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The energy decay function for an excited donor molecule surrounded by acceptors in diffusional
motion is computed for a finite-size donor and arbitrary characteristics of the boundary. We evalu-
ate the donor-acceptor—pair diffusion function via a Green-function approach for the Feynman-
Kac equation in Laplace space. Quick and stable numerical solutions for the acceptor-averaged pair
diffusion function, and thereby the energy decay functions, can be obtained, thus allowing model
parametrization from time-resolved fluorescence measurements.

I. INTRODUCTION

Energy transfer between donors and acceptors (be they
mobile or not) has been studied intensely in recent years,
though more from the theoretical! ~!# than the experimen-
tal point of view.*#!~17 The elementary processes leading
to the deactivation of an electronically excited molecule
(donor) via radiationless energy transfer to an acceptor
molecule are, in principle, well known by now.'* Mea-
surements of delayed fluorescence should bear out the in-
terplay between donor-acceptor motion and energy-
transfer processes, but have been relatively scarce thus far
as they require very precise knowledge of the functional
form of the donor’s decay function. The challenge for the
theory therefore is to compute donor decay laws in terms
of model parameters (transfer rates, diffusion coefficients,
etc.) with such accuracy that they can be matched to very
precise time-resolved fluorescence measurements, e.g., by
time-correlated photon counting.

In previous theoretical work decay functions could only
be calculated for point molecules and, to our knowledge,
corrections for finite extension of the donors and accep-
tors have not been taken into account within the frame-
work of a rigorous treatment. Owing to the power laws
for energy transfer, however, molecular size effects must
influence the decay function significantly. The same is
true for dimensionality, not only because low-dimensional
systems will play a role in experimentation, but because
lower, and possibly fractional, dimensions may be a way
to describe nonisotropic interactions. These effects cannot
be dealt with by seeking analytical solutions. We found
that a Green-function approach was possible which al-
lowed us to compute numerical solutions over the entire
range of interest of the transport and interaction parame-
ters (dimension, acceptor density, diffusion constant,
donor-acceptor interaction, cutoff parameter, and boun-
dary characteristics). By employing the Green functions
for the spherically symmetric Laplace-type diffusion
operator we could transform the transport equation of the
entire problem, the Feynman-Kac equation, into an in-
tegral equation. This integral equation deserves some in-
terest in its own right. It was treated in a simplified case
before!® and derived in a different physical context (ener-
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gy migration by an average 7-matrix approximation in
three dimensions) in Ref. 9. This author approached a
special case by numerical methods similar to ours.

We will first (Sec. II) describe our physical model
which allows to reduce the energy decay function via an
integral formula to a donor-acceptor—pair decay function
fulfilling a diffusion equation with a loss term (the
Feynman-Kac equation). The latter can be converted by a
complete Laplace transformation to an integral equation
with symmetrical kernel, allowing us to incorporate the
boundary of the donor in general form (Sec. III). The
reflecting-boundary case is discussed explicitly (Sec. IV).
For both absorbing- and reflecting-boundary conditions
we can then evaluate the time-dependent transfer rate in
Laplace space (Sec. V); explicit expressions can be given
for long times (Sec. VI) and the ergodic limit (Sec. VII);
(cf. Refs. 20 and 21). The numerical treatment of the
Feynman-Kac equation requires the introduction of di-
mensionless quantities (Sec. VIII). The concrete numeri-
cal algorithm is developed in Sec. IX, based on a Laguerre
integration scheme. The results are discussed in Sec. X
and an assessment of the numerical accuracy and compu-
tational stability is made. Mathematical details and use-
ful listings are found in Appendices A and B.

II. ENERGY TRANSFER TO DIFFUSING
ACCEPTORS

We want to find the numerical solution for a general
model of direct, incoherent energy transfer between mole-
cules in viscous fluids. Our model assumptions are as fol-
lows.

Electronically excited donors present in a viscous fluid
transfer their excitation energy radiationlessly to accep-
tors (examples: delayed fluorescence!” and transfer of the
excitation from the antenna pigment to the reaction center
in photosynthesis and similar processes?>23). The concen-
tration of donors should be small compared to that of ac-
ceptors to allow for neglect of donor-donor interactions.
Thus one donor can be studied in a viscous fluid sur-
rounded by randomly distributed acceptors. In this case
the internal conversion determining the lifetime of the ex-
citation becomes independent of the energy-transfer pro-
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cesses such that the time development of donor excitation
splits into a trivial intramolecular part and the more com-
plicated energy-transfer part.

The stochastic properties of the system are character-
ized in the usual way as follows.

A liquid molecule has a probability p to be an acceptor
and probability 1— p for being inert (i.e., a nonparticipant
in energy-transfer processes). The incoherent isotropic en-
ergy transfer can then be described by a transfer rate
w(R), the probability per unit of time that a donor
transfers its energy to an acceptor over a distance R. Two
distinctive forms of w are in use,

w(R)=aR ~* (1)
for multipole interactions, and
w(R)=aexp(—yR) ()

for exchange interactions. In both cases, a is the strength
of the interaction.

If d is the nearest-neighbor distance and 7 the corre-
sponding average transfer time, then a=d*/7 in the mul-
tipole and a=e??/7 in the exchange case. We have s =6
for dipole-dipole, s =8 for dipole-quadrupole, and s =10
for quadrupole-quadrupole interactions. Characteristic
values of yd range from 3 to 10. As we use numerical
methods, the analytic form of w(R) is not of a major con-
cern to us.

