of a rare-earth ion. Apply-
ing the molecular-field approximation to the sf Hamil-
tonian, we obtain

Hy=—73 [d* hoylp,(x),

2.2)
h=3I(g—1 3 (T, (R;—x))

which acts to shift the Fermi energies of the spin-up and
-down electron bands, inducing Zeeman splitting. Note
that A has the dimension of energy. We have neglected
the spatial variation of the molecular field. The problem
reduces to examining the stability of the superconducting
state under a uniform field A.

Now we confine our discussion to the one-dimensional
band model with linear dispersion. We introduce two
kinds of electron fields: a left-moving electron field ¢,(x)
and a right-moving electron field ¢¥,(x). We can rewrite
the above Hamiltonian as follows:

%2%0+%ex+y/int y
Ho=3 [dx[¥}(x)p(p —pp),(x)

+ L X W —p —pp)bo(x)],  (2.3)
_ t
%ex_h 2 fdx[l/)a(X)(a3)a‘r¢T(x)
+65(X)(03)gb(x)]

where vy and pr are the Fermi velocity and momentum.
In terms of the order parameters defined by

Ar(x)=g{P,(x)$,(x)), AF(x)=g(d!(x)l(x)),
2.4)
Ap(x)=g{$;(x),(x)), Ah(x)=g{(Pi(x)pl(x)),

the interaction Hamiltonian within the mean-field approx-
imation can be rewritten as

Him=— [ dx {A*()[9h,(x)$,(x)
+¢(x,(x)]+H.c.}, (2.5
where
A(X)=Ay(x)+Ap(x)=A(x)+iA;(x) .
Here we introduce the Nambu notation
Vix)=(yl(x),8,(x), ®Tx)=(1(x),1,(x))
and arrive at
= [ dx (W (x)[vppos+h +A,(x)o— A (x)0,]¥(x)
+®N(x)[ —vppos+h +A(x)oy
—A;(x)or]P(x)] . (2.6)

where we have rewritten v and ¢ as e " and ¢e” *F to
eliminate pp from the kinetic energy terms. The self-
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consistent equations are given by

A (x)=—+g[(¥l(x)o¥(x)) + (DT (x)0@(x)) ],

2.7)
Ai(x)=1g[( ¥ (x)0,¥(x) ) +{ DT (x)0,®(x)) ],

where o; (i =1,2,3) are usual Pauli matrices. In order to
diagonalize the total Hamiltonian Eq. (2.6) we consider
the following BdG equation:*°

(vgp +h)u (x)+A(x)v(x)=€u(x) ,

(2.8a)
(—vpp +h)v(x)+A*(x)u(x)=ev(x)

and

(—vpp +h)u'(x)+Alx'(x)=€"u'(x) ,
(2.8b)
(vpp +hW'(x)+A*(x)u'(x)=€"v'(x) .

By taking the complex conjugate of Eq. (2.8b) we can see
that Eqs. (2.8a) and (2.8b) are equivalent when A(x) is
real. In that case there also exists the following
correspondence between the set of the eigenvalues €, and
eigenfunctions u,(x) and v,(x):

(e,—h,u,(x),v,(x))>(—(€,—h),—v,(x)u,lx)).

Looking for a sinusoidal solution, we assume that A(x) is
real in the following. Then the electron fields and Hamil-
tonian can be expressed in terms of u,(x) and v,(x) as

u (x)
vy (x)

Ax)
v (x)

x)—Zav x)—zﬁ,,

and
=73 elala,+BIB,)
v
where the normalization condition of the eigenfunctions is
given by
L 2 2
Sy @xuy(0) |2+ v, () | =1

with L being the length of the system. The corresponding
self-consistent equation (2.7) is reduced to

A(x)=—g 3 [u,(x)}(x)+v,(x)u}(x)] f(€,) , (2.9)

where f(€,) is the Fermi-distribution function.
It is convenient to introduce the quantmes €,=€,—h,

% =x /vgh, d=03/0%, and U, (x)—(u (x)) We can rewrite
Eqgs. (2.8) and (2.9) as follows:

[—04i0+0,AX )UK )=EU,(X),
A(f)=—g2 Us(x)o,U,(X)f(e,) .

(2.10)
(2.11)

Making the transformation F,(x)=( f"_(x))—— TU,(x) with
T =(1/v2)(0,+03), we finally obtain

[—azia—alA(f)]Fv(i‘ )=€F (X)),
AZ)=gS Fi(%)o\F (X)f(e,) .

