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This paper considers the tunneling out of a metastable state at T=0 of a system whose classical
equation of motion is, in Fourier-transformed form, K (w)g(w)=—[3V(g)/3q](») where V(q) is a
conservative potential and K (@) represents the effects of arbitrary linear dissipative and/or reactive
elements. It is shown that, provided a few commonly satisfied conditions obtain, there is a simple
prescription for writing down the imaginary-time effective action functional which determines the
tunneling rate in the Wentzel-Kramers-Brillouin limit; namely, it contains the usual term in V(q),

plus a term of the form (1/27) _m + K(—i|®|)|§(w)|*do, where §(w) is the Fourier

transform of the imaginary-time trajectory. Previously obtained results are special cases of this
prescription. Applications are made to the case of “anomalous” dissipation (rate of dissipation pro-
portional to the squared velocity of the momentum conjugate to the tunneling variable), to the
“mixed” case (relaxation by collisions subject to a conservation law), and to more realistic models of
a rf superconducting quantum-interference device.
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1. INTRODUCTION

In the last three or four years there has been consider-
able interest in the phenomenon of quantum-mechanical
tunneling of a macroscopic variable, particularly in sys-
tems involving the Josephson effect. In this context an
important role is played by the question of the effect of
dissipation on the tunneling process. In a previous paper,’
Caldeira and the present author considered a system
described by a coordinate g, with which is associated a po-
tential energy V(g) that has a metastable minimum, and
obeying in the classically allowed regime a phenomenolog-
ical equation of motion of the form

aV(q(2))

MG(t)+nq(t)+ 3q

=Fexu(t), (1.1)

where the friction coefficient 7 is a constant. I shall refer
to the case described by Eq. (1.1) as the case of simple
normal Ohmic dissipation; note, in particular, that the
rate of energy dissipzation by the system into its environ-
ment is simply 7q°, that is, it is proportional to the
squared velocity of the tunneling variable. They showed
that, provided any one degree of freedom of the environ-
ment is only weakly perturbed, the rate Pqy of quantum-
mechanical tunneling out of the metastable minimum at
zero temperature is given by an expression of the form

Pou=Aexp(—B/%), (1.2)

where the effective WKB exponent B is the value, taken
along the saddle-point trajectory (‘“bounce”) of an effec-
tive action S which is a function, apart from the mass
M and potential V(g), only? of the phenomenological dis-
sipation coefficient 7. Similarly, the prefactor 4 can be
expressed in terms of the small fluctuations around the
saddle-point trajectory and so is also a function only of
the parameters appearing in Eq. (1.1). The authors of
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Ref. 1 showed that the exponent B in (1.2) is always
greater than the value which would be obtained for a sys-
tem which obeyed Eq. (1.1) [with the same V(q)] with
n=0, so that the effect of the dissipation is always to
suppress the tunneling rate.* In a subsequent paper® they
elaborated the arguments of Ref. 1 in considerably more
detail, and gave a quantitative discussion of the formula
(1.2) for the physically interesting case of a quadratic-
plus-cubic potential; they also, inter alia, indicated how to
generalize their method to the case where the friction
coefficient 7 depends on g or on frequency, but did not
give an explicit prescription for going directly from the
classical equations of motion to the tunneling formula for
the frequency-dependent case.

The classical equation of motion (1.1) is sufficiently
general to include (with the appropriate transcriptions)
many cases which are of practical interest in the context
of macroscopic quantum tunneling; in particular the case
of a Josephson junction described by the so-called “resis-
tively shunted junction” (RSJ) model.'® However, it is
clearly not the most general possible case. First, even
when the general structure of the classical equation of
motion resembles (1.1), the dissipation may be more com-
plicated than can be characterized by a single constant 7;
for example, in the standard model of a tunnel oxide junc-
tion, described by the tunneling Hamiltonian, the effective
conductance due to the normal quasiparticles [the analog
of 1 in (1.1)] has a complicated dependence on both am-
plitude (¢) and frequency. Second, the conservative terms
in the classical equation of motion may be more compli-
cated than in (1.1). For example, in a typical Nb point-
contact superconducting quantum-interference device
(SQUID) the junction (point contact) may itself have a
small capacitance C, perhaps ~10~!° F; however, it is
backed by the geometrical capacitance Cgz of the SQUID
ring, which is usually much larger (~10~!2 F). The ap-
propriate circuit diagram!! is then that shown in Fig. 1,
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FIG. 1. More realistic circuit diagram for an rf SQUID in-
corporating a point contact.

and it is clear that the classical equation of motion will
contain higher derivatives than in (1.1) (see Sec. III).

A third type of complication is exemplified by a formal
model proposed by Widom and Clark,” which will be dis-
cussed in detail in Sec. III. This consists, in effect, of a
parallel LCR circuit in which, rather than the effective in-
ductance being strongly nonlinear, as is effectively the
case in a SQUID, it is the capacitance which incorporates
the nonlinear element, so that the quantity which tunnels
is the charge on the capacitor plates. Although this
model is very artificial (and in particular is not a realistic
description of quantum tunneling in a ferroelectric—see
Sec. IV), it does have the advantage of focusing attention
on the fact that the rate of dissipation of energy by the
system into its environment need not inevitably be propor-
tional to the squared velocity of the tunneling variable g
itself, but may, as here, be proportional to the rate of
change of the momentum p conjugate to g. 2 Asin I,
Appendix C, I will refer to cases in which the rate of dis-
sipation W is proportlonal to q as cases of “normal” dxs
sipation, and those in which it is proportional to p as
cases of “anomalous” dissipation (for a more precise defi-
nition see Sec. III). It is also possible, as we shall see in
Sec. III, to have “mixed” cases in which the behavior ef-
fectively switches from normal to anomalous as the pa-
rameters are varied. A particularly interesting feature of
the “pure anomalous” case is that (as demonstrated by
Widom and Clark® for the special case considered by
them) the sign of the effect of dissipation on tunneling is
opposite to that in the normal case. Although it seems
unlikely (for reasons to be discussed in Sec. IV) that the
pure anomalous case will ever be of practical interest in
the context of realistic macroscopic tunneling phenomena,
it is of some theoretical interest to extend our quantitative
methods to cover this case, and the case of mixed dissipa-
tion certainly may be of some real interest.

