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Crystal optical studies of spontaneous and precursor polarization in KNb03
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High-resolution measurements of the cubic refractive index n (700 K & T& 1000 K) and of the
tetragonal and orthorhombic birefringence An (480 K & T& 705 K and 300 K & T&490 K, respec-
tively) are performed on KNb03 in order to determine the temperature dependences of the fluctuat-
ing polarization, (P ), in the cubic phase and of the spontaneous polarization, P„ in the ferroelec-
tric phases. An Ornstein-Zernike analysis suggests that n is sensitive to precursor short-range order
up to above 1000 K and that the fluctuating polarization, mainly due to collective order-disorder
processes, reaches 58% of P, =0.33 Cm at T, l ——705 K. The latter value as determined from An
is 22%%uo larger than hitherto reported. Better agreement between optically and conventionally deter-
mined P, values is found for the orthorhombic phase.

I. INTRODUCTION

It is well known' that purely displacive and order-
disorder structural phase transitions (SPT's), respectively,
must be considered as limiting cases which are rarely
found in nature. In the case of perovskites undergoing
proper ferroelectric (BaTi03, KNb03, etc.) or improper
ferroelastic SPT's (SrTi03, RbCaF3, etc.), it is widely ac-
cepted that order-disorder behavior becomes important
near their cubic-tetragonal phase transition. Within a
model allowing for local interwell tunneling of individual
ions (Ti +, Nb +, Ca +, etc.), but also for harmonic cou-
pling between adjacent ions, ' a variety of seemingly con-
tradicting observations can be explained.

Quite generally, the displacive character of the transi-
tion is reflected by the observation of the usual Cochran
soft mode. On the other hand, the order-disorder
behavior at T & T, causes correlated anisotropic displace-
ments as evidenced, e.g. , (i) by x-ray diffuse scattering
[e.g., BaTi03, KNb03, KMnF3, and NaNb03 (Ref. 5)], (ii)
by the central peak in neutron scattering due to cluster-
relaxation modes [e.g., SrTiOs (Ref. 6)], (iii) by contribu-
tions to the refractive index due to polarized precursor
clusters [e.g., BaTi03 (Ref. 7)], and (iv) by the persistence
of Rarnan lines being forbidden in the cubic phase [e.g.,
KNb03 (Ref. 8)].

In KNb03 the order-disorder-like pretransitional effects
are particularly large. Only very recently has their role
been elucidated and explained coherently with the compet-
ing soft-mode mechanism. On one hand, incomplete,
though continuous, softening of the zone-center TO1
mode is observed upon passing the cubic-tetragonal-
orthorhombic-rhombohedral sequence of SPT's ( T, &

-705
K, T,2-480 K, and T,3-230 K, respectively). On the
other hand, large discrepancies between the experimental
and calculated [via the Lyddane-Sachs-Teller (LST) rela-

tion] values of the dielectric constant are already found at
T, &

and T,2. The apparent disagreement can be resolved
by assuming additional relaxational motions of the Nb +
ions, which eventually drive these two SPT's.

This paper is devoted to a search for additional evi-
dence in favor of the proposed SPT mechanism in
KNbO3. Crystal optical investigations seem promising to
measure the temperature dependence of the precursor
clusters, at least in the cubic phase above T, &. It is well
known that they may give rise to "fluctuation tails" of the
linear birefringence (LB) in transparent crystals, as ob-
served in SrTi03, ' in fluoroperovskites, " and in
BaMnF4. ' On the other hand, the anomalous tempera-
ture dependence of the index of refraction may also be
used to measure precursor ordering. Obviously, for cubic
systems such as BaTi03, the latter method is more ap-
propriate. It is a drawback of the LB method that it re-
quires small, but finite, anisotropic stress in order to pro-
voke the crossover from the n=3 (Heisenberg) to the
n = I (Ising) regime. "' Hence, despite the high accuracy
of LB measurements, exact information on the extension
of the precursor regime is scarcely available. It is one aim
of this paper to demonstrate this drawback by comparing
hn(T) with accurate n(T) curves. These, on the other
hand, allow the estimate of the average fluctuating polari-
zation (P )' in the cubic phase, which can be related to
the dielectric-constant anomaly at T, &.

' A description of
the temperature dependence of the n (T) anomaly will be
performed within the Ornstein-Zernike approximation.

