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Critical field of a superconductor —normal-metal —superconductor junction
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We have computed the lower critical field H, ~ of a superconductor —normal-
metal —superconductor sandwich as a function of normal-metal thickness. The Ginzburg-Landau
free-energy functional is minimized by varying the order parameter while computing the magnetic
field exactly by numerical means. Good agreement with Pb-Cd sandwiches is found with no adjust-
able parameters. Comparison is also made with a previous calculation of H, i for the large-thickness
limit.

I. INTRODUCTION

A superconductor —normal-metal —superconductor
(SNS) junction is one of the simplest inhomogeneous su-
perconducting systems and it has received much theoreti-
cal and experimental attention. For this reason we begin
our study of the critical magnetic field and magnetic flux
entry into inhomogeneous materials with an investigation
of the critical field of an SNS junction. Not only is this
system better characterized than most inhomongeneous
materials but there also exists experimental data in the
literature.

In an SNS junction the middle normal layer exhibits a
Meissner state at low fields due to the proximity effect
from the neighboring superconducting layers. At some
critical field H„ this Meissner state is destroyed and
magnetic flux enters the junction, usually in the form of a
linear array of quantized vortices which are entirely or at
least primarily localized within the normal layer.

A calculation of this critical field was first carried out
by Dobrosavljevic and de Gennes' (DG). Their calcula-
tion used the variational principle to determine H, ~, by
assuming a reasonable analytic form for the magnetic
field of the vortex. In order for their functional form of
the magnetic field to be valid, the vortex had to be wholly
contained within the normal metal and this (as well as
several other approximations) made the calculation valid
only for normal-state thicknesses which are large com-
pared to the coherence length in the normal metal.
Within this approximation it was found that

H„= I@0/8A~[g„(a„—p)]' cosh(a„/g„)],
where @0 is the flux quantum, 2a„ the normal-metal
thickness, g„ the coherence length in the normal metal, A,ii
the effective penetration depth in the normal metal at the
superconducting —normal-metal boundary, and p is de-
fined as g„[ln(0.89/„/Aii)], which is typically a few times
the coherence length. The unphysical divergence at a
thickness a„=p is the result of approximations made in
the calculation and emphasizes the large-thickness ap-
proximation of the result. This restriction means in prac-
tice that Eq. (1) is useful only when H, i is less than
10 —10 of the critical field of the superconductor.

For a typical superconductor such as Pb this corresponds
to H, i less than a few gauss.

In this paper we describe a calculation of H, i for arbi-
trary thickness of normal metal. This requires treating
the vortex-core explicitly, and also allowing for magnetic
field penetration into the superconductor. The vortex-
core shape is determined by a variational solution of the
appropriate Ginzburg-Landau equation; this parallels
Clem's treatment of H, i in a homogeneous superconduc-
tor. The magnetic field is then computed by integrating
numerically the second Ginzburg-Landau equation. We
find that for a range of material parameters the calculated
H, i has a very simple functional form. In addition we
make comparison to experimental data on a Pb-Cd lamel-
lar eutectic composite and find good agreement with no
adjustable parameters.

II. TREATMENT OF THE GINZBURG-LANDAU
EQUATIONS

We begin by writing the Ginzburg-Landau equations
for the order parameter g and magnetic field H= V && A
in the usual way,

'2

where in our case the parameters a and p are piecewise
constant functions of position taking on values a, & 0, and
p, & 0 in the superconductor, and a„&0, p„&0 in the
normal layer. The lower critical field H, &

is given by the
difference betwen the Helmholtz free energies (per unit
length) of the one-vortex and no-vortex states,

(4)

where ~j is ihe density
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in the presence of a single vortex [for which

f d rH( r ) =4&], and Wo is given by the same expression
with H =0.

At fixed magnetization, the solutions of (2) and (3) min-
imize the Helmoltz free energy. In our case where quanti-
ties do not vary in the direction (z) of the magnetic field,
one essentially minimizes the free energy per unit length

f d rP(r, H(r)) at constant magnetic flux f d rH(r}.