We further assume Brownian motion for the donor and
acceptor molecules. The direct, incoherent, and isotropic
energy transfer from donor to the acceptors in Brownian
movement is then described by the probability ®(¢) for the
donor excited at time ¢ =0 to be still excited at time z > 0.
Under the above assumptions the following expression
was derived in Ref. 20 for the macroscopic energy decay
function ®:

<I>(t)=exp[—AVAppfbw[l—E(t,R)]RA_ldR LB

This expression for @ is valid at low concentrations and
without back transfer.’® A=1,2,3 is the dimensionality of
the problem. Two- and one-dimensional systems are of
interest as orientational dependence [represented by
w(l_i)] in higher dimensions can often be simulated in
terms of orientational independence in lower dimensions.
Vy=7""2/T'(A/2+1) is the volume of the A-dimensional
unit sphere, p is the number density, and p is the probabil-
ity of a molecule to be an acceptor. Equation (3) reduces
the determination of @ to that of the energy decay func-
tion E(t,R) of a donor-acceptor pair separated by R at
t =0. The model for E (t,R) is defined by the combined

molecular diffusion and transfer rate equations
-%E(t,R):[Dﬁ 2 —w(R)]E(R) with E(O,R)=1.

4)

In the case of reflecting boundary conditions this equation
describes a model where E(t,R) is an average over all

Brownian motion pathways t—R(1), namely

E(t,R)=<exp B fo'w(R(t'»dt'D

(R} *
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The equivalence of Eq. (4) and this equation is the state-
ment of the Feynman-Kac theorem.?* We therefore call
Eq. (4) the Feynman-Kac equation. In the following we
will be concerned with the computational aspects of Eq.
(4). It will be shown that transformation into Laplace
space is the method of choice. With respect to the time ¢,
the Laplace transform of (4) yields an integral equation,
the kernel of which can be given explicitly. The lower
limit b of the integral in (3) is a cutoff parameter of the
order nearest-neighbor distance d defining a lower boun-
dary. Thus the Laplace transform of (4) will also depend
on this lower boundary condition, allowing for numerical
integration of the Feynman-Kac differential equation in
Laplace space simultaneously with (3) under arbitrary, but
fixed, boundary conditions.

III. THE FEYNMAN-KAC EQUATION
IN INTEGRAL EQUATION FORM

Applying the Laplace transform .Z; in the time vari-
able ¢ to the Feynman-Kac equation (4), we obtain

DV %E(S,R)—w(R)E(s,R):sE(s,R)——1 ) (5)

The initial condition E (0,R)=1 is incorporated into this
equation.

For the spherically symmetric function E (s,7) we only
need the radial part of the Laplace operator. Defining, as
is usually done,

k=Vs/D (6)
and
z=«kR, E(s,R)=z"(z), AEA—;—% , (7

we rewrite (5) as

d
t dz viz)

)\,2
— |z4+—
z

;9
dz

Zl+A

N

_wl(z/k)

zv(z)| . (8)

The self-adjoint differential operator on the left-hand side
(Ihs) has the symmetric bounded Green function (see Ap-
pendix A)

GA(Z,ZI)=I|)~|(Z<)KA(Z>)—{—AK)L(Z)K;»(Z’) 5 (9)

where z_ and z, are the minimum and maximum of z
and z’, respectively. We will subsequently drop the index
A in most cases; G; and G3 will turn out to be equal.
The free parameter 4 has to be fitted to the boundary
conditions at b. The important properties of this Green
function are listed in Appendix A.

By the definition of G, Eq. (8) corresponds to the in-
tegral equation®

A
viz)= - %[I,‘(z,, )— 4Ky 4 1(25)]2d MK (2)

L [T w6 e (10)
s v
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where Eq. (A3) has been used, and
A=—5 for A=1,
u=
14A for A>2.
Again, we have
zp=z(R =b)=«b . (11)

As to the Green function D ~'(RR')~*G (kR,kR'), which
occurs in the corresponding integral equation for E (s,R),
compare Eq. (A7) and find (A4).

The integral equation for v and E depends on the boun-
dary conditions implicitly via the parameter A. A “trick”
allows us to eliminate 4 and construct integral equations
with explicit boundary conditions: The quantity

LK
y(z)Ev(z)—E—+ M)

s KA(Zb) T—v(zb)

fulfills the differential equation (8) without its first term
on the right-hand side (rhs), and with the homogeneous
boundary condition

y(zp)=0.

Therefore the y(z) equals the last term on the rhs of (10),
yielding

(z)= z* _IS?‘(L) i (z4)
viE= g T Ky(z) | s 0%
1 fmw(z’/x)v(z’)G(z,z’)z’dz' , (12)
S Y%

where 4 from Eq. (9) is to be determined such that G ful-
fills the same homogeneous boundary condition as y,

A=—IM|(Zb)/KA(Zb)- (13)

A is the same for dimensions A=1 and 3. According to
(A5), by this choice of 4, i.e., A =Agy, G characterizes a
diffusion with an absorbing boundary in b: G fulfills the
Smoluchowski boundary condition. We therefore denote
the Green function in the case 4 =Ag,, as Gj s,. Note
that also G =G, s,. v(z,) vanishes in Eq. (12) in the
“Smoluchowski case” E(t,b)=0, and we therefore use Eq.
(12) accordingly.

In previous literature the size of the donor was often
neglected (i.e., b =0). We therefore derive the behavior of
the general Eq. (12) for z,—0. In the case A>2 the
asymptotic behavior of z; K, (z,) in the limit z,—0
makes Eq. (12), for b =0, independent of boundary condi-
tions altogether: The term in Eq. (12) containing z, van-
ishes and 4 =0 in G,, Eq. (9). This behavior can be ra-
tionalized by the notion that for A > 1 the probability of a
point acceptor molecule to hit a point boundary is zero.

In Ref. 26 it was demonstrated that for the evaluation of
®(?) for long times b could be taken to zero. However, in
the case A=1, the assumption b =0 turns (12) into an
equation which depends essentially on E (s,0).