(2.12)
(2.13)

Equation (2.12) is written as
[324+€2—AXX )+ A (X )] fr+(X)=0

where A'(X )=d A(X ) /dX and the normalization condition
is

L 2 2
Joaxl w02+ [0,0)] %]
L/vph t
=ty [ dRFUZF(F)=1. (2.15)

It is noted that the BAG equation [(2.12) or (2.14)] and
the self-consistent equation (2.13) are merely those in the
one-dimensional Peierls problem?! where the exact solu-
tion has already been known.!”—!° Therefore, in the next
section we briefly summarize the results obtained by these
authors. We especially refer to the paper by Mertsching
and Fischbeck.!®

(2.14)

III. SELF-CONSISTENT SOLUTION

Suppose that the self-consistent solution of Egs. (2.12)
and (2.13) is given by

AR )=Aksn(A T k;) 3.1)

where sn(X,k) is the Jacobi elliptic function with modulus
k. The two parameters A, and k; are to be determined
self-consistently and characterize the superconducting
state. With this solution Eq. (2.14) is transformed into

[324E2—Q(X)]1f,+(X)=0, (3.2)
O(X)=A%X)—A"(X) . (3.3)

It is not difficult to see'® that Eq. (3.3) can be written in
terms of the Weierstrass function?? £(X ) as

O(x)=e +2P(X+@3) , (3.4)

where the three parameters associated with the Weier-
strass function are given by

el=-A(1+k1)
ey=— A 1—6k, +k3), 3.5
ey=— 5 A} 146k, +k3) .

The fundamental periodicities 2@; and 2@; of the elliptic
function are

- KK
! (81—83)1/2 ’
(3.6
P iK (k')
3 (61—63)1/2 ’

and the modulus k and complementary modulus k' are
given by

k2_ ez_~_€i
- e —ej ’
(3.7
k?2=1—k2

with K (k) being the complete elliptic integral of the first
kind. We have used the same notation for the periodicity
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w; for x. Therefore, the eigenvalue equation (3.2) is re-
duced to solving the Lamé equation:*?

[0%2+Ei—e; —20P(X +@3)1f 4 (X)=0 (3.8)

This is merely the one-dimensional Bloch problem in a
periodic potential. It is known?? that the periodic solution

of this Lamé equation is given by
_ pErap—e |
fri(X)= Lo
Xexp |iC(€) —-—-ﬁ’———l 3.9
0 P(x'+a@3)—e
with the proper normalization,'® where

e=e,—€2, (3.10)
Cle)=te[(E—e&)e—e)]'?, (3.11)
e=e, e (i=2or3), (3.12)
=—f dx P(x +@3)=e; — (el—e3)£—§,’% ,  (3.13)

with E (k) being the complete e111pt1c integral of the
second kind. Note that for €2 <&2<&% C(€) becomes
complex, meaning that energy gaps appear in the spec-
trum.

By applying the Bloch theorem f,,(X+2®,)

2igo
'f,+(X), we can determine the vy times wave

number g as
2 (e,—e

e;—e ’
(3.14)

gle)="%vrq(€)

(el —e)(e2 —e)

K(k) [ e;—e

where II(p,k) is the complete elliptic integral of the third
kind. The density of states N(e) is derived through
|
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N(e)=1/m|dq/de| as
~2 . 7
P—
Nie)= 1 |€°+P—e; |
ﬂﬁvF [('g2_82)(~é~:2_k1282)]1/2
X O((€2—8)(&*—k"?8%)) , (3.15)
where we have introduced the parameter 8 defined by
8=e;—e; (3.16)
and the step function ©O(x). Thus we obtain

e, —e,=k'8% and e, —e;=k?6% The density of states
N(e) in Eq. (3.15) clearly indicates the two-energy-gap
structure in the spectrum: One corresponds to 28 and the
other to 2(1— k’)8, as will be seen later in detail. The two
independent parameters k; and A; introduced earlier can
now be related to the newly defined parameters k and &
through

A=(14+k"8,

(3.17)
1=k
Ttk
The latter is known as the Landen transformation.?
In order to determine the two unknown parameters k
and 8 of the problem let us first consider the self-

consistent Eq. (2.13):

AX)=g 2 o4 Voo X+ (X )f o ()]f (e,)

(3.18)

=—g 2
where we have used Eq. (2.12). Substituting Eq. (3.9) into

Eq. (3.18) we obtain after some manipulations

1 f(&)E,
L v p—€1+€v ’

[8+2A(x )IfE s (F)f sy (%)

V

(3.19)