Another aim of this paper is to critically check former
b.n(T) and n(T) data' and to describe the tetragonal LB
within a Landau mean-field approach involving a first-
order discontinuity of the order parameter at T, l. The
spontaneous polarization I', as derived under the assump-
tion of preponderantly electro-optical origins of b,n will be
compared with data of other authors. Using the Camlibel
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pulse method, Gunter' recently discovered that
Triebwasser's' ' room-temperature value of P, was
about 30% too small. Similar corrections of the P, values
of the tetragonal phase' are expected' ' and are exam-
ined in our present investigation.

Temperatures were measured with a calibrated NiCr-Ni
thermocouple with a resolution of 0.01 K and an absolute
error of about 0.5 K. Thermal equilibrium between the
sample and the temperature sensor was achieved via heat-
conducting He gas at a pressure of 0.4 bar.

II. EXPERIMENTAL PROCEDURE

Single crystals of KNb03 were grown by the floating-
nucleus method. ' At room temperature (orthorhombic
phase), rectangular slabs with typical dimensions of
2&2&0.2 mm with their edges orientated along the cu-
bic (001) directions were cut and polished. In order to
remove internal strains due to the crystal growth and pol-
ishing procedure, the samples were annealed in vacuo at
1000 K prior to the optical measurements. These were
carried out in situ and first upon cooling in order to take
advantage of the strain-free virgin state. Linear
birefringence was measured with a computer-controlled
modulation method" at A, =589.3 nm. Great care was
taken in controlling the sample position by means of a po-
larizing microscope. Owing to unavoidable thickness
variations of the sample, considerable errors can arise
from slight position changes, since, in KNbO&, the index
of refraction ( n,„b,,-2.35) and the birefringence
(b,n„„,s &0.15) are rather large. ' Hence, on a 0.2-rnm-
thick sample, precision of only about 5(b,n)=5&&10 is
achieved. On the other hand, microscopic domain selec-
tion proves to be necessary in both the tetragonal and
orthorhombic phases.

For the measurement of the refractive index in the cu-
bic phase we used a birefringent Jamin-Lebedeff inter-
ferometer attached to the microscope. ' This device per-
mits the measurement of the phase retardation between
one beaID penetrating the sample and one beam passing
the surrounding atmosphere. Both the phase-shift mea-
surement and the microscopic position control correspond
to those of the LB measurements. Index changes of the
order 5n —10 are easily detected on samples only about
0.2 mm thick. The main source of error consists of slight
changes of the sample position and orientation upon scan-
ning the temperature over wide ranges. This restricts the
accuracy to about 5n -5 && 10 in the present study.

The LB jumps at T, i and T,2 (Fig. 1) need separate
checks of their absolute heights, since our very accurate
measurement of the phase shift I omits an integer multi-
ple of wavelengths, mA, . We thus have b,n =(mA, +I )/1,
where m -50 for 1-0.2 mm and T-T, i. An indepen-
dent measurement of hn is based on the wavelength
dependence of the light intensity transmitted by the sam-

ple being placed between crossed polarizers. Intensity
minima appear at A,z ——1bn/N, where X is an integer.
Hence, from the spectral positions of adjacent minima, k&
and A,&+ i, where A,z & 7(, & A,z+ i, one easily obtains
4n =(A~' —A~+i) '/1. This method allows to deter-
mine the value of m with an accuracy of +1. Moreover,
the spectral spacing of the interference fringes reflects the
single-domain quality of a given sample. Twin domains,
which cause a decrease of the average LB, systematically
enhance AA, =A,~+ I

—A.~. For 0.2-mm-thick single
domains, M, is of the order of 10—1S nm.

III. EXPERIMENTAL RESULTS

Figure 1 shows the temperature dependence of the LB
in the temperature range between 300 and 900 K. The
data are not corrected for the lattice contraction upon
cooling, thus neglecting contributions of the order

5(bn)/hn -a(T —To),

where a=5.1&10 K ' is the average thermal lattice-
expansion coefficient. To ——300 K is the reference tem-
perature for the sample thickness lo involved in the
optical-path difference. Hence, throughout the tempera-
ture range of interest, the error is smaller than 0.3%.
Thermal hysteresis is found at both SPT's. The intervals
are characterized by T, I