IV. REFLECTING BOUNDARY CONDITION

We now turn to the case where the derivative of E is
given at the boundary. We multiply (12) by z~* [cf. (7)]
and differentiate it with respect to z, then substitute the
result at the boundary z =z, back into Eq. (12). This pro-
cedure yields an integral equation for v which contains ex-
plicitly the derivative of E according to (7):

A ZZ' Ky(z) 4

_ 27 A<l a4  _a
v(z)= 5 K1+A(zb)dz(z v(z)) imsy

1 ® ’ ’ ’ ’ ’
7 fzb w(z' /KW (2" )Gy, re(2,2')2'dZ" . (14)

Ga,re is defined by (All) with 4 =4,.. It is the Green
function for diffusion of acceptors with a reflecting boun-
dary in b,

GA,re=GA fOI' A ZArSZIu(Zb)/K1+k(Zb) N (15)

where p is defined as in (10).
Moroever, for reflecting boundary conditions,
d

—E(t,R =0,

4R (tLR) | R =p
and the second term in Eq. (14) vanishes. Evidently, Eq.
(12) with absorbing boundary and Eq. (14) with reflecting
boundary are the same in the case b =0.

V. THE ENERGY DECAY LAW ¢
IN LAPLACE SPACE

Equations for the time-dependent rate k(¢) of the ener-
gy decay can be worked out. k(z) can be measured direct-
ly (e.g., Ref. 12). Itis

o) d

k(t)E——m=E[lnd>(t)] . (16)
In Laplace space we define
k(s)=ZL(k(t)=s L (—Ind(2)), a7

and the derivative in Eq. (16) turns into a multiplication
by s. It is then sufficient to determine the rate k(s) nu-
merically. From Eq. (3), by Eq. (7), we obtain

k(s)=AVa ppx~A4s *(z*/s —v(2))z Pz , (18)
P «b

which we now evaluate in the Smoluchowski and the
reflecting-boundary case.

A. Smoluchowski case

If v is given for z, we can use Egs. (12) and (A6), arriving at

— —A
k(S)——AVAppK KA(Kb)

(kb A~1s L (1—E(6,b)+ [~ w(z/kv(2)

27 K, (z)

— |z,
(kb)~ K, (kb)

1— (19)
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We will show later, by numerical computations, that for 5540 in the Smoluchowski case [ E (¢,b)=0], the interaction w
does not play a role. k is simply determined by the probability at which one of the diffusing acceptors reaches the boun-
dary to the donor. For w=0, Eq. (19) becomes

ky=o(s)=ky=0osm(s)s.L(1—E(2,b)) . (20)
The index Sm stands for E (z,b)=0. Explicitly, we obtain, for A=1,2,3 (Appendix A),

2ppV'D /V's for A=1,
ky=0,sm(s)= {2wbppK (k) /[kK((kb)] for A=2, (21)

4mb2pp[V'D /V's +D /(bs)] for A=3.

For one and three dimensions one can readily give the Laplace inverse for this purely diffusive case. In the A=2 case
the inverse of (21) is now known analytically.”’

B. Reflecting boundary

We assume now that at the boundary z, the derivative of v is given. With (14) and (A 10) we obtain for the rate k (s)

k(s)=AV, ppr—2 | (kbA—lk="s.Z, | = E(4,R) + [ C w2z +rdz | . (22)
P dR b

R=b

Equations (19) and (22) for the Laplace-transformed rates are completely equivalent. Nevertheless, there is an advantage
in using these more specialized forms in either case.
In the purely diffusive case (w=0), Eq. (22) yields

Kool =AVa ppbA‘lDEdEE(t,R) (23)

R=b

Consequently, because of (16), the reflecting boundary

d
—E(R =
dRE( ) s 0

is equivalent to the condition ®,,_,(#)=1. Other boundary conditions will, even when w =0, induce decay of the donor’s
excitation energy, and thus give rise to an w-independent contribution to the decay rate.

VI. LONG-TIME RATES

Rate expressions for long times are particularly useful for the experimental determination of the parameters occurring
in our model. We first remark that in the case A > 2, k(¢) has a time-independent limit for #— o, denoted by k. Con-
siderations regarding the existence of long-time rates are given in Appendix B. The exact and numerical computation of
k will be discussed subsequently.

Let A>2,i.e, A>0, and then

gsm(R,R")= lin})[(RR’)_}‘GA’Sm(KR,KR’)]

=(A—2)"YRR")"A-2(RA2_p2-2) . (24)
gsm is the Green function of the self-adjoint differential operator
d |pa-14_
dR dR |’

The limiting processes in (24) were carried out by using formulas (9.6.7) and (9.6.9) of Ref. 28.
Equation (12) yields for u (R), given by

u (R):—lirrz)sE(s,R):D lin%)Kz(KR )~*v(kR) , (25)
5— K—>
the integral equation
u(R)=1—(R/b)" 4~ 2[1—u(5)]—D~" [" w(R)u(R )gm(R,RR'*"'dR" . (26)

Remembering that gg,, is the Green function of the above-mentioned differential operator, we are lead to the differential
equation
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[DV%—w(R)]u(R)zo. 27)

Looking back to Eq. (4) we recognize that u (R) solving (27) is the stationary solution Ey(R) of the Feynman-Kac dif-
ferential equation,

u=E4R) . (28)

By definition (25), it is evident that u must fulfill the same boundary conditions as E. For a given u (b), Eq. (26) allows
for the numerical computation of u (R).

We now rewrite the integral Eq. (26) for the case where the derivative of u is given at the boundary b. Differentiation
of (26) at R =b and substitution back into (26) gives us an integral equation for u with its explicit derivative at the boun-
dary b,

“4_uwr)

—A-2__ p-1 rA—1gp"
1R (R /b) [, w(R ) (R)g.o(R,R")R"A~1dR (29)

u(R)=1—Z"‘_'—2“

R=b
where the Green function g, with reflecting boundary is given by

, 1 —(a-2)
R,R')=—""—FR7
8rel =1 (30)
The long-time rate k can be calculated by a theorem by Tauber (see, e.g., Ref. 19).
We can start from
k= lim k()= llmsk(s) (31)

t— o0
provided the limits do exist. Equations (19) and (22), respectively, allow for the — oo limit by introducing the station-
ary function u,®

k=(A—2)AV,ppb®~2D(1—u(b))+AVapp f: w(R)u (R)RA-2_bpA~2)R dR

= AV, ppb2~ IDd‘; (R) +AVAppf (R)u(R)R*~'dR . (32)

The limits of (19) are obtained by using Eq. (9.6.9) of Ref. 28. The two equations (32) are written in sequence to demon-
strate their equivalence.
The differential equation (27) for u substituted into (32) leads to

. d
= D lim RA1— .
k=AV,pp Jim R (R) (33)

This is a well-known equation by now.>°~32 In Ref. 32, for example, Egs. (27) and (33) were effectively used in the
evaluation of long-time rates. Ghosh et al.’ compared exact long-time rates with numerical solutions of the integral
equation (26) and found excellent agreement in the b =0 case. In Appendix B, a rationale for the derivation of Eq. (33)
in time space can be found.