If we know the zero-field solution ga(x,y) exactly, then

H, & [Eq. (4) with the exact Wa] may be regarded as a
functional of the single-vortex functions f~ and H [where

r H r =Co . The minimum value o H, ~ is

achieved only if f& and H are the solutions of (2}and (3).
We first consider the zero-field solution [of Eq. (2)],

and write this as

go(x )=p g (x),
where x is perpendicular to the normal layer, and P„ is
the value of P deep within the superconductor, so that
g~l as

I
x

I
~oo. If we put P„=O, then the solution

may be written in a simple form. With the normal-

metal —superconductor (NS) boundaries at +a„, we have

g(x)=
tanh(b/~2(', )cosh(x/g„)/cosh(a„/g„), Ix I

(a„
IX I

+b —a„tanh, Ix I
)a„

2$,

(6b)

where the coherence lengths g, „ in the superconducting
and normal metals are given by

ps=A /2m'
I
as

I ~ gn =A /2m an

and b is chosen so that g
' as well as g is continuous at

x =+a„. In the presence of a singly-quantized vortex, we

may choose P(r )=
I
P(r )

I

e'~ [where P =tan '(y/x); this
is completely general owing to gauge invariance], and uti-
lize the variational principle to approximate

I
g(r)

I
. We

assume that the vortex-induced distortions of
I P I

have
cylindrical symmetry corresponding to the variational
function,

g, ( r )=g„g (x)f(r)e'~,

and H, ~ is to be minimized with respect to g„. Clem has
shown that this is an excellent approximation for a bulk
superconductor, with the optimal f, being comparable to

One then expects (8b) to be a good approximation for
the thin normal layers. In the opposite limit of thick
layers the details off ( r ) should be unimportant.

As expected, the calculation yields a fairly broad
minimum in H, &

as a function of g„as can be seen in Fig.
1. Typically a 10% error in g, caused less than a l%%uo er-

ror in H, &. Figure 2 shows the optimal values of g„ for
several different values of the material parameters. For
small a„/g„, g„has a value close to that expected for a
bulk superconductor. At larger values of a„/g„, g, ap-
proaches g„and then decreases at still larger a„.

where f has the form suggested by Clem,

f(r)=r(r'+g) (8b}
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FIG. 1. Reduced critical field versus normalized variational
parameter for parameters ~, =5.0, a„=0.2, g„/g, = 10,
2a„/g„= 1.08.
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FIG. 2. Normalized variational parameter versus normalized
normal-metal thicknesses: ~, a;=0.5, a„=0.2, g„/$, =1; 0,
z, =0.5, s„=0.067, g„/g, =3, Cl, a, =5.0, a„=0.2, g„ /g, = 10.
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Once g is specified according to Eqs. (8), the magnetic
field equation (3) simplifies to

where the penetration depth in the bulk superconductor is
given as usual by A,,=m "c /(4n. e P„). A local effective
penetration depth may be defined formally by
A(x)=A, ,f~ ~

P(r)
~

'=A,,(gf) ', although the concept is
not well defined if

~ g ~

varies sufficiently rapidly. We
solve Eq. (9) numerically on a mesh which is defined to
precisely locate the NS boundary, and also to adequately
describe the vortex-core region. The method is described
in the Appendix.

It is useful in the SNS geometry (as well as in the
homogeneous case) to characterize a superconductor not
by A,, but by the ratio v, =A,, /g„since this parameter
determines whether one has type-I or type-II behavior.
From this (usual) definition one may deduce that z, —P, .
The latter relation suggests a useful definition of v„ for
the normal metal, where there is no intrinsic penetration
depth:

1 m*c
2m' e*fg

n .
7

(10)

Thus our system is characterized by the width of the nor-
mal layer 2a„and (within Ginzburg-Landau theory) by
material parameters a; „[Eq.(10)] and g, „[Eq.(7)]. The
superconductor's parameters may be determined empiri-
cally from the temperature-dependent penetration depth
and the thermodynamic critical magnetic field,

g„=hvp /2nkg T (12)

and ~„=0,corresponding to no nonlinear term in the mi-
croscopic gap equation. In the more complicated situa-
tion where the normal metal becomes superconducting at
some T,„(where 0 & T,„&T), microscopic calculations '

suggest that Eq. (12) is still a good approximation (as long
as T is not too close to T,„where g„diverges). As for a„,
the usual derivation of the Ginzburg-Landau equations
suggests that ~„ is a constant, equal to its value just below
T,„. Of course the Ginzburg-Landau equations cannot be

justified microscopically in our situation, and so we view
this calculation as a test of their usefulness.