1_
g
which yields the following form by utilizing Eq. (3.15):

de k'8 ede
ln—= (e+h)+f(e—h) = h—e)—f(h :
f [f + +f ] [ _82)(62_k1282)]1/2 + fo [f( €) f( +6)] [(62_82)(62_k1282)]1/2
(3.20)
The order parameter at A =0 and 7 =0 is introduced by 8,=27,e ~!/8"¥?) where N (0)=1/mvz# and §, is the momen-
tum cutoff.
The free energy Q per unit length is expressed as
__2 —Begy, 1 rEpo
Q=—2r gln(l—ke I+ op [, Axdx (3.21)
which is explicitly evaluated as
1 ) E (k) 8o 14k
Q= — 2 2 e _ TR
vy (g +2h)+—— X&) +6 [1+k 2K(k) ] {lnkaﬂl 5
L 8 (1+e—ﬁ(8+h))(l+e—ﬁ(5—h)) _2_ k's
+ or BR0) (1 e B R ¢ —FHTEE [, fh—eo—fh+e)lgle)de
2 ©
—= [, Uf(e+h)+f(e—h)glelde, (3.22)
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where we have used Egs. (3.15) and (3.20). Minimizing € with respect to k or § yields

0 _ 1

- " 3.23
35 ﬁUFK(k)F(T,h,a,k) 0, (3.23)
, 2 1 (1+e—ﬁ(5+h))(l+e—ﬂ(8——h))
F(T,h,8,k")=—h +;8E(k)+-gln (e BhFB)([ 4 o —AHTFD)
2 ks 1 € E(k)—(1+k'2—€*/8")K (k)
+ T fO [f(h _8)_f(h +8)] S |sin k'S Kk +€d [(82__62)(kf282_€2)]1/2 d
2 o . 18 E(k)—(k'*8/€*)K (k)
_;fs [f(e+h)—fle~h)]|S |sin~" =k | —e (@ —otNE—Kk ) de, (3.24)

where the Heumann function S(¢,k) is introduced by
S(¢,k)=[E(k)—K (k)]F(¢,k")+K(K)E($,Kk") ,
(3.25)

F(¢,k') and E(¢,k') are the incomplete elliptic integrals
of the first and second kind. Equations (3.20) and (3.24)
constitute a complete set of the simultaneous equations
for determining the two parameters k and 9.

It is easy to see that at T =0 the solution of Egs. (3.20)
and (3.24) is given by

(3.26)

—25E(k) . (3.27)
T

Since 1 < E (k) <m/2 for 0<k <1 then 8 is always greater

than or equal to §,. At finite temperatures we must solve

these equations numerically.

1V. PHYSICAL PROPERTIES
OF THE SELF-CONSISTENT SOLUTION

A. Phase diagram

Let us consider the phase diagram in the 7-vs-A plane.
(We use energy units for the temperature 7). From Eq.
(3.1) or equivalently from

A(X)=6(1—k")sn((14+k")6X,k,) , (4.1a)

it is seen that the solution with k =1 corresponds to the
ordinary BCS state characterized by the spatially homo-
geneous order parameter, A(x)=3§, while the snoidal solu-
tion with k=41 (we call it the sn phase hereafter) corre-
sponds to the spatially modulated superconducting state
whose wave number is

~ 70

=K ) (4.1b)
and the amplitude of the order parameter A(x) is
8(1—k'). When k—0, A(x) approaches sinusoidal

modulation. The order parameter § in the BCS state is
evaluated by setting k =1 in Eq. (3.20), that is,
1

8 @
2= [ [fle+h+fle=ml G—gmde- .,

This is merely the formula given by Maki and Tsuneto,?

who first considered the Pauli paramagnetic effect on su-
perconductivity. The boundary line T, between the nor-
mal and BCS state is determined by taking §—0 and
T—-T,:

ih
27T,

Tc 0

+Re {1,1/(%)—1/}

1
— =0 4.3
In > + (4.3)

with T,o=(y/m)8y (lny is the Euler constant). The di-
gamma function is denoted by ¥(x).

The phase boundary between the normal and sn state is
determined by setting k =0 in Eq. (3.19), that is

fle)eg+h)

%2—%§ (g +h +p—e
=_%le:foq‘de[f(e—h)—f(——e——h)]€2j82 V)
After some manipulations we obtain
In 77120+Re WLy %+%:f%i
—1y %— ;T_;:i —0. (4.5)

We note that 28 corresponds to the wave number of the sn
phase when k—0 as is seen from Eq. (4.1b) and
A(X') «sin(26X ) near the boundary. In order to deter-
mine 8 on the boundary line T, we impose the condition
that the transition temperatre 7, be maximized with
respect to §, that is, dT,/d5=0, yielding

1 8—h,

S+h . ;
2 27T,

Im i|—9y

=0.
2 27T,

v P+

(4.6)

Equations (4.5) and (4.6) coincide with those in the previ-
ous work.?* We can show that T, « h ~! when A becomes
large. This asymptotic behavior of T, is characteristic of
the one-dimensional model'®?* and different from that of
the three-dimensional case.!>~ !> In the latter case there is
a finite critical field at T'=0 beyond which the supercon-
ductivity ceases to exist.