——701.5 K, T,+I ——707.4 K and
T,2 ——476.9 K, T,2 ——493.7 K, respectively, in good agree-
ment with previous literature. ' ' Only one of the three
orthorhombic principal LB's could be measured, owing to
large difficulties in reliably selecting single domains in
that phase. It corresponds to the largest LB, n, —n„, ac-
cording to and in essential agreement with Wiesen-
danger. '

Our results for the tetragonal LB, however, deviate ap-
preciably from those reported previously. ' In compar-
ison, our jurnp at T, i is about 4S% larger, thus leading to
a 20% downward jump at T,2 In view o. f our careful, ab-
solute bn ineasurements (See Sec. II), we believe that su-

perimposed, and yet invisible, twin domains must have di-
minished the LB in the former study. '

As will be discussed below, the LB arising below T, I is
proportional to the square of the order parameter, P, .
Within the well-known Landau-Devonshire approxima-
tion, ' the tetragonal LB should hence be given by"
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FIG. 1. Temperature dependence of the linear birefringence
of cubic, tetragonal (

~
n, no

~
), and—orthorhombic (n, n„)—

KNb03, respectively. Measured hysteresis is indicated by
respective vertical lines. A Landau-Devonshire fit using data
between 0.9T, I (vertical dashed line) and T, I is presented as a
solid line designated as "th."



1150 W. KLEEMANN, F. J. SCHAFER, AND M. D. FONTANA 30

I

C3

CD

CD
C7l

C

CD
C

CCl

C

CO
CD
C:

Tct

700 750 800

Temper atur e ( K)

900

FIG. 2. Birefringence tails above T, j as measured on a low-

strain sample of KNb03 at different positions. The solid
straight lines refer to the regular high-temperature behavior of
the strain-induced accidental birefringence.

hn (T)=[2hn (T„)/3]
X II+[1——,'(T —Tpi)I(T, i Tpi)]' '—

I . (2)

Inserting T, i
——(T, i+3T,+i)/4 =705.9 K and b,n(T, i)

=0.1398, a best-fit procedure involving data points within
0.1 & ~=1—T/T, &0.006 yields T~i ——543.4 K. This
temperature should be (within Landau theory) identical
with the divergence temperature of the susceptibility in
the cubic phase, To. However, the Curie-gneiss law,
e=CI(T —To), yields values of To significantly higher
than T» [ To 634 K (Ref——. 17) or To =615 K (Ref. 20)].
This seems to hint at a failure of Eq. (2). Evidently, the
calculated curve (solid line in Fig. 1, referred to as "th")
deviates from the experimental data just below ~=0.1,
thus indicating only a poor fit, in contrast with that found
for the Curie-Weiss law. ' ' On one hand, Eq. (2) is, in
principle, not able to accurately describe large discontinui-
ties of the order parameter since it relies on a series expan-
sion restricted to the sixth power of P, . On the other
hand, the proximity of the second phase transition at T, 2

involves a coupled —order-parameter problem. This will
modify the low-temperature behavior, i.e., Eq. (2), and the
parameters therein, rather than the high-temperature
Curie-Weiss law. In the following discussion (Sec. IV) we
shall therefore use To ——615 K, which relies on the most
recent and careful E measurements.

The LB does not vanish completely in the cubic phase.
This is shown at high resolution in Fig. 2 for one well-
annealed sample probed at three different positions over
areas of about 50 pm . The sign of the LB is chosen such
that it becomes positive in the tetragonal single domain
below T, i. It is remarkable that apart from positive
(curve 1), negative fluctuation tails (curves 2 and 3) may
also appear. Similar observations were made in our previ-
ous study" on fluoroperovskites. Local strain fields,
which define an elasto-optically induced bias LB, are in-
volved. Following our previous discussion, "it may be in-
ferred that local [101] strain is responsible for both the
creation of a future [010] single domain ("ordering mech-

anism") and the evolution of a positive fluctuation tail.
Here, we adopt the geometry of [001] being the direction
of light propagation and [010] being the direction of the
elongated c axis. If, however, a larger [010] stress is su-
perimposed, both [100]- and [001]-orientated micro-
domains will emerge. Among these, only [100] domains
will be detected by the LB, yielding a negative sign. Only
very near to T, ~ wi11 the Ising-type stress interaction with
[101]symmetry select the unambiguous orientation of the
future macroscopic [010] single domain below T, i.