VII. ERGODIC LIMIT

The case where molecular motion is fast on the timescale of energy transfer merits special consideration. In Refs. 20
and 21 the time-independent rate

k=AVapp [,” w(RRA~1dR (34)

was derived. We will show in this section how this result can be derived from our more general theory and which correc-
tion terms depending on time and diffusion coefficients must be added.
Aiming for a suitable asymptotic expansion we will iterate our integral equations for the decay rates. We substitute
q- (14) for the reflecting boundary into (22) and replace v(z’) [definition (7)] in the first approximation by the integral
free part of Eq. (14),

v(z)=z'"/s . (35)
Applying the transformation z =kR, z'=kR’ [according to (7)] in the reflecting-boundary case, we arrive at
k(s)~AVapp [s [T wRRAAR —s 1 [T dR [ dR'w(R)w(R)[D~(RR) ™G s re(kR,kR)(RR'A~!
(36)

A similar procedure is possible in the absorbing case, leading to a more lengthy expression for k (s).
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The Green functions D‘I(RR’)‘}‘GA,re in the reflecting-boundary case, and, respectively, D~ (RR’)~*G Asm in the
absorbing-boundary case, can be Laplace-inverted by Egs. (A19), and, respectively, (A17), (A20), and (A18). For a re-
flecting boundary, Eq. (36) yields the k (¢) expression

k(t):AVApp{fbwUJ(R)RA‘“IdR_ fbwdRRA_l fbwdR’R’A_ILU(R)LU(R’) fotdtrzs-—l[D—I(RRI)—AGA’re(KR,KR:) .

(37

Let us now look into the functional form of the asymptotic behavior of k(¢). We can do the Laplace inversion expli-
citly for b =0 and will therefore confine ourselves to this case in the subsequent discussion. As shown in Sec. III, b5 =0
implies, for A>2, that the absorbing- and reflecting-boundary conditions are all the same. Moreover, the numerical
solutions presented in Sec. X suggest that the role of the cutoff parameter b is diminished with increasing times as the
®(¢) curves for different b approach each other asymptotically (cf. Ref. 26).

The time-dependent part of (37) takes the following form for b =0 [cf. arguments to Eq. (A23)]:

[l dt' L7 (D RR) G (kR,KR"))

D D2
—(A—DVs_ym224D)~ [T A/z_x,i%}—J—‘iR—R'V*AsinA—Zede, (38)

where Eq. (A23) was incorporated and 6 denotes the angle between Rand R".
In particular, for A=3 one can use, according to Ref. 28, the asymptotic relationship

1 |[R—R'|? R—R’ 2 |R-R’
r|=, =V/merf ~VT|1l——= , 39)
2’7 aD: T\ VaDr T T VE Vb (
and by integration, again in the #— oo limit,
1 1 1

P -1 -1 n—A ’
R,kR'))= -
[,at' £ (D (RR") G re(kR,KR")) DR. "D Vb

=D"![g.(R,R")—(wDt)~1/?] (40)

[for the definition of g, see Eq. (30)]. Finally, k (¢) takes the form

k(W ~dmpp | [)"wRRYMR —— [ [ " w(RwR) R;’i'z dR dR'+D "D~ [ [ " w(RIRR |
z47TppDI3(1+I3/\/m) ast— oo , (41)
| :
with S=r7s . (44)
I;=D""! f bw w(R)R%dR . (42)  This defines the rest of the dimensionless quantities
The t-independent part of (41) (first term on the rhs) is B=b/d (cutoff parameter) ,

just the ergodic rate of Eq. (34). Comparing it with the ~ 5 aspp
exact form of k(o) from Ref. 32, we realize that the D=Dr/d" (diffusion constant), (45)
1/D expansion given here is indeed asymptotic. The ex- R=(S /D) ?=kd
act limit of k(t), however, is not analytic in D. - )

For A=2 we would like to remark that the above pro- Note that z, =«b =K.
cedure, valid for A=3, would not lead to a sensible expan- Furthermore, we define the following functions:
sion in this case.

D(R)=mw(R+P)d)=7w(R +b) ,

VIII. DIMENSIONLESS QUANTITIES -~
G(z,2')=G(BK+2z,Bk+2")=G (2 + 2,2, +2') ,

To make the equations numerically tractable proper di-

N -1
mensionless quantities have to be defined. Obviously, the o(z)=7""0(BR+2)=7""v(zs+2) , (46)
natural unit of distance is the nearest-neighbor distance d, S(T)=d(+T)=D(1) ,
and that of time is the transfer rate r=w ~!(d) to the B
nearest neighbor, k(T=7k(tT)=1k(1),

R=R/d, T=t/r. (43) In particular, we have

For the Laplace transform we use k(S)=k(S/T)=k(s) .
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Then we define the quantity
Q=V,pd®. (47)

p is just the density of atoms in a solid of corresponding
lattice constant,?® a linear chain for A=1, a square lattice
for A=2, and a fcc lattice for A=3.

The long-time rates (for A>2) can be expressed in
terms of the natural unit k given by
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At last we define the function

#(R)=u((R+B)d)=u(R +b) . (49)

The fundamental equations (12) and (14) can then be
converted into dimensionless equations for v(z), and then
the Laplace-transformed rates k(S) can be expressed by
the functions ¥(z) via Eqgs. (19) and (22).

ko=7—'AQp =AV, ppd®/T . (48) In the Smoluchowski case, one obtains
J

k(S)=AQpK —4 %%?(Bm“—w [ atzm |1-L K(;';; jﬁ:g ;TZ) (BR+2)"+ dz (50)
where 7 fulfills the integral equation

o= EEE2_ L (;;f;;zﬁ)m —S1 [7 B R5(2 )G sm(2,2 N BR+2)d (51
In Appendix A, simple expressions for the Bessel functions K are given for odd dimensions.