The phase boundary line between the BCS (k =1) and
the sn phase (k=£1) is determined by taking the limit
k—1 and 8—§8, in Egs. (3.20) and (3.23), that is,
F(T,h,5,,k'—0)=0, or
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—B(5,+h) B8, —h)

((1+e )

(14-¢~Phy?

iln(1+e
B

—h+186+
m

At T =0 from Eqgs. (3.26) and (3.27) this boundary is
given by the critical field A =(2/7)8¢.

The phase diagram determined by solving Egs. (4.3)
and (4.5—(4.7) numerically is depicted in Fig. 1. The
three second-order phase-transition lines meet at a point
called the Leung point.?*

So far we only considered the real solution of the BdG
equation. There also exists a complex solution described
by A(x)=Age'?, the helical solution. This has been inves-
tigated by Fulde and Ferrell'® and Takada and Izuyama.'®
We show the calculation of the helical solution in the Ap-
pendix. It is seen that the phase transition from the BCS
to the helical phase is first order, in agreement with the
three-dimensional spherical Fermi-surface model,!*~13
and that the critical field (A, =0.688;) at T =0 between
the BCS and the helical phase is greater than that between
the BCS and the sn phase case [, =(2/7)8y], implying
that the sn phase is more stable than the helical solution
in the T vs h plane. Physically this is true because the
soliton lattice structure gives energy gaps right at the Fer-
mi level, leading to a reduced total energy. Hereafter we
only consider the sn phase.

B. Energy-gap structure

One of the most distinctive characteristics of the sn
phase is the two-energy-gap structure. As shown in Eq.
(3.15) and Fig. 2, there exist the two energy gaps, and at
the gap edges the density of states has a square-root singu-
larity. The midgap state is a salient feature of the spatial-
ly modulated order parameter incommensurate with the
underlying crystal lattice structure. In Fig. 2 we depict
the variation of the edge of the two energy gaps as a func-
tion of the modulus k where k=1 corresponds to the
BCS state with a single energy gap 8, and near k~I,
there appears a so-called soliton midgap level which rap-
idly spreads and fills the gap as k becomes small. The
purely sinusoidally modulated phase corresponds to the
k =0 limit and only appears right on the boundary line.

175,
0.5
NORMAL
L
BCS
sn
o 05 1.0 15

s,

FIG. 1. Phase diagram in the temperature (T) vs field (A).
All of the three lines are the second-order phase-transition lines
and meet at the point L. T and h are normalized by .

1 ® _ o . -—1_8L__
—2 [ U e+ —f(e=h)] [sin~'=

8,
m de=0. (4.7)
c

C. Order parameter

In this section we present numerical results of the solu-
tion of Egs. (3.20) and (3.23) for the two parameters § and
k which completely determine the order parameter A(X)
in Eq. (4.1). Let us first study the two limiting behaviors
of A(X) at T=0 when h is large and h approaches
he=(2/7)80.

1. h—>w. As h— o« we can see from Egs. (3.26) and
(3.27) that k—1/h and 8—h. Hence the amplitude
8(1—k') of A(X) tends to 1/2Ah and the wave number g
becomes 2h.

2. h/8y—7m/240. We set h/8y=2/m+Ah/§
(Ah >0). Knowing the asymptotic behavior of E(k),
that E(k)~1+ 5k"’In(4/k’), we obtain from Eq. (3.27)
that §=~8y/In(8y/Ah).

We plot several numerical results in Figs. 3—10. Figure
3 illustrates the variation of the amplitude 8(1—k’') of
A(X) along the boundary line between the BCS and the sn
phase. The variation of the wave number g along the
transition-temperature line of the sn phase is depicted in
Fig. 4. In Figs. 5 and 6 we show the changes of the wave
number and amplitude at a fixed temperature
T /8,=0.12. Another set of figures, 7 and 8, illustrates
the changes of the wave number and amplitude at a fixed
field h /8,=0.8. The overall features of the wave number
and amplitude are depicted stereographically in Figs. 9
and 10.

V. CONDUCTION-ELECTRON SPIN POLARIZATION

It is important to realize that the sn phase stabilized
under a high-molecular-field region is accompanied inev-
itably and automatically by spin polarization of the con-
duction electron, which includes both spatially uniform
and spatially modulated components with wave number
24, twice the fundamental wave number of the order pa-
rameter. (The helical phase is also magnetically polarized
without the spatially modulated component.) We define

e

401

w
20f L
sl S~—
K f——————
o e 0—6 N{w)/Nio)
1.0 0.5 <«— 0 -K§ ——

_8-———-——'
-20} K

-a0}

FIG. 2. Energy-gap edges as a function of the modulus &
where k=1 corresponds to the BCS state and k=1 to the sn
state. An inset shows a schematic density of states in the sn
state.
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FIG. 3. Amplitude 8(1—k')/8 of the order parameter as a
function of temperature along the boundary line between the
BCS and sn state.

the spin polarization S (x) of the conduction electrons at a
point x as

S () =PI, (x) — ¥l (), (x)
F BI04, (x)—pl(x)g,(x)) .