This qualitative discussion shows that rather complicat-
ed and competing interactions may be involved in the evo-
lution of LB fluctuation tails. Moreover, the photoelastic
bias LB is also temperature dependent, as shown by the
extrapolated straight lines in Fig. 2. It may happen that
these contributions are virtually zero (curve 1) or that they
appear without any fluctuation tail superimposed (curve
2). A favorable case is met in the cubic LB shown in Fig.
1, which can be seen at higher resolution in Fig. 3 (curve
1). Note that this curve has been inverted in sign and
magnified by a factor of 50. The photoelastic bias LB
seems to be small compared with the fluctuation cusp.
The separation of both contributions is, however, not
unambiguous and would require measurement up to
higher temperatures. The dashed bias line in Fig. 3 is
only a crude guess.

Upon comparing the temperature dependences of the
fluctuation tails in Figs. 2 and 3, it becomes evident that a
quantitative treatment will, in general, be difficult. In our
previous paper" we confined ourselves to the discussion
of positive LB tails, which seem to involve simple strain
symmetries. Unfortunately, in our present investigation
on KNb03, positive LB tails were found very rarely and
only with very small signals (Fig. 2, curve 1). The reason
for this may be connected with anisotropic surface strains,
which remain from cycling through the improper ferroe-
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FIG. 3. Birefringence tail of a moderately strained sample of
KNb03 (curve 1 denotes magnified and inverted plot of Fig. 1

with eye-guiding dashed bias line), compared with the optical-
path difference I (T)—I (1000 K) (curve 2), and with the refrac-
tive index n(T) —n(1000 K) (curve 3), respectively. Curve 4,
no(T) —no(1000 K), represents the regular part of n(T) as ob-
tained from a best-fit linearization of curve 3 in the range
950& T&1000 K.
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lastic SPT prior to the measurement.
Fortunately, it is possible to overcome these difficulties

by measuring the reflective index, which is sensitive to
isotropic rather than to anisotropic fluctuations. The re-
sult is shown in Fig. 3. Curve 2 denotes the variation of
the specific optical-path difference, I /lo, where I (T)
= n ( T)1(T) is set zero at T'=1000 K. In order to obtain
the temperature dependence of n ( T)—n ( T') with
n (T') =2.36 as extrapolated from Wiesendanger's abso-
lute measurements, ' we must correct I' for the lattice ex-
pansion. In a linear approximation it is easily shown that

n(T) —n( T')=I (T)/Io —a[n(T') —1](T—T'), (3)

which is plotted as curve 3 in Fig. 3. Extrapolating
+=5.1~10 K ', as determined between 300 and 750 K
up to 1000 K, may introduce a slight error, which, how-

ever, will not seriously affect the 5'%//correction between
curves 2 and 3.

It is seen that curve 3 in Fig. 3 deviates appreciably
from a linear index of a cubic material undergoing linear
lattice expansion, as usual in the high-temperature limit.
It may be anticipated (see Sec. IV) that essentially all of
the downward bending of the 5n (T) curve compared with
the horizontal line 5n—:0 has to be attributed to the for-
mation of precursor clusters of polarization prior to the
phase transition. Hence, as in BaTi03, the evolution of
ferroelectric short-range order can be deduced from this
measurement, as will be discussed below.

IV. DISCUSSION

A. Ferroelectric short-range order
in the cubic phase

As mentioned above, only limited information is avail-
able from LB tails on the fluctuation behavior of a cubic
system. They require bias stress fields, which drive the
system from cubic (anisotropic Heisenberg} into Ising crit-
ical behavior. Hence, data are available only below the
crossover temperature, where critical behavior, if any, will

be changed in a typical way.
On the other hand, the cubic refractive index is sensi-

tive to all order-parameter fluctuations since their time
constant will be large compared with the passage time,
~o& 10 ' s, of the electromagnetic light wave through a
given cluster. Hence, the light probes a statistical ensem-
ble of quasistatic distributions of polarization clusters.
Within the indicatrix description of crystal optics, ' the
variation of the principal dielectric impermeability com-
ponents is given by

3

5(1/n );= g g,~)PJ, (4)
j=i

where the g,j are the free electro-optic coefficients. They
include photoelastic contributions due to electrostriction.
Keeping in mind that we measure time- and space-
averaged values (PJ ) = (P ), J=1, 2, and 3, and evaluat-
ing Eq. (4) as in the case of photoelasticity, ' we obtain
n (T)=no(T) 5n (T) with—