On the other hand, we find, with reflecting-boundary conditions,

k(S)=a0pr 2 0°° W(z /R)T(2)(BR+2)' *dz , (52)
and the integral equation for ¥ reads

5(z)=S~YBR+2z)—S~! fow W(z' /R)0(2")G p ro(2,2' N BR+2')dz’" . (53)

Equations (50) and (51), and, respectively, (52) and (53), will be the basis for our numerical solution of the energy-

transfer problem in the next section.

In the case A > 2, we obtain, from (32) and (33), for the long-time rate in units of kg,
k/ko=(A—2)B4"2D(1—a(O)+ [~ BRTR[R +BYA~2—B-2(R +B)dR

— g 15-%_7(R)
4R

=D lim
R—o0

b

(R+85-La(®)
dR

where #, according to (26) and (30), fulfills a time-
independent integral equation.

Equation (54) allows the numerical computation of
k /kqy for arbitrary interactions w and boundary condi-
tions. In addition, by virtue of (27), # satisfies the dif-
ferential equation
d? A—1 d
dR? R+B dR
We note that Eq. (55) can be solved analytically by means
of modified Bessel functions for multipole interactions,
and in the A=3 case as well for exchange interactions (see
Ref. 32). In the next section we will therefore concentrate
on the numerical treatment of the time-dependent prob-
lem.

#(R)—w(R)a(R)=0. (55)

IX. NUMERICAL INTEGRATION
OF THE FEYNMAN-KAC EQUATION

In this section we give a brief description of the numer-
ical procedures used.

+ [T S ROTRNR +BA~1dR
0

(54)

A. Laguerre integration

Laguerre integration is suitable for the evaluation of the
definite integrals between the limits O and oo, with in-
tegrands giving large contributions near the origin [cf.
Ref. 28, Eq. (25.4.45)].

Let x; be the jth zero of the Laguerre polynomial
L,(x), and let g; be the weight factors of the Laguerre in-
tegration such that

foeof(x)dXz Zlgjf(xj) . (56)
j=
The x; and g; can be found tabulated in Table (25.9) of
Ref. 28.

B. Smoluchowski case

Discretization according to (56) turns the integral equa-
tion (51) in the absorbing-boundary case into
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KA(B’I\("+X)

ST (BR3P — 2T
Y~ B = =k, (B

_E’l g (x; /K0 (x;)G s (%,%; ) BRA+x;) ,

(57

which under substitution of x =x,x,, ... shapes up to a
system of linear equations of the general form

Av=b . (58)
The matrix A4 is given by

A ;=8 "1g;@0x; /RN pip;)) "G smxix T 815
and the vectors v and b are defined as

v =Sy M(x;)

l—e ™ for A=1,
b= {1—Ko(y;)/Ko(BK) for A=2,

1—BRe " /y; for A=3,

with the abbreviation

yi=BR+x; .

A is constructed so that the diagonal elements are of the
order 1 and nondiagonal elements tend to be much small-
er.
_ With v calculated, we can turn to evaluating the rate
k(S) by Laguerre-integrating Eq. (50). It takes the form

~ n
‘;‘Sk(S)zAQK_A Sbo+ Egiiﬁ(x,-/fc')v,'y,-"_lb,- ,

i=1
(59)
where
1 for A=1.
bo= {BKK (BK)/Ko(BK) for A=2,
Br(BK+1) for A=3.
Except for by, all of the parameters occurring in (59) have
been used in (58) already. We found that the algorithm
for the computation of k based on (58) and (59) is quite

satisfactory with respect to computer time and core re-
quirements.

C. Reflecting-boundary conditions

As in the preceding subsection we first have to evaluate
a numerical representation of 7(z) via a system of linear
equations. Equation (53) takes, by Laguerre integration,
the form

dv=1, (60)
with
A;j ES‘1g,-ﬁ)“(xjfﬁ)(y,~yj)"*gA,,e(xi,xj)yf_l+8,-,j ,

Vi ESyi_ki)v(xi) s

and

yi=PKr+x; .

Then, Eq. (52) has to be written in Laguerre-integration
fashion,

~ n
pISE(S)~AQR A S gw(x; /Ryt . (61)
i=1
The strict analogy between Eqs. (58), with (59) on one
hand, and (60), with (61) on the other, allows for consider-
able computational and programming economy.

X. NUMERICAL RESULTS AND CONCLUSIONS

We now discuss the numerical evaluation of Egs. (58)
and (60) in the cases of special interest.

A. Numerical procedures and stability

The systems of linear equations (58) and (60) for the
Smoluchowski and reflecting cases, respectively,
represented their original integral equations quite well, al-
though such linear systems are said to be sometimes ill
conditioned.3* Our solutions yielded rather accurate re-
sults for a relatively small number of linear equations;
with 16 equations [# =16 in (56) and the simple Gauss-
Jordan procedure] we obtained “drawing-board” pre-
cision, which is partly due to the favorable choice of ma-
trix elements A4;;. Figure 1 demonstrates how the choice
of 6, 8, and 16 discrete points in the Laguerre integration
influences the precision of the decay functions & in the
case of reflecting-boundary conditions. The numerical ac-
curacy could easily be increased if necessary. It is thus
conceivable to employ more equations of the form (57)
and, respectively, (60), than the number of x values to
compute the rates. The ensuing overdetermined system of
equations could be solved by the method of least squares.