This can be written in terms of the eigenfunctions f,+(x)
of the BdG Eq. (2.14) as

S(5c')=22[f(6v)—%][ | foar B 24 | fo () |°]

(5.1

(5.2)

It is easily proved that |f,_(X)|%= |fv+(x +@,)|? us-
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FIG. 5. Wave number § /8, as a function of 4 /8, at a con-
stant temperature T/8,=0.12.

P(E+33)+P(X+B)+33)—2e

D=1 Slie)-1] =
(5.3)
Using the following relation??
P (X +@;3)=e;+8%k*sn*(8%,k) , (5.4)

we obtain

S(X)=28o+2k26%S[sn*(8%,k) +sn*(8% + 6@y, k)] ,

ing Eq. (2.12) and noting that Q (X +&,;)=A%X)+A"(X). 5:3)
Substituting Eq. (3.9) into Eq. (5.2) we obtain where
]
e 172 e 172
So= f de‘[f(e—i—h)-—f(e h)] [ EYCR } f de[f(e+h)—f(e—h)] ml , (5.6)
Si=— f Ydelf(e+h)—fle—h)] !
21'rfiv [(€—8*)(*—k"6)]'/?
1
(e—h) . .
f ] [(62—82)(62—k'282)]1/2 (5.7)
Since the Fourier decomposition of the Jacobi elliptic function is given by
- o s~ E & 2ncos(2mndx/K)
k?[sn*(8%,k X6 K=2 [1———— .
[sn’(8%, k) +sn(8%+88,, k)] =2 |1 -4 — 73 § sinh(27nK'/K) ] ’ 68
6/50
4.0
1.0+
3
2.0 i_l
g_o.sﬁ
<
o o5 o s, 5 0 05 1.0 Moo 1.5

FIG. 4. Wave number § /8, as a function of the field 4 along
the transition line between the normal and sn phase.

FIG. 6. Amplitude 8(1—k’)/8; of the order parameter as a
function of % /8, at a constant temperature T /8§,=0.12.
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FIG. 7. Wave number § /8, as a function of T /8, at a con-
stant field 4 /8,=0.8.

where K=K (k), K'=K(k'), then E=E(k), then Eq.
(5.5) becomes

S(%)=28,+4S,5 1_%

2

_77_2

2
K n=1

2n cos(2mndx /K)
sinh(27nK'/K)

(5.9)

At zero temperature this expression is considerably sim-
plified, that is, Egs. (5.6) and (5.7) become

5 K’
= ' = . 5.10
SO ‘lThUF E, Sl 277%01:8 ( )
Thus Eq. (5.9) is reduced to
N1 - -3 _2kK'%, /% cos(gpX)
8  fwpkK 2 sinh(kK'g, /80)
(5.11)
with g, =27n8y/kK. In the limit of k—0 we obtain
- 880k * -
S(X)=—Xph — . In * cos(4hx) , (5.12)

where the Pauli susceptibility Xp is given by Xp=2N(0)
and the density of states N(0) at the Fermi level is
1/mvpfi. Near the boundary between the normal and the
sn phase the uniform component becomes continuously

Amplitude
o
¢

o : : s
o.1 02 T, ©3
FIG. 8. Amplitude 8(1—k')/8y of the order parameter as a

function of T /8, at a constant field 4 /8,=0.8.

/5,

FIG. 9. Stereograph of the wave number § /8, in the T vs A
plane.

that of the normal electron described by the Pauli suscep-
tibility. On the other hand, in the limit of k—1, the
asymptotic form of Eq. (5.9) is

8o

S =—55

[1—tanh®(§y%)] . (5.13)
This clearly indicates that the spin polarization is carried
by the kinks of the order parameter A(X) where the am-
plitude of the superconducting state vanishes.

We perform numerical calculations of Eq. (5.5) to ob-
tain the spatial dependences of the spin polarization S (X).
We plot some examples of the results in Figs. 11 and 12
where the spatial dependences of the order parameter
A(X) are also displayed. Figure 13 illustrates the histo-
gram of the Fourier components of S(g,) in the A versus
d plane at a constant temperature T /8,=0.12. This indi-
cates that the position of the fundamental component
(n =1) does not appreciably change as 4 increases except
a narrow region near A, =(2/1)8,, and in that critical re-
gion many higher harmonics appear, rapidly diminishing
in higher fields. Figure 14 exhibits the field dependence
of the fundamental component (n =1) in Eq. (5.9).