5n (T)=(no/2)(gii+2g i2)(P ),

where no(T) is the unperturbed high-temperature refrac-
tive index. This, expected to vary linearly with T, may
be deduced from a least-squares fit of our n (T) data (Fig.
3, curve 3) in the temperature range 950& T & 1000 K, as
shown by the straight line (curve 4} in Fig. 3. We thus as-
sume that the temperature dependence of 5n ( T) essential-

ly vanishes above 950 K.
The slope of curve 4, dno/dT=4 2)&.10 ~ K ', must

be taken as an approximate value since true linearity will
be achieved only asymptotically at temperatures which lie
outside of our experimental possibilities. Unfortunately,
theoretical predictions of dna/dT are even less reliable
since only the contribution due to linear lattice expansion
(coefficient a) and to its coupling with the refractive in-
dex (elasto-optic coefficients p» and piz) can be given ex-

plicitly. From the density dependence of the refractive in-

dex,"
p(dno!dp) =(no/6)(pii+2pi2), (6)
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FIG. 4. Cubic refractive-index anomaly of KNbO3 obtained,

respectively, by subtracting curves 3 and 4 of Fig. 3,
5n(T) —5n(1000 K) (dotted curve, left-hand scale), and by fit-

ting of the data between 700 and 800 K (vertical dashed lines) to
the Ornstein-Zernike expression (12), 5n(T) (solid line, right-

hand scale).

one may deduce the "thermoelastic" contribution to
dno/dT,

(dna/dT) = —(no/2)(p»+2p»)a .

Apart from this negative contribution, which seems to
dominate, e.g. , in BaTi03, "thermo-optic" contributions
of either sign may additionally be involved. These are
shown to be positive and dominating, e.g., in PbTi03,
and, seemingly, in the present case, KNb03. They are due
to purely thermal effects on the electron states involved in

optical dispersion. Note that Eq. (6) originally describes
isothermal behavior and is thus insufficient to account for
other than crystal-field effects on no

Subtracting curve 3 from curve 4 of Fig. 3 we obtain
the refractive-index anomaly corresponding to Eq. (5)
plotted as 5n(T) —5n(1000 K) in Fig. 4. In order to ob-
tain 5n(1000 K) and to describe the temperature depen-
dence of 5n ( T), we exploit the proportionality between 5n
and (P ), which is given, via the fluctuation-dissipation
theorem, by

(P2) =(kiiT/8m. ) f X(q)d q .
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g(t) =gpt (10)

Using the reduced temperature t = T!Tp 1, w—here Tp
is the divergence temperature of e and g, and the critical
exponent v=0.71 for the three-dimensional (3D) Heisen-
berg model, we expect gp to be of the order of the lattice
constant a. Et should be noted that e denotes the total
dielectric constant since Eq. (4) does not discern between
order-disorder and displacive (soft-mode) origins of fluc-
tuating polarization.

Replacing the cubic Brillouin zone by a sphere with
0 & q &q, one readily obtains

(P2) =(kttTeepq )[1—tan '(gq )/(gq )]/(2m. g ) .

(11)

Neglecting the temperature dependence of e/g cc t r+ ",
since y-2v for the 3D Heisenberg model (y=2v in the
mean-field approximation), we thus have, from Eqs. (5)
and (11),

5n (T)=cpT[1—tan '(gq )/(gq )], (12)

with

The fluctuations of the order parameter are hence deter-
mined by the q-dependent susceptibilities X(q), which
may be expressed by

X(q) =X(0)(1+/'q')

in the Ornstein-Zernike approximation. This relation in-
volves the static susceptibility X(0)=epe and the correla-
tion length

If we consider isotropic fluctuations from the entire Bril-
louin zone, i.e., q =m /a, and gp

——0.14a from our best-fit
parameter gpq =0.45, we obtain e(T, 1)=130. This value
is more than 1 order of magnitude smaller than the exper-
imental one, e( T, 1)=3000.