For the Laplace inversion (confined in our problem to
the real axis in Laplace space) the short algorithm given
by Stehfest®* was sufficient. In general, the Laplace inver-

30 40 50

i

FIG. 1. Demonstration of numerical stability in the
reflecting-boundary case for dimension A=13; numerical evalua-
tion of the decay function ®(¢), Egs. (60) and (61) for dipole-
dipole interactions between the donor and the acceptors. We
chose the diffusion constant D =0.2, the probability of a mole-
cule to be an acceptor p =0.05, and the cutoff parameter S=1.
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sion of a function given only on the real axis is, numeri-
cally speaking, an ill-posed problem. However, the strict
monotonous and continuous properties of k(t) work in
our favor as the Laplace inversion does not need to bring
out any rough features of the original function.

B. Smoluchowski case with cutoff B£0

Figure 2 shows @ for an exchange interaction w and
A=1,2,3. We chose a small acceptor density pp, and D
characterizes a moderately viscous fluid. Plots for other
exchange [Eq. (2)] and multipole [Eq. (1)] interactions in-
dicate that for B=40 in all three dimensions the energy de-
cay is nearly independent of any reasonable choice for the
interaction w. This is a consequence of the absorbing bar-
rier, which simulates the assumption that the donor loses
its energy to an acceptor as soon as their distance falls
below b. Thus ®(z) is just 1 minus the probability for an
acceptor to reach the boundary. This @ is given exactly
by (21). The independence of w allows to exploit all the
classical results for heat transfer with respect to the pure
diffusion equation (e.g., long-time expansions®”*%). As
can be expected, in one dimension ¢ does not even depend
on the cutoff S.

In the two- and three-dimensional cases, ® does depend
on . As shown in Fig. 3, a smaller 3 implies a slowdown
in energy transfer as the probability of the boundary being
hit by an acceptor is decreased (in the reflecting-boundary
case, we will find the opposite behavior of ®).

The dimension dependence of energy transfer (Fig. 2) is
largely determined by the number of reactive trajectories.
The larger the A, the faster the decay of ®(z).

The variation with D shows that D enhances the
energy-decay process as more acceptors hit the boundary.

C. Reflecting-boundary conditions

Reflecting-boundary conditions characterize the other
limiting case where w(R) is the only interaction causing
energy transfer. The donor boundary just reflects the ac-

C—

—_

30 40 50

i
FIG. 2. Dimension dependence A=1,2,3 of the decay func-
tion ®(¢) in the absorbing-boundary case for exchange interac-
tions between the donor and the acceptors, Eq. (2), with yd =3.
We chose the diffusion constant, D =0.2, the probability of a
molecule to be an acceptor p =0.05, and the cutoff parameter

p=1.
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FIG. 3. Decay function ®(¢) in dependence of the cutoff pa-
rameters 3=0.5, 1.0, and 1.5, in the absorbing-boundary case
for dipole-dipole interactions between the donor and the accep-
tors. We chose the dimension A=3, the diffusion constant
D=0.2, and the probability of a molecule to be an acceptor
p =0.01.

ceptor and this process has no further consequences. In
Fig. 4, a comparison is made for decay laws due to dif-
ferent forms of the interaction. Generally speaking, the
stronger the interaction the faster the energy decay. In-
teractions of a given type are more efficient if they are of
larger range, as borne out in Fig. 4.

The reflecting-boundary condition is less effective for
energy decay than the absorbing-boundary one. This is
understandable in the light of remarks made (see Sec.
X B). The variation of ® with the diffusion constant (Fig.
5) is less obvious. The decay is enhanced by a larger dif-
fusion constant, and one may wonder how faster diffusion
can “shove” more acceptors within energy-transfer range

i

FIG. 4. Decay function ®(¢) in the reflecting-boundary case
for the most important multipolar interactions w, Eq. (1):
dipole-dipole interactions, s =6; dipole-quadrupole interactions,
s =8; quadrupole-quadrupole interactions, s =10. We chose
the dimension A=3, the diffusion constant D=0.2. the proba-
bility of a molecule to be an acceptor p =0.05, and the cutoff
parameter S=1.
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FIG. 5. Diffusion dependence D=0.01, 0.1, and 1.0, in the
reflecting-boundary case for dipole-dipole interactions between
the donor and the acceptors. We chose the dimension A=3, the
probability of a molecule to be an acceptor p =0.05, and the
cutoff parameter S=1.

of the donor. The reason, of course, lies in the reflection
suffered by the acceptor molecules which hit the boun-
dary, and are thus close to the donor on the coming-and-
going branch of their trajectory, while the number of re-
flections grows with D. The dependence of ® on the
dimensionality is similar as in the absorbing case. In
higher dimensions, energy transfer is increased.

The dependence on the cutoff, however, is just the op-
posite of that in the Smoluchowski case. A decrease of
enhances the energy transfer (Fig. 6). This is due to the
strong falloff in w(R) with R so that acceptors at shorter
distances are most effective.

Referring to the discussion subsequent to Eq. (12) con-
cerning the identity of the two cases for =0 and A=2,3,
we add here that in one dimension there is still a finite
probability for an acceptor to hit a point boundary. This
again makes the Smoluchowski boundary much more ef-
fective than the reflecting one.

or)
. \
I\
WA
.6 \ \
AN
SRR
\ N
\ NE1S
2 ! ™~
~ T~ .
0.0 — =
0 10 20 30 40 50
L/

FIG. 6. Decay function ®(¢) in dependence of the cutoff pa-
rameters $=0.5, 1.0, and 1.5, in the reflecting-boundary case
for dipole-dipole interactions between the donor and the accep-
tors. We chose the dimension A=3, the diffusion constant
D=0.2, and the probability of a molecule to be an acceptor
p =0.05.
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APPENDIX A: THE GREEN FUNCTION G,

The relevant properties of the G, are subsequently col-
lected.

1. Definitions and solutions of the differential

equation
d d A?
_ ; =4 |, 4 A Al
Dy(z)=0 with .@_dz z z+ . (A1)

are the modified Bessel functions K, (z) and I, (z) [cf.
Ref. 28, Eq. (9.6.1)]. Thus the following Green function
G (symmetrical and limited in the infinite) belongs to the
self-adjoint differential operator &,

G(Z,ZI)=I|M(Z<)K;~(Z>)+AKA(Z)K}‘(Z’), (A2)

where z_ and z, are defined in the text following (9).
[See also Ref. 36, and Ref. 27, Eq. (14.8.2).] Equation
(A2) is identical to Eq. (9) of Sec. III.