VL INTERPRETATIONVOF EXPERIMENTS
ON ErRh;B,

Let us apply the above theory to experiments on ERB,
especially the neutron experiment by Sinha et al.? Al-

Amplitude

1.0
AN
\‘\\
N S
Ty

/s,

FIG. 10. Stereograph of the amplitude 8(1—k’)/8, in the T
vs h plane.
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-S(X)

~ 1.0

FIG. 11. Variation of the order parameter A(X)/8, and the
spin polarization #vpS(X)/8, in the case of h/§,=0.65 and
T=0.

though the other ferromagnetic superconductor HMS ex-
hibits essentially the same phenomena as in ERB, we
must wait to apply it to HMS because the persistence* of
a large residual satellite scattering intensity at lower tem-
peratures may indicate that neutron experiments must be
improved. Thus we mainly consider ERB in the follow-
ing.

A. Strength of the ferromagnetic molecular field

The ferromagnetic molecular field H,, arising from the
sf exchange interaction Eq. (2.2) is given by
H (T)=(I/2)g;—1)[M(T)/g.up] which is tempera-
ture dependent through the magnetization M (T)=(J,):
the thermal average of the 4f total angular momentum J.
g. is the gyromagnetic ratio and pup is the Bohr magne-
ton. Taking the value of the exchange integral
I=2.7x1072 eV estimated by us® for the rare-earth rho-
dium boride compounds RRh;B, and the free-ion value
(g/=+%, J=7.5up) for the Er ion, we obtain H.~400
kG. On the other hand, the order of magnitude of the
molecular field at which the sn phase is stabilized is deter-
mined by the critical field h=(2/7)8,. This is of the
same order of the Chandrasekhar-Clogston limiting field
H, (=8/V2up), which is of the order of H,~160 kG
for ERB when taking T,;=8.7 K. These rough estimates
indicate that there should exist a narrow temperature re-
gion where the sn phase is stabilized below the ferromag-
netic transition temperature T),~1.2 K.

B. Successive phase transitions

Upon decreasing the temperature the BCS state appears
at T=T,; and continuously transforms into the sn state
at T=Tg, which corresponds to the critical field
h=(2/m)8y immediately after the 4f moment system
begins to order ferromagnetically at T,. The phase tran-
sition at T =T, is of second order according to the
present theory. This coincides with the neutron experi-
ment? reporting that the satellite intensity continuously
grows. As the temperature further decreases the fer-
romagnetic magnetization rapidly grows and exceeds the
value of the upper critical molecular field at T=T,,
beyond which the sn state ceases to exist. This reentrant
phase transition from the sn state to the normal ferromag-

-S(X)

/\A(x)/\ aum
\VARVAEWARAWARE

o

-1.0

FIG. 12. Variation of the order parameter A(X)/8, and the
spin polarization #vgS(X)/8, in the case of h/§,=1.5 and
T=0.

netic state should be of second order according to the
present theory, which considers only the conduction-
electron system and regards the 4/ moment system as an
external entity. However, if we take into account the re-
action of the 4f system due to the formation of the sn
state, this reentrant phase transition becomes first order as
explained in a previous paper.!! In fact, the upper critical
field H,, measurement on ERB by Crabtree et al.,?® who
found the first-order transition when an external field is
applied parallel to the easy axis of the magnetization, is
interpreted successfully by this idea.”’

C. Sinusoidally modulated magnetic phase

The sinusoidally modulated magnetic phase observed in
the neutron experiment as satellite peaks is charactenzed
by the wavelength 100 A mdependent of temperature.?
As already shown previously!® the wave number g of the
sn phase is roughly estimated by g =prhg/er where 7 is
of the order of unity. Since the energy associated with the
molecular field is ~upH,, (~1073 eV) and the Fermi en-
ergy €r and wave number kp are estimated as ef ' ~1
ev~! and kp~1 A_ respectlvely, we obtain
g~0(1072-10" 3AY whlch is within the range of the
expenmental value (g ~0.06 A-1). A similar estimate'
of g gives a correct order of magnitude for HMS.

According to the present theory the periodicity of the
conduction-electron polarization S(x) associated with
A(x) depends on the field A, in other words, the tempera-
ture in the context of the experimental situation. As seen
from Fig. 13 the region where the periodicity rapidly
varies is very narrowly limited near the onset field of the
sn state. Therefore, except for the narrow temperature re-
gion near Ty, the temperature dependence of the periodi-
city is very weak, in agreement with the experiment.>> In
this connection an interesting fact is reported by Sinha
and Kjems?® that at T=1.0 K they observe a peak with a
wave number much smaller than that of the satellite fully
established at T~0.7 K. This finding might be related to
our assertion that the periodicity of the spin modulation
should change continuously. We expect that the satellites
associated with many higher harmonics should appear in
this temperature region near T),=1.2 K. However, the
wave number becomes very small, as seen from Fig. 5 and
higher satellites merge toward the center, g=0, and thus
cannot be observed readily because the ferromagnetic
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FIG. 13. Histogram #vrS(g,)/8, of the Fourier components
(n=1,2,3,...) of the spin polarization in the g, /8, vs h plane
at T/8,=0.12. We have omitted the part immediately near the
origin for clarity.