To date, very little quantitative work has been done on
the effects of dissipation on tunneling in cases more gen-
eral than that of the simple Ohmic dissipation described
in Eq. (1.1). Indeed, the only such calculations known to
the present author, apart from those reported in I, are
those of Ambegaokar et al.,'* which deal with the very
specific case of an ideal tunnel oxide junction described by
the traditional tunneling Hamiltonian, and that of

Zwerger,'* which takes into account the full frequency
dependence of the complex dielectric constant for a linear-
ly dissipative Josephson junction. Clearly a more general
approach is desirable, if possible.

In this paper, I shall consider the effect of dissipation
on tunneling (at T'=0) for a class of problems which, al-
though not the most general possible, is very much more
general than that described by Eq. (1.1) and includes most
of the situations mentioned above. To be specific, I con-
sider a problem in which the nonlinear element which
gives rise to the possibility of tunneling is shunted by an
arbitrary generalized linear impedance mechanism, so that
the Fourier-transformed equation of motion of the tunnel-
ing variable g reads

K(w)g(w)=—[0V(q)/3q](w®) , (1.3)

where K(w) is an arbitrary function subject only to the
usual constraints imposed by causality, etc. I then
demonstrate, subject to a few very general conditions
which are very likely to be satisfied in practice, that the
tunneling rate out of the metastable minimum can be ob-
tained by a strikingly simple prescription, which is given
explicitly in Egs. (2.22)—(2.25): In crude terms, every
term in (iw) in the generalized impedance K (w) corre-
sponds to a term in |w| in the effective action whose
saddle-point value is the WKB exponent (and the fluctua-
tions of which determine the prefactor). This prescription
enables one to read off the appropriate form of effective
action directly from the classical equation of motion: The
results derived earlier"® for the case of simple Ohmic dis-
sipation are just a special case of this, as are the results of
Zwerger'* for the specific case of a Josephson junction
with weak linear dissipation. Thus the problem is reduced
to the purely mathematical question of finding the
saddle-point value of the effective action.

Once stated, the prescription is so spectacularly simple
that the reader’s initial reaction will almost certainly be
that it must be a quite trivial consequence of considera-
tions concerning the analytic properties of physical quan-
tities when continued into the complex plane (cf. Ref. 14).
If this is so, I have not found a method to prove it, and
indeed I believe that the fact that the result certainly fails,
even for the case of simple Ohmic dissipation, when the
“strict linearity” condition specified in Sec. II is not satis-
fied (see I, Sec. IV) should induce extreme scepticism
about the relevance of general analytic continuation argu-
ments to this problem. The proof which I shall in fact
give in this paper contains two main steps which are
parallel to those necessary in the simple Ohmic case:® (1)
I show that under the conditions stated the Lagrangian
for the interaction of the system with its environment can
always be cast, apart from possible mass and potential re-
normalization effects, in the ‘“canonical” form of a
coordinate-coordinate coupling to a bath of harmonic os-
cillators [cf. 1, Eq. (3.12)], though with an “environment”
spectral density which is not necessarily as simply related
to the phenomenological dissipation coefficient as in I. (2)
I then show that this form of interaction leads, in the tun-
neling problem, to an effective action of the specified
form [Eq. (2.23)]." From there on the calculation
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proceeds exactly as in the simple Ohmic case.

In the next section I first give a precise definition of the
problem, then demonstrate successively steps (1) and (2),
and thereby establish the fundamental result of this paper
[Egs. (2.22)—(2.25)]. In Sec. III, I discuss some applica-
tions, and, in the Conclusion (Sec. IV), discuss the signifi-
cance of the results obtained. I use throughout this paper
the notation of I and refer to the latter paper for details of
those parts of the argument which are similar to those
used for simple Ohmic dissipation.

II. DERIVATION OF THE GENERAL FORMULA

A. Statement of the problem

I consider a system described by some variable g with
which is associated a conservative potential energy V(q)
which has a metastable minimum (but see below). It will
usually be convenient to choose the origin of both g and V'
to lie at this minimum; then V(q) contains no terms linear
in g. The phenomenological equation of motion of the
variable ¢(z) in the classically accessible regime is as-
sumed to be of the form

Rq(=— aV(a &) | @.1)

where K is an arbitrary linear operator (in general of
integro-differential type) subject only to the conditions
imposed by causality. For example, in the case of simple
Ohmic dissipation K is of the form (Md?/dt>+vd /dy).
Note that in this case we can, if we wish, arbitrarily
choose to include the term in dV(q(t))/dq which arises
from the quadratic part of V(q) (or any part of it) in the
operator I?; in more complicated cases, such as the one
considered in Sec. III C, the assignment of the quadratic
“potential” terms between the left- and right-hand sides of
Eq. (2.1) may be uniquely determined.®

It is often convenient to visualize Eq. (2.1) in electrical
engineering terms. We may represent it by a diagram of
the form shown in Fig. 2, where the cross corresponds to
the nonlinear element associated with V(q) and the “black
box” K represents an arbitrary linear impedance mecha-
nism. For example, in a SQUID ring described by the

FIG. 2. Electrical-circuit representation of Eq. (2.1). The
cross represents the conservative nonlinear element.
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simple RSJ model the natural representation would be to
associate with the cross the Josephson junction and, in
parallel with it, the bulk ring inductance, and with the
black box the junction capacitance and (parallel) shunting
resistance; however, as remarked above, it would be equal-
ly possible to transfer the bulk inductance term to the
black box,'® and in the more complicated case considered
in Sec. III it is necessary to do so.

The form of Eq. (2.1) becomes simpler if we take its
Fourier transform. In this paper we will define Fourier
transforms by the prescription

flo)= f.:,,f(t)e_iwtdt ,

) (2.2)

—__ et iot

fo=o- [ floedo.