The two basic equations needed for our remaining dis-
cussion may be usefully rewritten in terms of the four pa-
rameters just discussed. We rewrite Eq. (9) in terms of the
dimensionless distance 7= r/A, , and the reduced magnet-

ic field h =H/~2H, . With the use of Eq. (11), the result
1s

&x[(gf) 'Vxh]+h= zS'( ).

The reduced critical field h, i H, i/W2H, ——then appears
[from Eqs. (4) and (5)] as

v, =A,, /g, =2nW2H, A,, /40 .

For the normal metal we must appeal to arguments such
as the following: If there is no interaction between elec-
trons in the normal metal and the mean-free path is long,
then the coherence length is

h, i
—— J d ~b/,

2

6/= h +2(gf)
'2

+ sgn(a)(g, /g) g +a; Bg
a~

(14a)

+a, g g +2(~/~)fBf Bf Bg (14b)

where g and ~ (without subscripts) refer to the local
values. (Dimensionless coordinates are ~=x /A, , and
~=y/A, )

III. RESULTS AND DISCUSSION

The results of our calculations for several values of the
material parameters are shown in Fig. 3. Changing the
coherence length in the normal or in the superconducting
material does not change the exponential behavior of the
reduced field over a wide range of parameters. In fact,
the data shown here are well represented by the equation

h, i(a„)=h, i(0)e (15)

where h, i(0) is the reduced critical field for the homo-
geneous superconductor and y is a constant =1.2. This
exponential behavior is not totally unexpected since it is
similar to that predicted by DCx. Additionally if one were

I

to make a reasonable guess that h, ~ was proportional to
the value of the order parameter at the center of the nor-
mal metal, then for large a„one would have
h, i —1/cosh(a„/g„)-exp( —a„/g„). At small a„ there
would also be exponential decay but with a different decay
constant. What is surprising is that the calculation shows
the same exponential decay constant in both limits for a
range of material parameters. (We shall return to this
point later. ) For a„~0, this calculation reproduces the
h, &

of a homogeneous superconductor to within a few
percent, as expected since in that limit we are simply
reproducing the calculation of Clem.

For the case of ~, =0.5, the superconducting material is
type I which is reflected in the calculation as a reduced
critical field greater than I/v 2, for small reduced thick-
ness (i.e., a„~ g„near 0). Here vortices are thermodynam-
ically unfavorable at a11 fields less than H, of the super-
conductor. Of course for sufficiently large a„we can al-
ways find h„& 1/v 2 so that type-II behavior occurs. A
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FIG. 3. Reduced critical field versus normalized normal-

metal thickness for several values of material parameters: ,
v, =0.5, x„=0.2, g„/$, =1, 0, a, =0.5, x„=0.067, g„/g, =3;

, Ir, =5.0, Ir„=0.2, g„/$, =10. The solid line corresponds to

the DG formula [Eq. (17)], evaluated for parameters corre-

sponding to O.

transition from type-I to type-II behavior occurs at some

critical thickness a«which, if Eq. (15) holds, is

(~/4)(g', /g'„)

[a„/g„ —ln(0. 89('„/a, g, )]'/ cosh(a„ /g„)
(17)

This expression is compared to our calculation in Fig.
3. Both calculations show a similar nearly exponential
behavior and differ primarily in their prefactors. While
the numerical calculation cannot predict the behavior at
thicknesses larger than those shown, it is known to give

ln[v 2h, &(0)],
y

or roughly a =0.7$„ for the case of Ir, =0.5. The physi-

cal critical thickness is temperature dependent since g„ is,

but the transition is always present if the superconducting

material is type I.
Initially it was thought that increasing the Ginzburg-

Landau parameter of the superconductor ir, might lower
the zero-thickess critical field Ii, &(0) below that for a fi-
nite thickness. No such positive slope in h, i versus a„
was observed. Increasing a, reduced the critical fields at
all values of a„.