component situated at g=0 might obscure these fine
structures around the center, and also because the intensi-
ties of harmonics are weak. In spite of this difficulty we
think that it is important to observe the higher-harmonic
satellites associated with the distorted sinusoidal modula-
tion or the soliton lattice structure, keeping temperatures
just below T),=1.2 K.

The temperature dependence of the satellite intensity in
ERB is a decreasing function of temperature. On the oth-
er hand, the amplitude of the spin modulation in the sn
state decreases upon increasing # as displayed in Figs. 13
and 14. This is in contrast to the experiment. We em-
phasize here that the satellite scattering mainly arises
from the 4f moment system and the conduction-electron
spin modulation only triggers the modulated moment
structure of the 4f system through the sf exchange in-
teraction. Along the line developed in the present theory
we gave an explanation!! of the observed temperature
dependence of the satellite intensity by using a
phenomenological Ginzburg-Landau theory.

VII. SUMMARY AND DISCUSSION

We have obtained the exact solution within the mean-
field approximation of the one-dimensional problem on

S(§,) vgh/s, (@) veh/8,

0.2 0.2

Q.1

0.634 0.639 0.644
h

o T T —— T T 1

0.7 0.8 0.9 1.0 (] 1.2

FIG. 14. Field dependence of the fundamental Fourier com-
ponent #vpS (§,)/8 at T /8,=0.12. The inset shows the figure
in the low-field region.

the superconductivity under a ferromagnetic molecular
field. Differing from the previous theory'* which consid-
ers only the fundamental wave number, we take into ac-
count the effect of infinite numbers of higher harmonics,
which is important near the second-order transition line

"between the BCS and the sn state. In a high-field region

the superconducting state with a spatially varying order
parameter A(x) is found to be stable over the BCS state.
The spatial dependence of this state is not a simple
sinusoidal form but a distorted wave form or soliton lat-
tice structure (so-called discommensuration structure).
We have evaluated the temperature and field dependences
of the amplitude and periodicity of the order parameter
and calculated the spin polarization of the conduction
electrons. We have also examined the helical solution'*!®
which turns out to be metastable compared with the sn
solution.

The general feature of various experiments on ErRh B,
is consistent with the present theory: Namely, the
sinusoidally modulated phase observed by neutron experi-
ments as satellites is interepreted in terms of the sn phase.
The order of magnitude of the periodicity of the magnetic
modulated state and its temperature dependence have been
also explained.

Although for mathematical convenience we have em-
ployed a one-dimensional band model, it turns out that
this leads to the essentially similar physical results'3~!
based on a three-dimensional Fermi-sphere model. We
may justify its application to ErRh,B, which has a three-
dimensional band structure for the following reason: It is
noted that the observed sinusoidally modulated phase is
characterized by a single wave vector directed to 45° from
the a axis in the ac plane of the tetragonal crystal.
Theoretically, the wave vector of the spatial modulation is
chosen so as to satisfy a nesting condition for the spin-up
and -down bands. Hence after transforming into the
modulated phase the resulting electronic band structure
along the direction of the chosen wave vector might be
one-dimensional-like.

We have neglected the so-called electromagnetic in-
teraction which leads to the supercurrent. The dipole
field 4mM (= a few kG) coming from this is quite negligi-
ble compared with the internal molecular field (= hun-
dreds kG) arising from the sf interaction in spite that the
exchange integral constant is small. To maintain the
magnetic induction B=0 in a superconductor below Ty, a
supercurrent must flow on a surface. This effect certainly
affects the relative stability of the sn phase, especially the
determination of the lower critical transition temperature
T,,, but hardly affects the essential feature of the present
theory.

It is well known that the spatially modulated super-
conducting state with pairs that break the time-reversal
symmetry is depressed by nonmagnetic impurities. Since
ErRh B, is thought to be a type-1I superconductor with a
large Ginzburg-Landau parameter,’! the coherence length
might be comparable to the wavelength of the moment
modulation. Therefore we expect that ErRh B, is a rela-
tively clean system and the sn state is not completely des-
troyed.

As mentioned before the characteristic wave vector g

29,30
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of the modulation is determined to satisfy a nesting condi-
tion for the spin-up and -down spin split bands. There-
fore, the magnitude ( |G| =0.06 A=) and direction of
the wave vector in ERB must be accounted for by a
band-structure calculation.