The parameter A4 can be chosen freely and thus allows
to adjust G to different boundary conditions. For A, the
values —%,0,-;—,1,%, ... are to be considered. We first
evaluate the integral over G which is needed,

[7 6 (z22"dz
%o

—=2'*—[I,(20)— AK 1 2(20) )20 T*K ("), (A3)

where z is arbitrary and u is defined as in Eq. (10),
A=—7 for A=—17,
'LL =
1+ A otherwise.

To this end we use the derivation rules [Ref. 28, Eq.
(9.6.28)] and Wronskians [Ref. 28, Eq. (9.6.15)] for Bessel
functions.

The first boundary condition we consider is the absorb-
ing one in z, (Smoluchowski case),

K (2)[I|p(29)+ AK}(29)]=G (2,29) =0 for all z >z, ,

(A4)
and, consequently,
A5m=—1y1|(20)/Kx(Zo) . (AS)
In this case we obtain
® K, (z")
[.7 Gsmlzz)z ¥ rdz =gt — 22 (A6)
0 zg "Kj(zp)

where we have used the Wronskian of the Bessel function
again. As G is the Green function to &,
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:1%,— zrl+2l,% _le+2k (zzl)—AG(z,zl)
=(2' /22D G (2,2)=—-8(z—2'). (A7)
Integration over z’ yields
d ’y— ’
E[(ZZ ) AG (sz )] |z'=zo
L 2A+1 —A © Nt 1A g0
=z [l—z fzo G(z,z')z dz
=2 K, (225 M1, (20) —AK 1 12(2)] . (AB)
Thus the reflecting-boundary condition, i.e.,
d, [(zz')~*G(z,2')]| y—; =0 forallz>z,, (A9)
dz 0
simply means that the integral expression
[ Grlzz)z' rdz =2 (A10)
0
is fulfilled, and, simultaneously,
I
A, = JulZ) (Al1)
K1 1(2p)
holds.
2. A=n++
We now consider the special case
A=n++, n=—10,1,2,... (A12)

corresponding to odd dimensions A=2n +3=1,3,5,...
[cf. Eq. (7)]. In this case I, and K, are so-called
“spherical” Bessel functions which can be expressed by
means of exponential functions and polynomials.

As in Ref. 28, Eq. (10.2.11), we define

R(v++t,2)= é _vtkt

—k =0,1,....
2 Tllv—k)l (2z)7"* for v

(A13)
|

I3,(z )K,(z, )+ AK,(2)K,(2')=G (2,2') >0,
. I‘M(Z<)K;‘(Z> ) _ IMI(Z<)
KA(Z)KA(Z’) - KA,(Z<)

= A>
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According to Ref. 28, Eq. (10.2.9/10/15), we find for G,
with n >0,

(2z')V*G(z,2')=+R (A2, )R(A,—z _)e~ 17~ 71
L7 —(—=1"IR(A, 2R (A,2')e =+
(A14)

For n=—1 one has G,__;=G, —y. The Green functions
needed for the two boundary conditions are all compiled

in Table I.

3. Gsm and G, extremal properties

We now want to show that Gg, and G, are defined by
extremum conditions: For Ag,<A4A<A., ie, Ggp
<G <G, we have

0< fz: (z2')"*G (z,2")2'*Pdz <1 for all z' >z, ,

and vice versa. Thus Gg,, is minimal and G,, maximal, so
that a probability is defined by the above integral expres-
sion: To prove this we first consider the lhs of the above
inequality. By using (A3), this positiveness is equivalent
to

[1,(20)—AK 4 1(20))26M K (2") <2'* forall 2’ .
Taking into account
min{1/[z' ~*K,(z")]} =1/[z5 *K;(20)] ,
and the equation following from the Wronskian, namely
201, (20)K(29) =1—2z01 5| (20)K | 41(20) ,
we recognize the equivalence to
1—2oK 7 (20)[ |2 (20)+ 4K (29)]1 <1 .

which means

I;,(zp)

(2 (2o
A>————=Ag, .
- K (zp) s

Furthermore, the equivalent of the positiveness of G is
given by

for all z,z’ ,

;)A > ——mm{IMI (Z)/K;L(Z) ’ZZZO} :_I“*l (ZO)/KA(ZO)ZASm .

TABLE L. Green function (2z')~*G(z,2'), Eq. (A2), in the cases of absorbing and reflecting boundaries at zo for A=1,2,3,4.

A A (z2') *Gsm(z,2') (22')"*Gye(2,2")
. 1 e lz—2'| e —[lz—z5)+(z'—z4)] e~ |z—2')| +e—[(z—zo)+(z'—zo)]
i %( ) 2( )
z I1,(z
2 0 Io(z K, — 222 g (2)Ko(z' I 0 '
o(z . )Ko(z,) Ko(zo) o(z)Ko(z") o(z . )Ko(z, )+ Kl(zo)Ko(z)Ko(z )'
; i e_|z_zf|_e—[(z—zo)+(z —24)] e-—lz-—z’l+[(zo__1)/(Zo+l)]e—l(z’zo)+(z ~zy)]
2 2zz' 2zz'
II(ZO) 2010(20)—211(20)
4 1 — I (z )K(z,)— K (2)K(2') — [} (z)K — K (2)K,(2")
7 iz Ky (2, K, (zg) X! z2)K, ] 7 H1(z Kz, )+ 2oKo(z0) 2Kz X! 1
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In conclusion, one obtains, in a condensed form,

G, =min [G\ fz: (z2')"*G (z2,2")z'*?*dz >0 for all z’

=min{G | G(z,z') >0 for all z,z'} . (A15)
I

We now consider the condition yielding

fz: (z2)*G (2,2")z2' P dz <1 forall 2’ >z, , » L(zo)
which according to (A3) is equivalent to = Ky4alzo) e