Possible reasons for the obvious discrepancy between
theory and experiment might be due to erroneous parame-
ters Tp and/or gp, where slight changes of gp are most ef-
fective [e.g., choosing gp =0.4a, and hence

q =0.36(n/a), yields e(T, 1)=3000, if Tp=615 K is
maintained]. However, since we are sure that 5n is sensi-
tive to short-wavelength correlations (i.e., q =m/a), we
believe instead in principal failures of our theory. These
are due to the neglect of cubic anisotropy in Eq. (9),
which is known to favor correlations along (100) in
KNb03. The pretransitional clusters are correlated chains
along (100) extending over 10 to 100 unit cells at T, 1, as
can be estimated from the correlation volume g (T, 1).
Lacking data on the cubic anisotropy in KNb03, however,
more sophisticated model calculations using the 5n anom-
aly should be postponed to future investigations.

B. Polarization in the tetragonal
and orthorhombic phases

In the tetragonal phase the LB due to electrostriction
and to the polarization P is calculated within the indica-
trix formalism' to become

An =5n3 5n1—

(np/2)[(pll p12)(e3 el)+(g» —g12)&P'&]

cp ——(g11+2g 12)(n pkt1eepq~ )/(erg) (13) (15)

A least-squares fit of the experimental data between
T, 1 and 800 K (Fig. 4) yields Bn(1000 K)=0.0247,
c,= 1.94X 10 ', and gpq =0.45, if we insert Tp =615 K,
as obtained for pure KNb03. The fit (solid line in Fig.
4) has a good correlation factor (r =0.9996) and de-
scribes the data well up to 900 K. The deviations around
1000 K may be partially due to errors in our subtraction
procedure of n p( T) (Fig. 3, curve 4). The most important
features of 5n (T) are the typical cusp at Tp and the per-
sistence of a finite value at 1000 K. This indicates that
ferroelectric short-range order is preserved up to tempera-
tures far above T, ~, as is evident from the e anomaly as
well.

Let us first calculate the value of (P ) at T„ from

Ey. (5) using 5n(T, )=1.0056(Fig. 4), np=2. 36, and
g»+2g, 2=0.23 m C . We obtain (P ) =0.037
C m and thus (P ) '~ =0.19 Cm . This value indi-
cates that the fluctuating polarization achieves about 58 fo
of the spontaneous value, P, (T,1)=0.33 Cm 2, which is
obtained from our LB data (see Sec. IV B). Hence the pre-
cursor short-range order appears to be nearly twice as
large as for BaTiQ3, and thus underlines the order-
disorder model leading to the huge e anomaly at T, ].' '

The e anomaly can be estimated using Eqs. (10) and
(11),which yield

no denotes the high-temperature cubic index, e3 and e~
are the electrostrictive strain components, and p,j (g,z)
represent the elasto (electro) -optical coupling constants.
Since (p11 —p12)(e3 —e, ) is not explicitly known for
KNb03, it is convenient to use the free g,j coefficients in-
stead of the clamped ones, g,J. Equation (15) then be-
comes

= —( o'/2)(g —g )(P') . (16)

The most reliable g,j values seem to be those determined
at room temperature (RT) by Giinter using his directly
measured RT value P, =0.41 Cm .' Based on the as-
sumption of temperature-dependent quadratic polari-
zation-optic coefficients, we thus use the same values as
for the fluctuation problem (see Sec. IVA). Inserting
no ——2.36 and g )) —g )2 ——0.20 m4 C, we thus have

( P) =O. 7~6' ~n
C'm-'. (17)

P," =0.87
~

b,n
~

'~ Cm (18)

If we neglect fluctuations below T, 1, which seems to be
justified in view of the large drop of e, upon going from
T,+1 to T, 1 (Ref. 20) we obtain the spontaneous polariza-
tion

2+g2t —»(P2)
e(t) =

k~ Tepq [1—tan '(gq )/(g'q )]
(14)

The right-hand side of Eq. (18), as calculated from the
data of Fig. 1, is plotted versus temperature in Fig. 5. For
comparison, the P, data of Triebwasser, ' obtained be-
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FIG. 5. Spontaneous polarization of KNbO3 in its tetragonal
and orthorhombic phases obtained from the birefringence curves
of Fig. 1, according to Eqs. (18) and (20), respectively, in com-

parison with the data of Refs. 17 (0), 16 (0 ), 26 ()& ), and 9
(s ).

where the aj are the lattice-expansion coefficients. Lack-
ing data of the orthorhombic tensor of photoelasticity, no
predictions on the relevance of 5(hn ) can now be made.