In conclusion, we propose two crucial experiments on
ErRh;B, to directly observe the sn phase. One of the
most distinctive features of the sn phase that is different
from those of the ordinary BCS state is the two-energy-
gap structure as shown in Fig. 2, which is rather universal
for the incommensurate phase. A far-infrared optical-
absorption measurement or a single-particle tunneling ex-
periment might be useful to detect the two-energy-gap
structure. Very recently, Lin et al.*? reported interesting
single-particle tunneling data on ErRh,B,, indicating a
rich structure in the electron density of states near the
Fermi level at around Tj,. The structure of five distinc-
tive peaks in the derivative of the conductance in their
data and its temperature dependence seem to be in accord
with the two energy gaps associated with the sn phase (see
Fig. 2).

The neutron experiment near T, =1.2 K is also impor-
tant. The fundamental wave number rapidly changes con-
tinuously from O in this narrow temperature region and
there is a possibility of observing higher-order satellites.
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APPENDIX

We present a formulation of the helical solution in this
appendix. Starting with the BdG equations and the self-
consistent equation,

(vpp +hu (x)+Ax)v (x)=¢€u(x) ,

(A1)
(—vpp +hw(x)+A*(x)u(x)=ev(x) ,

(—vpp +h)u'(x)+Alx)'(x)=€"u'(x) ,
(A2)
(vEp +hW'(x)+A*(x)u'(x)=€"v'(x) ,

and

Alx)=—g J[vy(X)u,(x)f (€,)+v,* (x)u’(x)f(€,)] ,

(A3)
we consider the helical solution of the type A(x)=Ae%%,
Making the transforma(ions u(x)=u(x)e'”™, v(x)
=v(x)e ™%, u'(x)=#"(x)e'?, and v'(x)=0"(x)e '™ we
obtain from (A1)

(vep +§+h)17(x)+Zﬁ(x)=eiT(x) ,

(Ada)
(—vpp+G+h)T(x)+A*T(x)=€b(x) ,
(—vpp —F+h)T'(x)+ AT (x)=€"u(x) ,

(A4b)

(VP —G+RT'(X)+A*T "(x)=€T"(x) ,

where §=uvpfig. Equation (A4a) immediately leads to the
eigenvalue €, =g+h+E; with E=[(vpk)*+ |A|?]2
The other BdG equation (A4b) gives the eigenvalue
€x=—g+h=xE;. Thus the resulting free energy Q. is
expressed as

|&|2 (AS)

he=~*21 (1+e-—ﬁ(¢7+h+Ek))(l+e——B(E+h——Ek)
BL % (1 pePath+oplklly ) | —B@+h—op|k]))
~ LU+ “i‘“‘”"“‘""’)u+e‘”“f*"‘E"’) L1
BL % (1+e—~ﬁ(-—q+h+v;.~|kI))(1+e—ﬂ(—q+h—vp|kl ) g
By changing the sum over k into an integral we obtain
Q= — [1812 In IZBI +§J

+ [ 5 dE(E*— | A DV f(G+h +E)+f(—F

— [TdEEIfG@+h +E)+f(—7

—h+E)+f(—g+h +E)+f(§—h +E)]

—h +E)+f(—§+h+E)+f(G—h +E)]

(A6)

The minimization of €, with respect to | A | yields the gap equation,

8
2In .,0
[A|

® 1
- f|Z|dE(E2— IKIZ)I/Z [f(@+h+E)+f(—G

—h+E)+f(—g+h+E)+f(G—h +E)]=0. (A7)

In order to determine the wave number g we differentiate . with respect to g, that is, we obtain
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fwdeLJZPqu@+h+D—fbﬁ;h+D—fﬁﬁ+h+m+f@;h+Eﬂ
— [T dEELfG+h +E) —f(—G—h +E)—f(—G+h +E)+f@—h +E)]=0. (A8)
The coupled equations [(A7) and (A8)] completely determine | A| and ¢. By allowing | A| —0 and T—T,, we obtain

1&]

from Eq. (A7)
2
8o

In

This coincides with Eq. (4.5) if we identify g with 8. This
means that the boundary between the normal and the heli-
cal phase coincides with that between the normal and the
sn phase. This fact was already pointed out by Larkin
and Ovchinnikov.'

The numerical computation of ;. in Eq. (AS5) reveals

N dg—;—[f(ii—!—h +E—f(G+h —E)+f(—FT+h +E)—f(—F+h —£)]=0. (A9)

r

that (1) the critical field A, beyond which the helical
phase is stabilized over the BCS phase is given by
h,=0.688y, and (2) the transition from the BCS to the
helical phase is of first order. This agrees with the previ-

ous calculation by wusing the three-dimensional
model.13—13
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