To compare our results with those of DG we need an
expression for A,s [in Eq. (1)] in terms of our parameters.
This can be found by noting that DG define the local
penetration depth corresponding to our expression
A,,(gf) in Eq. (9), and hence A,z is this expression
evaluated at x =+a„. For parameters in the range stud-
ied here, this is close to A,„which leads to

0.1—

0. 1

1

1.0

FIG. 4. Reduced critical field versus a„ times the constant

scale factor ( f„/g, ~, ) which is equivalent to 1,„/A,, : ~, a, =0.5,

g„/g, = 5; ~, x; =0.5, g„/g, =2; L, sc, =2.5, g„/g, = 10. For all

cases 2a„/g„-2.

the correct result in the limit of zero thickness —whereas

an extrapolation of the DG result from large a„, assuming
the same exponential behavior is valid, would give an in-

correct result for the zero-thickness limit.
The form of Eq. (15) suggests that h, i is independent of

ir„, and this is true at least for small v„as shown in Fig. 4.
For the range of parameters studied here it would appear
that whether or not Eq. (15) holds depends on the relative

magnitudes of A,, and A,„,where the latter is a purely for-
mal definition a.„g„. For 2a„/g„-2 as seen in Fig. 4 it
appears that the range of validity for Eq. (15) is given

roughly by A,„/A, , (1. The effect of the relative sizes of
A,, and A,„on h, ~ can be seen in Fig. 5. The curve with

A,„=0.8A,, is close to exponential as expected, while the

curve with A,„=2k., is exponential but with a steeper slope

for small a„and then no longer exponential at larger

thicknesses. The amusing thing about these two cases is

that only g„(of the four Ginzburg-Landau parameters

g, „and ~, „)differs appreciably from one case to the oth-

er. Nevertheless the two curves differ (theoretically, at
least) only because a„&0, i.e., the difference arises from

the nonlinear term of the Ginzburg-Landau equation in

the normal metal.
That this effect should be signaled by the combination

A,„/A,, (Fig. 4) is suggested by examining the expression
for free-energy density [Eq. (14b)]; the ratio of coefficients
of the g and g terms in the normal metal is just A,„/1,
For small thicknesses g (x) is never much less than unity,
and so 8 g/Bx is approximately g„(1+1,„/A,, ). (Here x
is the physical distance A,,~.) Thus we would expect the

initial slope of 1nh«versus a„/g„ to be increased in mag-

nitude by (1+A,„/A,, )' . For large thicknesses, on the
other hand, g(x) is small over most of the region of the

normal metal. One might expect in this limit that the
nonlinear effect would be revealed by changing the effec-

tive thickness 2a„by some constant amount, rather than

by changing the effective normal-metal coherence length
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Equation (15) also provides a qualitative explanation
for the temperature dependence of H, i. The primary ef-
fect of changing the temperature is to change g„, since the
other parameters are less temperature dependent (or less
important for H, i). For samples with a„«g„over the
temperature range studied, h, i would be nearly constant
indicating a temperature dependence of H, i similar to
that of H, (namely, cc 1 t ) a—s is seen experimentally.
For a„&g„, h, i would have an exponential temperature
dependence -exp( ya„—2mksT/AUF) so that H, i would
rise rapidly at low temperature. This is in accord with the
observed change in the curvature of H, i( T) from negative
to positive as a„ is changed from the thin limit to the
thick limit.
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FIG. 5. Reduced critical field versus normalized normal-

metal thickness. The 0 and 0 are for data on Pb-Cd eutectic
composites at two different temperatures. The solid lines are
calculated results using the material parameters described in the
text which should closely correspond to those of Pb and Cd.

g'„(i.e., lnh, i would be reduced, but have the same slope
on Fig. 5 as in the a„=O limit). Our computed results are
not sufficiently accurate at large a„ to confirm this expec-
tation. In fact, our approximation of calculating g(x)
with x.„=O is not accurate when both a„and A,„/A,, are
larger than shown in Fig. 5. We find that eventually h, i
becomes negative —a physical impossibility which indi-
cates that our zero-field order parameter is not sufficient-
ly accurate.