Then the Fourier transform of (2.1) has the form
K(w)g(w)=—[3V(q)/3q](w), (2.3)

where K (w) is now in general a complex function of w.
In general, K (w) will be related (though not necessarily
identical) to some quantity which has the general nature
of an impedance function. For example, in the simple
RSJ case discussed above, in which the variable g is actu-
ally a magnetic flux, it is clear that we have simply

K(w)=ioY (o), (2.4)

where Y (w) is the admittance of the black box as conven-
tionally defined. It is clear that the requirements of
causality imply that both Y(w) and its inverse, the im-
pedance Z(w), must be analytic functions of  in the
lower half of the complex plane, and that similar condi-
tions must hold even when the variable g is not of an elec-
trical nature. Consequently, we reach the important con-
clusion that, quite generally, both K (o) and K N w) are
analytic functions of o for Imw<0. As we shall see
below, this condition is necessary to ensure that the for-
mula for quantum tunneling to be derived is physically
sensible.

To carry out the proof below we must impose three
conditions on the interaction between the system and its
environment. (1) Condition of small perturbation of the
environment: Any one degree of freedom of the environ-
ment is sufficiently weakly perturbed that it is possible to
neglect nonlinear effects.!” The reasons for, and the plau-
sibility (in macroscopic systems) of this condition is dis-
cussed in I, Appendix C. (2) Condition of “strict lineari-
ty:” This is a generalization of the postulate discussed in
I for simple Ohmic dissipation, and can be stated in the
form that the microscopic interaction Hamiltonian cou-
pling the system to its environment contains only terms
either (a) linear in the system variable g and its conjugate
momentum p, or (b) quadratic in p and g, but not contain-
ing the environment variables. As in the case of simple
Ohmic dissipation, we note that the fact that the (experi-
mentally observable) phenomenological equation of
motion for reasonable velocities is of the form (2.3) does
not automatically guarantee this feature. However, in
many cases of practical interest, and in particular in
Josephson systems under most physically relevant condi-
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tions, we have sufficient a priori knowledge of the micro-
scopic nature of the interaction to be reasonably sure that
the condition holds. This question is discussed in some
detail in I (Secs. II and III and Appendix C) and the dis-
cussion transposes straightforwardly to the more general
case. (3) Condition of time-reversal invariance: This is
probably not essential but is included to simplify the
derivation given below. Note that it is not required that
the conservative terms in the potential be explicitly time-
reversal invariant.

B. Derivation of the ‘“canonical” Lagrangian

Following the argument of I, Appendix C, and using
condition (1) above, we can immediately infer that the
most general form of Hamiltonian necessary to describe
the coupled system and environment is

PJ
+7 mJ “’JxJ
m;

H(q,p;{xjp;})= oM,

— S[F;(p.g)x;+G;(pa)p;1 + P(p,gq) -
J
2.5)

Here M, and V,(q) are respectively the “bare” mass and
“bare” potential of the isolated system, the environment is
represented as a bath of harmonic oscillators whose “coor-
dinates” and “momenta” are chosen in an arbitrary way,
F; and G; are real functions of p and g [see I, Eqgs. (C8)],
and <I>(p,q) is a real function which may depend on the
parameters m;, w;, F;, and Gj, but is not a function of
the environment dynamlcal vanables pj»xj. We note that
(2.1) contains no terms depending on the system variables
p,q which are of order higher than linear in the environ-
ment variables; as discussed in I, Appendix C, the oc-
currence of such terms indicates that the perturbation of
the environment is not “weak” and one must then use the
adiabatic approximation. The net result of this maneuver,
as explained in the above reference, is that we recover an
expression of the type (2.5), but possibly with some renor-
malization of the effective potential (Ref. 18) V,(q). We
will not distinguish this case explicitly in what follows,
since the mass and potential are subject to further renor-
malization anyway.

We next introduce the condition (2) of Sec. Il A: This
immediately constrains F; and Gj; to be linear in p and ¢
and ®(p,q) to be bilinear. Moreover, applying condition
(3) and choosing the environment “coordinate” x; for the
moment to have the opposite behavior to g under the
operation of time reversal, we find that the most general
foll;m of the last three terms in (2.5), which we label H;y,
is
Hy,=—

EF"J 42"1; Gjpj+34p*+3Bg”,

(2.6)

where we introduced factors of M, and m; into the defi-
nitions of F; and Gj, respectively, for subsequent conveni-
ence. We can immediately incorporate the last two terms
into a renormalized mass and potential:

~—1 ~
M =My'+A4, V(g)=Vy(q)++Bg> 2.7)

It should be carefully noted that this may not necessarily
correspond to a small correction: for example, in the case
of pure anomalous dissipation, to be discussed in Sec.
III A, a detailed examination (which I shall not give here)
shows that the renormalized mass is actually zero (or,
more precisely, of the order of the inverse of a large cutoff
frequency).

Since we wish eventually to use a Lagrangian rather
than a Hamiltonian technique, it is convenient at this
stage not to carry out canonical transformations on the
Hamiltonian (2.6) directly, but to write the corresponding
Lagrangian, which is

L(a,4;{x),% )= 3 V(q)+2 Lmk]

A?
2% “’ij +q2F Xj
j

+93,G;X; +q22(G]~2/2mj)
J j
—H(§ijj)2 . (2.8)

We immediately see that the term linear in ¢ can be elim-
inated by adding to the Lagrangian the total time deriva-
tive —(d /dt){qszjxj} (which, of course, does not af-
fect the dynamics in any way), and incorporating the re-
sult in the sixth term in (2.8). Moreover, we can eliminate
the last term by taking it together with the “unperturbed”
environment Lagrangian (the third and fourth terms) and
carrying out a linear transformation so as to diagonalize
the resulting Lagrangian .% ¢yt

Lw=7 Emj(xJ coJxJ

a3

= %zm,-(g,- — 7€) 2.9)
where the &; are linear combinations of the x;. Including
the seventh term of (2.8) in (a further renormalized) ¥(q),
we see that we now have a Lagrangian in which the only
term coupling the system and (new) “environment” is of
the form