[1,(z0)—AK14(20)]z07 K (2") 20 forallz’, Thus it holds that

1
G, =max [G ‘ fzw (z2')"*G (z,2")z'*Pdz <1 forall z' | . (A16)
0

4. Laplace inversion of G

In order to show the relationships with the corresponding formulas in time space found in the literature,'>?" we will
Laplace-invert the Green function
H=D"YRR')"G(kR,kR’) ,
which determines E (S,R) through an integral equation, where k=V's /D and Ry=b.
For the case A= 1, according to the table of Green functions and Ref. 28, Eq. (29.3.84),
LW Hgp o) = (4mDt) =1 2o ~(R—-K’ 2/(4D0) o —[(R —b)+(R'— b)]z/(4Dt)} . (A17)
For the case A=3,
L Hgy)=(4mDt)~2{e— R —R"2/4D) _ ,—[(R —b)+(R’—b)]2/(4Dt)} /(RR"), (A18)
and with Ref. 28, Eq. (29.3.88),
fs_l(Hre)= (4wDt)~ 1/2{ e—(R —R')2/(4Dt)_|_e —[(R —b)+(R’—b)]2/(4Dt)} /(RR")
(e2p)~le DV R+ R bgrg | VDL, (R b)+ R —b) /(RR) (A19)
b

[cf. Ref. 27, Eq. (14.7.16)].
Turning to the dimension A =2, we examine the Green function in the general case: For R=£R’ we have, according to
Ref. 37, p. 284, Eq. (5.16.56), and p. 285, Eq. (5.16.64),

£ H)=(RR")~* (2D1)~le ~R*+R'D/4DOL \ [RR'/(2D1))

+ [ At —w)(2Du)~le =R+ RD/DK, [RR” /(2Du)Jdu} (A20)
with 4()=.27(4(5)).
We now see that for A=1 the first term on the rhs is the Smoluchowski part for b =0 by virtue of (A17),

(RR")V(2Dt)~le —(R*+R"D/GDOL  IRR'/(2D1)]=.2; (D~ RR')*Gspn(kR,kR")) | o - (A21)
However, for A > 2 the first terms on the rhs of (A20) is the Green function € of free diffusion,

e(t,R,R")=(47Dr)~2/2 — | R =R 1>/64D0 (A22)
which is summed over angles 0 between the A-dimensional vectors R and R’. Because of Ref. 28, Eq. (9.6.18), we have

(A—1)Vs_y [ et KR )sin—20d0=(RR")(2D1)~le "R +RD/4D0p ’;—gt'— (A23)

[cf. Ref. 27, Eq. (10.3.5)] which represents the b =0 part of the Green function. In the A=2 case, 4(z) can be evaluated
along the lines of Ref. 27, Sec. 13.51.
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APPENDIX B: DERIVATION OF THE RATE EQUATION The first term on the rhs is just k(¢) for w=0 [cf. Eq.

(33) IN TIME SPACE

1. Integration of E

According to the integral representation of the decay
function @, Eq. (3), the term

[1—E(t,R)]RA"!

is integrable for physically realistic transfer probability
laws, thus decaying more strongly than 1/R for suffi-
ciently larger R.

As OE /3R is positive throughout, we have

A-1 9 a-1 [ OE(LR) p,
RA~'ZFE(LR) <R Jo T3pr R
=RA'[1—E(,R)], (B1)

implying that
d
A—1
—E(R
R 3R (t,R)

also decays more rapidly than 1/R in the region of suffi-
ciently large R. Then the following limit exists:

lim RA-I—a—E(t,R)zo.

B2
R—w JR ( )

2. Definition of k

By definition of the time-dependent rate k [Egs. (16)
and (18)]

aE(t,R)dR ,

_9 _ —_ © pA-—1
k(=11 In®(1)]=—AVapp fb R E”

(B3)

and E fulfills the Feynman-Kac equation [Eq. (4)]. As a
consequence, we see that

RA-1 JE(t,R) =D—a—

& = RA-12_ B R)

oR

—RA W (R)E(t,R) . (B4)

Substituting into the expression for k(z) [Eq. (B3)], we
obtain, after employing (B2),

d
= lim RA~'—E(t,R
k(t)= AV, ppD lim 3R (t,R)

+AVapp [ w(RE(LRRA AR . (BY)

23)].

3. Decay of w(R)

In reality, w(R) will decay with R at least as strongly
as a dipole-dipole term, and thus for B > b large, it is

. 3
k(t)~ AV, ppD lim RA~'—E(1,
(2) appD lim 3R (t,R)

B
+AVapp fb w(R)E (t, R)RA~'dR . (B6)

Let B > b be fixed.

We now assume that there exists a nontrivial, normaliz-
able solution Ey(R) [cf. Eq. (28)] within the range [ b,B]
of the stationary problem, Eq. (27). Thus an E (R) exists
with the properties Est(R)$0, and its limit for R — B ex-
1sts.

As the differential equation (27) is linear we can assume
the normalization limg_, 3 Ei(R)=1 without loss of gen-
erality. We list the following relevant properties:

(i) E(t,R)>E4(R),

(ii) E(t,R)—>EyR) fort—>ow, R<B,

— Iim - E_(R).

. 3
1 —E(,R
B (&R) R—>bdR ™™

N
G lim ) A, 3R

t— 0

For long times ¢, then,
w(R)E(t,R)RA~'~w(R)E4(R)RA!

holds uniformly in R for R <B.
Then the integral part of (B6) becomes

B
AVapp [, w(R)E(4,R)R"'dR

R=B
d
~AVAppD |RA"'——E(R) (B7)
dR Reb
Finally, because of (iii) we have, for large ¢,
k(t)~AV,ppD RA“I—d—Est(R) (t—w). (B8)
dR R—B

4. Solution of E4(R)

Should there exist a nontrivial normalizable solution
E4(R) of the stationary problem (27) within [b, « ], i.e.,
for B— oo, then, of course, Eq. (33) is valid.
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