We have made a comparison of our calculations with
data on a Pd-Cd eutectic composite, since the critical
field in that system has been extensively studied and has
parameters which are within the range of our calculations.
In addition, that system is formed directly from the melt
so it would not be expected to have an oxide barrier or
other forms of contamination between layers as can some-
times occur with vapor-deposited films. To make a com-
parison with the calculations, the experimental data on
several annealed samples were interpolated to arrive at the
critical field at two fixed temperatures. The critical field
was normalized using the known critical field for pure Pb.
The normal-metal thickness was normalized using the
value $„=9600/T A (Ref. 9) calculated from Eq. (12).

The data for the higher temperature have a nearly ex-
ponential behavior with slightly less than the calculated
slope, while the data for the lower temperature are decid-
edly not exponential. This is similar to the dependence of
the calculated curves in the same figure, with the change
in behavior due to the difference in relative magnitudes of
A,, and A,~ as explained above. The calculation assumes

$, =830 A (Ref. 10) and a;=0.5 for Pb, and ~„=0.2
(Ref. 11) with g„as given previously for Cd. With no ad-
justable parameters the calculation shows very reasonable
agreement with the data. No attempt was made to adjust
the material parameters to find a better fit to the data.
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APPENDIX

The magnetic field is computed by iterating to conver-
gence the finite-difference equation corresponding to Eq.
(13). The method of successive over-relaxation is used,
which reduces the number of iterations required by up to
a factor of 4. To ensure convergence in all cases, we find
it necessary to normalize the magnetic field to a single
flux quantum following each iteration.

Square meshes are used in order to accurately locate the
NS boundary, and the first quadrant of the x-y plane
0&x,y & ao is mapped into the unit square 0&u, v &1,
where

—x/aA,
Q =1—8

—y/aA,
v =1—8

(Al)

(A2)

The mesh points are distributed uniformly over the
square, and magnetic field differences from point to point
are sinall everywhere. We compute h, i for the sequence
of N&&N meshes for which N =7, 19, and 55. The se-
quence corresponds to successive reductions by 3 in the
interval b,u =b,u (since points are located at the ends).
The factor of 3 is chosen so that if we locate the NS boun-
dary midway between neighboring points in the 7)&7
mesh, then it still falls between neighboring points in the
finer meshes. Typically, the computed h, i values are very
nearly linear in X ', and may safely be extrapolated to

'=0. Examples are shown in Fig. 6. The extrapolat-
ed critical fields are essentially independent of the param-
eter a over a comfortable range, provided that the width
2a„of the normal layer is not too large. Typically the ex-
trapolation from N =55 to oo changes h, ~ by a few per-
cent or less. As the thickness is increased, the most accu-
rate results are obtained with larger a values, but the
range of usable values decreases, and the extrapolation be-
comes less certain. Tolerating at most a 10%%uo change in
h, i limits us to thicknesses of about 15K,, or less. To con-
sider thicker normal layers we would require a finer mesh.

For purposes of numerical evaluation, we must careful-
ly define the magnetic field at the origin since Eq. (13) has
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in its denominator the function f (r), which vanishes at
r~0. It is more convenient then to consider Eq. (3)
directly, which appears in terms of our dimensionless
variables [introduced with Eq. (13)]as

V'X h(~)=g'(~)f'(~) (A3)

0.55—

0.5I—

where h=V)&a and V is dimensionless. As ~—+0, we

have a —+0 and f(~)~~A,, /g„, and the resulting limiting
behavior of h is

0.49—
lim [h(~)—h (0)]= — [g (0)A,,~/g„]~~0 2)Cs

(A4)

0.45
0

I

O.O I

I I I I
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This is used to infer h(0, 0) from neighboring points. A
similar precaution must be taken when evaluating the free
energy density in Eq. (14) for h„. We evaluate the neces-
sary term by again using (A3):

2

FIG. 6. Calculated reduced critical field versus the reciprocal
of the number of points used on the side of the square mesh in

the numerical calculation. The calculation for a =8 is less accu-
rate due to the reduced number of points within the normal met-
al.

g(~)f(~)
g (0)&, g (0)g,

(AS)

where
~

V)&h
~

is written as (Bh/B~) +(Bh/Bp) in Eq.
(14b).
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