ZLin=93G)§; , (2.10)
J

where the Gj are linear combinations of the original G;.
Finally, by carrying out the transformation explained in
detail in I, Appendix A (which, of course, in the Hamil-
tonian formalism is just the canonical transformation
which interchanges the environment ‘“coordinates” and
“momenta”), we reduce the whole Lagrangian to the
“canonical” form

. o ~ .2 =~ ~ ,.:.,2 ~2~
L(q,4;{%;,%)) = +Mq —V(g)++ 3 (X; —@,%))
J

—43C%—q* 3 C} /2mm; ,  (2.11)
j 7
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where the X; are new environment “coordinates” which
have the same time-reversal parity as ¢, and where
Ci=0a; G}. Note that since both steps of the transforma-
tion x;—&;—X; correspond to canonical transformations,
the description (2.11) in terms of the X; is of equal validi-
ty to the original description (2.8), and we can use (2.11)
in all the usual ways? (in functional integrals, etc.). How-
ever, one point should be carefully noted: Whereas in the
original formulation (2.8) the parameters m; and w; were
characteristic of the “isolated” environment and the dissi-
pative interaction between system and environment was
contained only in the F; and Gj, in the new description
(2.11) the third term already incorporates some effects of
the interaction (the 7#i; and @; are in general themselves
functions of the strength of the dissipation).

It remains to determine what constraints must be satis-
fied by the parameters in (2.11) in order that the classical
equation of motion of the system coordinate g(#) should
have the specified form (2.1). As in the case of simple
Ohmic dissipation, it is convenient to define the spectral
density

J@)=7-3(C}/i)0—a)) , (2.12)
J
where o is real, and also the quantity, defined for w in the
lower half of the complex plane,
2 ro J()do'

Klo)=—0*|= +M |, (2.13)
T fo a)’(a)’z-—coz)

so that ImK(w)=J (w) for |Imw | —0. [Note that K(w)
differs from the quantity defined in I, Eq. (C.35) by a
sign, the domain of definition, and the addition of the
mass term.] Now, just as in the simple Ohmic case, we
calculate the classical equations of motion of g and the x;
from the Lagrangian (2.11), and eliminate the x;. We
find that the Fourier transform ¢ (w) of g(z) obeys the
simple equation (for w=Rew —i€, €e— +0)

K(w)g(w)=—[3V(q)/3q](w) (2.14)
so that K(o) is identical, in the limit |Imw | —0, to the

K (w) occurring in the classical equation of motion (2.1),
]

= _1 ® iy 2, -1 R
Serl@oN=—— [ |3Mo’+77' [ "do

where Sy is the potential contribution to the action, i.e.,
Sy = [ drvig(n) (2.21)

expressed as a functional of G(w). Comparing the term in
the large parentheses with the definition (2.13) of K(w),
which as we saw was identical on the real axis with K (w),
we see that apart from a factor of + it is just K(w)
analytically continued to the negative?? imaginary axis.!*
Thus we reach the fundamental conclusion of this paper:
If the classical equation of motion is of the form (2.1),
that is

J(@")
CO'((!), 2+CO2)

and V(q) is identical to V(g). This completes step (1) of
the proof.

C. Tunneling rate

Since the Lagrangian (2.11) is of precisely the form
used in I [see I, Egs. (3.12) and (3.13)], we can now follow
the arguments of Sec. IV of that reference word for word
to obtain the tunneling rate. We find it is derived in the
usual way (see below) from an effective “imaginary-time”
action of the form

Salg(= [~ (+Mq" +V(g)}dr
+3 [ ar[” aratr—mlg(n—q()P,

(2.15)
where a(r—7') is given by the expression

n_ 1 = R
ar—)=5— [ T@e!""do . (2.16)
We now define the Fourier transform g(w) of the
imaginary-time trajectory q(7) [so denoted to distinguish
it from g (w), the Fourier transform of the real-time clas-
sical trajectory g (t)] by the prescription®!

Jlo)= f_wwq(f)e —iotdr .

Denoting the last term in Eq. (2.15) by AS, we see that
as a function of §(w), it reads

(2.17)

ASeff=—if_wm[az(a))~az(0)] |§0)|deo, (2.18)

where a(w) is the Fourier transform of a(r—7'). Expli-
citly we have

a(a))=(21r)'2f_:d7'f0wdw’e"‘"|T‘e_i“”'J(m’)
° o'J(w')

_(n2y~1
=(27°) T

do'. (2.19)
Inserting (2.19) into (2.18) and adding the mass term,
which is clearly just (27)~! times the integral of
+Mo? | q(w)|?, we obtain

|§(@) | 2+Sy , (2.20)

]

K(w)g(w)=—[3V(q)/9q](®) , (2.22)

then the formula for the tunneling rate can be obtained in
terms of an effective action S which is given in terms of
¢(w) by the expression,

Sex(Gw) = if_:%m—i |0 ])]§(w) | *deo

+Sp(glw)), (2.23)
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with Sy(§(w)) given by (2.21). To be precise, the expres-
sion for the tunneling rate T' in the WKB approximation
is

I'=Aexp(—B/#), (2.24)

where the exponent B is the saddle-point value of the ac-
tion (2.23), and the prefactor 4 is given by the expression
[cf. I, Egs. (4.32)—(4.34), and erratum’],

172

det[K +V"(0)]
det'[K + V" {ga(n)}]

A=(B*/27H)/? , (225

)
where K is the operator whose Fourier representation
)

fa,,wr is given by K(—i|w|)8w—a'), gq(r) is the
saddle-point (bounce) trajectory, and B* is twice the time
integral of the kinetic energy in the bounce. For the
meaning of det’, see L.

It is clear that the results of I, Sec. IV, are a special case
of this general prescription: In this case the Fourier-
transformed action [Eq. (4.27) of I] has the form (2.23)
with  the coefficient of |g(w)|? equal to
(1/2m)5(Mw?*+1|w|) as it should [cf. Eq. (D.8d) of I
and Ref. 16]. Note also that the fact, noted in Sec. II A,
that both K(w) and K ~!(®) are analytic in the lower
half-plane means that the effective action (2.23) can be
neither zero nor (for sensible trajectories) infinite.

I1I. SOME APPLICATIONS

A. Case of “anomalous” dissipation

To orient our discussion of “‘anomalous” dissipation, let
us first consider a simple LC circuit, where the question
of tunneling does not arise. If we choose the flux ¢
through the inductance as our “coordinate” variable, then
the Lagrangian is

F=1cd’—¢*2L , (3.1)

where L is the inductance and C the capacitance, and the
momentum conjugate to ¢ is

BLWGH) _cy
3
that is, the charge on the capacitance. Conversely, were

we to choose Q as our “coordinate” the Lagrangian would
be

—CV=-0, (3.2)

. L2 Q2
Z(0,0)=5LQ —5C (3.3)

and the momentum conjugate to Q would be LQ=+¢.
Evidently there is exact symmetry between these two pos-
sible descriptions. If the circuit is described quantum
mechanically, then either description leads to the con-
clusion that the mean-square fluctuations of ¢ and Q in
the ground state are given by

($2)y=#/2Cwy, (Q?)=+#iw,C , (3.4)

where wo=(LC)~!/? is the resonant frequency of the cir-
cuit.

Now imagine that we connect a linear Ohmic resistance
R in parallel with the inductance and capacitance. This
destroys the symmetry between ¢ and Q, since the rate of
energy dissipation is now a constant (R ') times ¢2,
whereas if we express it in terms of Q2 the coefficient has
a nontrivial frequency dependence. Moreover, if we apply
to the system an external current I (across L,C,R in
parallel) then the equation of motion of ¢ has the form

Co+R™'$+L™"¢=10y (3.5)
and the work done by the external “force” (current) is
given by

W=l . ‘ (3.6)

If, on the other hand, we take Q as our coordinate vari-
able, it is possible of course to write the equation of
motion in a form similar to (3.5), namely

ext

.. . dI
CQ‘*‘R—IQ‘*’L‘IQ:Fext’ FextEC dt (3.7

but it is then not possible to write the work done by the
external current in the form F, mQ. We will say that the
dissipation mechanism is normal if ¢ is taken as the coor-
dinate variable and anomalous if Q is taken as coordinate.
In other words, in this simple case (involving a
frequency-independent resistance) the dissipation is nor-
mal if the rate of dissipation W is proportional to the
squared rate of change of the coordinate g% and
anomalous if it is proportional to the squared rate of
change of (what in the absence of dissipation was) the
momentum p°.

Provided the dissipative mechanism is “strictly linear”
in the sense of I, Appendix C, it is very straightforward to
calculate the ground-state density matrix of the damped
circuit (see I, Appendix B) and to verify that the mean-
square fluctuation of the flux, ($*) is decreased relative
to its value (3.4) for the undamped circuit, whereas the
charge fluctuation (Q?) is increased (of course in such a
way that the uncertainty principle remains satisfied). For
a series LCR circuit the situation is reversed: The dissipa-
tion is now proportional to QZR, and so is normal if Q is
chosen as coordinate and anomalous if ¢ is chosen. In
this case the dissipation has the effect of decreasing (Q?)
but increasing ($?). We see that in both cases, once we
have made a particular choice of coordinate, we can say
that normal dissipation decreases the mean-square value
of the coordinate and increases that of the momentum,
whereas anomalous dissipation has the reverse effect. Al-
though we have proved this only for the simple case of
frequency-independent Ohmic dissipation, it is very
straightforward to follow through the argument of I, Ap-
pendix B, and prove the statement for a harmonic oscilla-
tor with arbitrary frequency-dependent dissipation, pro-
vided “normal” dissipation is defined in the more general
way below.??

We now turn to the case of general motion in an anhar-
monic potential (which need not necessarily permit tun-
neling). We will always define the “coordinate” g in the
obvious way, i.e., so that it is the potential energy V(q)
rather than the kinetic energy which is anharmonic. In
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particular, in the tunneling case it is the coordinate which
has the metastable minimum. With this definition we
have an absolute distinction between ‘“normal” and
“anomalous” dissipation: Crudely speaking, normal dissi-
pation is proportional to the squared rate of change of the
tunneling coordinate, whereas anomalous dissipation is
proportional to the squared rate of change of the (original)
conjugate momentum. Actually, this definition is techni-
cally ambiguous once we divert from the simple case of a
constant dissipation coefficient, since it is always possible
to write a frequency-dependent relation between position
and (original) momentum. A more inclusive definition of
“normal” dissipation in the general case is the following:%*
given a particular choice of coordinate g with associated
potential (in general nonlinear) ¥(g), then the dissipation
is normal if it is possible to write both

V(g(1)
dg

where %) has an arbitrary frequency dependence (i.e., in the
time domain is an arbitrary integro-differential operator
subject to the requirements of causality), and

W(t)=F . ()§(t) (3.9)

[cf. Egs. (3.5)—(3.6)]. It would probably be possible to
give an equally general definition of anomalous dissipa-
tion, but it is not worthwhile to do so in the present con-
text, since ‘“normal” and “anomalous” dissipation are
themselves only special cases of a much more general situ-
ation. Rather than do so, we shall concentrate on the case
of “simple Ohmic” anomalous dissipation so as to bring
out the main qualitative features.

To study simple Ohmic anomalous dissipation and its
effect on tunneling it is convenient to focus on a specific
example. Let us therefore take the above parallel LCR
circuit and make the capacitance strongly nonlinear: In
fact, we shall assume that the potential energy ¥V (Q) asso-
ciated with a charge Q on the capacitor plates is a func-
tion so nonlinear that it has a metastable minimum. The
circuit so obtained is a slight variant of the one studied in
Ref. (9); we note, however, that, contrary to the impres-
sion given there, it cannot realistically represent tunneling
in a real ferroelectric material (see Sec. IV), but must be
regarded purely as a formal model. It is clear that the
classical equation of free motion of the circuit, written in
terms of Q, has the form

Ld|av
Ra|o0 |Tag™"

Note that the kinetic energy is not %LQ.Z. Quite general-
ly, the structure of the equation of motion of the system
variable g in the case of pure Ohmic anomalous dissipa-
tion will have the form

Mg(D)+74(t)+ =F, (1), (3.8)

oy (3.10)

d2
L__..
dt? 2+

2
o d

dtzq a (3.11)

dq

Although the “mass” M is the original mass of the system
before the switching on of dissipation, the kinetic energy
will not in general now be 5-M¢g>. We note that Eq. (3.11)

can be formally cast in a form similar to (1.1), with a non-
linear “friction coefficient” 7(g), namely

.. . 3dV(q

Mg +n(q)g+ af; ) o,

but only at the cost of making the (pseudo) friction coeffi-

cient 17(q)=7V"(q) negative over part of the tunneling re-
gion.

Now let us consider the effect of the dissipation on tun-

neling. It is immediately obvious from (3.11) that the

correct form of K (w) [defined in Eq. (2.3)] for this case is

_ —Mo*
T 1 tier

(3.12)

K(») (3.13)
Consequently, according to the prescription (2.23), the ef-
fective action which enters the expression for the tunnel-
ing rate is

o Lsz
seff(a(w))=if 2 13(0) | do+Sp{F(e)) .

o 1+ ||
(3.14)

Since the value of the effective action for any function
g () is less than it would be in the limit 7—0 (no dissipa-
tion) for the same potential ¥(q), it is immediately clear
that the introduction of dissipation [without change in the
phenomenological potential V(q)] in this case increases
the tunneling rate, in agreement with the conclusion of
Ref. 9. This is precisely what we should expect in view of
the results derived above for the simple harmonic oscilla-
tor. It should of course be stressed that this conclusion is
in no way in conflict with the results of Ref. 1 or of I,
since in these references the formulation of the problem is
such that it explicitly excludes the case of anomalous dis-
sipation.

It is easy to make quantitative estimates of the effect on
tunneling along the lines of I, Sec. V. Consider in particu-
lar the case of a cubic potential V(q)=+Mwig?>—Bq° as
in I, and suppose wo7 > 1. Using the obvious inequality,

2
Mo Mlo| M (3.15)

I+|o|7= 7 72

we see that the effective action (3.14) is bounded below by
the expression

. 1 p> ~ ~
S qoN=5-[" nlo| |3@)|*do+Spgw)

(3.16)
where
Vig)=+M(wi3—1/7)¢*—Bq>

and =M /7. But this is just the action for a system tun-
neling in the potential ¥(q) with normal simple Ohmic
dissipation described by the friction coefficient 7, without
the kinetic energy term in +Mw? In other words it is just
the strong-damping limit of the problem discussed in I,
Sec. V. Since we have an explicit solution for the saddle-
point value of the action in this limit [I, Eq. (5.21)], we
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can immediately write a lower limit (which should be the
exact value in the limit 7— o) for the WKB exponent B
[Eq. (2.24)] for the case under consideration:

B> %TM(zq)z/T, Ag=+M(w03—1/)/B, (3.17)

where ( Aq)? is the “distance under the barrier” described
by V(q). Other inequalities can be obtained in a similar
way if desired.

B. Case of “mixed” dissipation

As my next illustration I discuss a kind of situation
which may, in the tunneling context, be slightly nearer to
reality. It is a situation which typically arises where there
are relaxation processes in the system which are subject to
the conservation of the momentum conjugate to the tun-
neling variable. As an example, let us consider the follow-
ing (admittedly not very realistic) system: A cylinder of
moment of inertia I, is suspended by a torsion thread
with highly nonlinear properties, so that as a function of
the rotation angle 6 its potential energy V(6) has a
metastable minimum. It is then filled with a liquid such
that the total moment of inertia of cylinder plus liquid is
I. We assume (perhaps unrealistically) that the liquid is
always in internal rotational equilibrium but that it re-
laxes to rotational equilibrium with the container, by col-
lisions which conserve the total angular momentum, with
some characteristic relaxation time 7. We then ask for the
formula for the rate of tunneling out of the metastable
minimum.

Intuitively, we would expect that if the characteristic
inverse frequency @' associated with the tunneling pro-
cess (e.g., the “bounce time” which is of the order of the
inverse attempt frequency, cf. I, Sec. V) is small compared
to the relaxation time 7, then the rate should be given by
the standard WKB formula with “mass” (i.e., moment of
inertia) equal to that of the cylinder alone, that is Io;
while if @ ! is long compared to 7, then we again obtain a
WKB formula but with “mass” I, that is the total mo-
ment of inertia of cylinder plus liquid. Since I is larger
than I, the tunneling rate would be expected to be slower
in this limit. It also seems a reasonable guess that as we
decrease 7, the rate would change monotonically from one
extreme value to the other. Can we confirm these intui-
tive guesses?

The task of obtaining the classical dynamics of the sys-
tem described is made considerably easier by the observa-
tion that apart from the existence of a metastable
minimum of the potential and some complications associ-
ated with the so-called “Fermi-liquid” effects which have
no analog here, the problem is isomorphic to that of the
longitudinal magnetic resonance of the superfluid phases
of liquid 3He, which is discussed in some detail in Ref. 25.
The correspondence is as follows: The (angular momen-
tum of the) cylinder corresponds to the (spin of the) Coop-
er pairs in *He and the liquid filling it to the normal com-
ponent, the analog of the potential energy V(0) is the di-
pole energy Hp(6) [where in the 3He case the angle 6 is
the angle of rotation of the Cooper-pair spin coordinates
d(7)], and the (angular momentum-conserving) collisions

which establish rotational equilibrium between liquid and
cylinder are analogous to the (spin-conserving) collisions
which equilibrate the Cooper pairs with the normal com-
ponent. The moment of inertia is the analog of (y 2
times) the susceptibility. Using this correspondence (or by
direct analysis) we can immediately write the equation of
motion of the torsion angle 6 of the cylinder [see Eq.
(6.36) of Ref. 25],

w1 _1 0%V 14

6 + 7_0—}-10 8929+I T30 =
We note that in both the “hydrodynamic” (w1 <<1) and
“collisionless” (w7 >>1) limits the equation of motion (3.1)
reduces to the simple form,

—18V _
eff FY:) =

but with different values of the effective moment of iner-
tia (I =1 in the first case, I, in the second). Moreover,
by examining the first corrections to these limits we see
that the dissipation looks “normal” when viewed from the
collisionless end, but “anomalous” when viewed from the
hydrodynamic end.

It is now very easy to apply our general prescription to
calculate the tunneling rate. By rewriting the third term
as Iy '(d/dt)(dV /d0), we see that the function K (w)
[Eq. (2.3)] has the form

0. (3.18)

O+1 0, (3.19)

14ioT

-_—. 3.20
14iorI /1) (3.20)

K(w)=—Io?

Hence the effective action for tunneling is, in an obvious
notation,

Sal@on=7- [ 1’ l_lﬂgl_

2 Y- ? 1+ || T /1)

X | 8(w) | 2do+Sy(0(w) . (321

We see that our intuitive expectations are confirmed: If
all frequencies @ important in the tunneling process are
large compared to 7~ we obtain a simple WKB formula
with effective moment of inertia I, whereas in the oppo-
site limit we obtain a similar formula but with larger mo-
ment of inertia I. Moreover, since the quantity in large
parentheses is a monotonically increasing function of T,
we see that the behavior of the rate between these two ex-
tremes is indeed a monotonic decrease.

As pointed out above, an equation of the form (3.18) is
a general characteristic of a situation where the dissipa-
tion is due to processes which conserve the momentum
conjugate to the tunneling variable. Thus, although the
specific example considered above is unrealistic (and the
3He analog cannot undergo tunneling, since in neither
3He- A nor *He- B does the dipole energy have a metastable
minimum), it does not seem out of the question that a
realistic example of macroscopic quantum tunneling con-
forming to the above description may be found.
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C. More realistic model of SQUID

As my final example I consider the circuit shown in
Fig. 1, which although may not be a wholly realistic
description of a SQUID ring is probably a considerable
improvement on the simple RSJ model, at least for
SQUID’s incorporating Nb point contacts.!! It is
straightforward to verify that the classical equation of
motion of the flux ¢ (or more precisely its deviation from
the metastable equilibrium value) through the ring as a
whole is of the form (2.3), with

K(w)=iw |ioC+R;!

T+ @ /D ]+ oL iaCq)

(3.22)

and ¥V (q) given by the Josephson term in the potential en-
ergy only. Applying our general prescription, we see that
the K(w) which enters the effective action (2.23) is of the
form

w?’Cg+1/L
(1+L'/L)+»’L'Cg
(3.23)

K(0)=0*C + |o|R; '+

For definiteness I shall assume in the following the
order-of-magnitude conditions

Cg>>C, L~L'. (3.24)

Then it is obvious that if all frequencies of importance in
the tunneling process are small compared to the charac-
teristic frequency @~ (LCg)~!/? then the correct tunnel-
ing formula can be obtained from a simple RSJ model
with effective capacitance and inductance given by

Ces=Cs/(14+L'/L), Lyg=L+L', (3.25)

while if the characteristic tunneling frequencies are large
compared to @ we expect the same to be again true but
with

Cer=C, Leg=L". (3.26)

This, of course, is exactly what we should have expected
intuitively. In view of (3.24), the choice (3.26) will gen-
erally give a faster tunneling rate than (3.25), so that it is
consistent to use this model provided that the attempt fre-
quencies so generated are indeed large compared to @.
Whether or not this is so in any given experiment depends
of course not only on the parameters in (3.22) but also on
the critical current and external flux bias. In the general
case it would presumably be necessary to insert expression
(3.23) into (2.23) and find the saddle-point value of the ef-
fective action by numerical computation. Note that, in
distinction to the real-time behavior of the circuit, the
tunneling characteristics are not particularly sensitive to
whether the characteristic frequency is near the resonance
frequency [(1+L’/L)L'Cg)~ ']/ and we do not expect
anything particularly spectacular to happen in this region.

It should be emphasized that although for given values

of the parameters the use of a simple RSJ model with the
parameters (3.26) may give a correct result for the tunnel-
ing transitions between different values of the total flux
trapped in the SQUID ring, and predict quite high rates,
it may be misleading to refer to the events so described as
“macroscopic quantum tunneling.” If we carry out a de-
tailed analysis of what is going on by introducing explicit-
ly as a second “system” variable the flux through the
“small” circuit (the one containing C, R,, and the junc-
tion), we find that the quantum tunneling is really carried
out only by this variable, which is only dubiously macro-
scopic, and the total flux ¢ then adjusts to its new value
by a purely classical process. A similar caveat, incidental-
ly, should be applied to the case of tunneling with strong
anomalous dissipation (Sec. IIIA): If the macroscopic
variable tunnels rapidly only because of its coupling to the
microscopic degrees of freedom, it is not entirely clear
that the label “macroscopic” is correctly applied to the
tunneling. Fortunately, as we shall see in the conclusion,
this question is rather academic since the case of pure
anomalous dissipation seems rather unlikely to be of
much physical interest.

IV. CONCLUSION

In this paper I have developed a technique to calculate
the effect on quantum tunneling of a quite arbitrary linear
dissipative (or reactive) mechanism, irrespective of wheth-
er it is of normal, anomalous, or more general type and
however complicated its frequency dependence. I now
comment on some aspects of the results.

First, the technique given here automatically bypasses
the rather tedious arguments about “frequency renormali-
zation” effects which had to be gone through at length in
I. While it is of course true, as stated in I, that a purely
Ohmic (i.e.,, frequency-independent) resistance gives no
frequency renormalization, this result rests essentially on
the fact that the reactive part of the admittance [the K (o)
of I] of such an element is zero (to lowest order in w/w,,
where o, is some high cutoff frequency), and any fre-
quency dependence of the resistance will in general give a
renormalization, which will affect both the classical
dynamics and the tunneling behavior. In the method of
the present paper such effects are taken into account quite
automatically, since we do not have to distinguish expli-
citly between the real and imaginary parts of (the present)
K (o).

Second, the results concerning the opposite effects of
normal and anomalous dissipation can be understood very
naturally within the framework of the quantum theory of
measurement. As stressed by Zurek,?® any interaction of a
quantum system with its environment will tend to “col-
lapse” the wave function of the system into an incoherent
mixture, and the nature of the particular mixture into
which the collapse takes place will depend on which sys-
tem variable interacts with the environment: e.g., if the
interaction is of the form b’ ﬁ, where X is a variable of
the system and () one of the environment, then it is the
variable X which is “observed” by the environment and
the collapsed density matrix of the system is diagonal in
the X representation (and hence, in general, not diagonal
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in a representation corresponding to the eigerll\functions of
an operator which fails to commute with X). Consider
now, for example, the nonlinear LCR circuit of Sec. IIL A.
The most natural description of the effect of the resistor
consists in adding to the Hamiltonian a term of the form

Hint=_¢zcaxa+%¢2zci/maw¢zz ’ 4.1
a a

where the second term is the “counterterm” which cancels
the unphysical potential renormalization which the first
alone would produce (see I, Appendix A, for an exhaus-
tive discussion of this point). Thus we expect the effect of
the resistor to be to tend to collapse the system into an in-
coherent mixture of eigenfunctions of the flux ¢. In the
“normal” case (where it is the inductance which is non-
linear and the flux itself which is the tunneling variable)
this impedes the tunneling, since the tunneling
phenomenon depends essentially on the superposition of
eigenstates corresponding to different values of the tun-
neling variable (cf., I, Sec. VI). On the other hand, the
resistor tends to increase the degree of superposition of
states corresponding to different values of the conjugate
variable Q (the charge on the capacitor plates), and hence
in the anomalous case, where it is this latter variable
which does the tunneling, the dissipation actually assists
the tunneling process.?’

We may ask whether we are justified in using the terms
“normal” and ‘“anomalous” as we have done: In other
words, is there any general reason why the environment
should normally want to “observe” the tunneling variable
itself rather than its conjugate momentum, or equivalent-
ly, why the dissipation should be proportional to the
squared velocity of the former rather than the latter? Al-
though it is difficult to give a completely general argu-
ment on this point, I believe that consideration of specific
examples will make it plausible that this is so. Consider
for example our prima facie counterexample, namely the
circuit discussed in Sec. III A, with a highly nonlinear
capacitance. Is this in fact a realistic description, as im-
plied in Ref. 9, of tunneling in a ferroelectric system (as-
sumed to be contained between the capacitor plates)? I be-
lieve it is not, for the following reason: In a real ferroelec-
tric, the Kinetic energy responsible for the tunneling
comes, not from any external self-inductance, but from
the actual motion of the ions of the sample themselves; it
is easy to see that for any but the most extreme values of
the sample dimensions, etc., the associated “kinetic induc-
tance” Lg=2Ey;, /Q.2 is many orders of magnitude small-
er than any external electromagnetic inductance. In fact,
the L and R of the circuit are essentially irrelevant to the
tunneling process, which would proceed just as well if the
capacitor were completely open circuited.”® Now the im-
portant point is that any dissipation associated with the
actual motion of the ions will automatically be not in
parallel but in series with the kinetic inductance, i.e., the
rate of dissipation W will be proportional to Q" and we
are back to the normal case. More generally, it seems
likely that the motion of the tunneling variable itself will
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always have some dissipation associated with it, even
though there may possibly be other mechanisms as well:
Thus, in any realistic physical system, the dissipation,
though it may not be necessarily of pure normal type (cf.
Sec. III B), is unlikely to be pure anomalous. In the ab-
sence of a plausible physical counterexample to this state-
ment, therefore, we have to treat the case of pure
anomalous dissipation as of primarily formal interest.

Finally, I comment briefly on the relation of the present
work to that of Zwerger,'* who considers specifically the
case of a Josephson junction with weak linear dissipation
and derives a result [his Eq. (31)] which is effectively
equivalent, for this case, to Eq. (2.23). Apart from trivial
differences of notation, etc., and some complications asso-
ciated with the replacement of ¢ in (2.11) by a sine func-
tion, the principal differences between Zwerger’s approach
and the present one are as follows: (1) Zwerger considers
only the weak-coupling limit, while the results of the
present paper are (I believe) valid for arbitrarily strong
dissipation provided only that the condition (1) of Sec. II
is satisfied. (2) In Ref. 14, the formula (31) is stated to
refer to the elastic tunneling probability, and an inelastic
probability is calculated separately: By contrast, I believe
that formulas (2.23)—(2.25) refer to the fotal tunneling
probability [see the remarks below Eq. (4.11) in I]. (3)
The argument of Ref. 14, Sec. IV, relies on a formal ana-
lytic continuation procedure: As stated above, I believe
that such a procedure is in general not justifiable [in fact,
it follows from the results of I, Sec. IV, that when condi-
tion (2) above is not satisfied it gives quite the wrong
answer]. It may well be valid when condition (2) or a
similar condition is satisfied [as it is in Ref. 14, see Eq.
(5)], but this condition needs to be noted explicitly: In
general, a complete knowledge of the (experimentally
measured) dielectric constant is insufficient to determine
the tunneling behavior. In fact, it would appear from the
results of Ref. 13 that the tunneling exponent for an ideal
tunnel oxide junction as described by the standard micro-
scopic tunneling Hamiltonian cannot be set in the form of
Zwerger’s Eq. (31) even in the limit of weak dissipation;
this is not surprising since condition (2) is almost certainly
not satisfied in this case. Nevertheless, as noted above,
the condition is satisfied for a large number of experimen-
tally relevant situations, and the formal analytic continua-
tion procedure then gives the same results as the more la-
borious argument developed in Sec. II of the present pa-
per.
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