C. Latent heat at the cubic-to-tetragonal
phase transition

In view of the remarkably strong short-range order ap-
pearing in the cubic phase at T, i (see Sec. IV A), it seems
to be interesting to estimate the jump of the entropy, hS',
and the latent heat, h&-, at T„, from our data. It was ar-
gued that a relatively small latent heat is expected despite
the strong first-order character of the transition, since the
fluctuations appear to be highly correlated in the cubic
phase. By integrating specific-heat curves, values of
AT. =(190+15) and (135+5) cal/mol (Refs. 27 and 14,
respectively) were obtained in former investigations.
From Landau-Devonshire theory, starting with the Gibbs
potential

6 = Gp+A(T —Tpi)P +BP +CP EP, —(22)

P," =1.02
I
hn

I

'~ Cm (20}

The corresponding curve is plotted in Fig. S together with
P, data measured directly at 295 K (Ref. 16) and by EPR
at 373 and 473 K (Ref. 26). Moreover, comparison should
be done with a calculated value for orthorhombic
KNb03, P, =0.429 Cm, which fits well with P, (300
K)=0.433 Cm . However, in comparison with the ex-
perimental P, values, P, appears to be about 5%%uo too
large. This might indicate a systematic failure of the LB
method due to "thermoelastic" contributions to An
which arise, as for the cubic refractive index [Eq. (7)], in
the following form:

tween 475 and 700 K, are also shown. It is seen that our
values lie well above the 10%%uo error margin given for P, .'
A similar 30% discrepancy was recently detected by
Gunter' for the room-temperature value of P, . Recent
calculations were also in favor of larger P, values in the
tetragonal phase. Values of 0.371 Cm (Ref. 9} and
0.396 C m (Ref. 25) were suggested to replace
Triebwasser's value of P, =0.30 C m obtained for
500 & T& 600 K.' This is now excellently confirmed by
our LB data, which yield P, =0.373 Cm at 500 K. It
will be interesting to check this result by other experimen-
tal methods.

In the orthorhombic phase, the principal LB values are
expected to be given by' '

I
hn„

I
=(n /2)g44P, , (19a)

I
« ~ I

=(no/4}(gll g12 g44)P' (19b)

I« I
=«o/4)(gii —gi2+g44)P,'. (19c)

Again, np and gz refer to the cubic phase. P, is directed
along the x direction in the orthorhombic or along [110]
in the cubic coordinate frame, respectively. Since our
data in Fig. 1 correspond to the largest LB (see Sec. III),
the following conversion formula is readily derived from
Eq. (19c}:

one expects, for zero electric field, '

hl. =T, iM =AT, )(hP) (23)

Inserting their values, hP =P, (T, i)=0.26 Cm and A
from the Curie-Weiss law of e(T), Triebwasser and Hal-
pern' find hL=150 cal/mol, in reasonable agreement
with the experimental values.

In view of our corrected data, P, ( T, i) =0.33 Cm, the
situation seems to become worse. Equation (23) now
yields hJ. =240 cal/mol, which lies far from the experi-
mental data. ' However, a considerable amount of hL
is already gained above T, 1 via the high-temperature tail
of the heat capacity due to the development of short-range
order. This is not accounted for in Landau theory. We
thus have to correct Eq. (23) as

hi. =A T„[P,( T, i ) —(P ( T,+i ) ) ] . (24)

Inserting (P ) =0.037 C m, we now obtain hl-=159
cal/mol, which is again in agreement with the experi-
ments '" and confirms the validity of our data.

V. CONCLUSIONS

The use of electro-optical coupling constants has
proved to be a powerful tool in the determination of both
the spontaneous and the fluctuating polarization of
KNb03 from birefringence and refractive-index measure-
ments, respectively. For the tetragonal phase, improved
values for the polarization P, could be achieved, in agree-
ment with predictions from experimental' and theoretical
work. In the cubic phase the strong deviation of n (T)
from the linear law emphasizes the existence of precursor
ferroelectric clusters above T, i. Their persistence up to
above 1000 K is in agreement with the range of discrepan-
cy between e(LST) and e(expt). On the other hand, this
feature is not inconsistent with the observation for forbid-
den tetragonal Raman lines up to only T, 1 + 30 K owing
to strong interference with more intense second-order
lines.
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It should be stressed that the detection of precursor
clusters at zone-center phase transitions is particularly
difficult when using "classical" scattering methods as a
consequence of the superposition of the central peak with
elastic or quasielastic peaks. The merits of the refractive-
index method were fully recognized by Burns and Dacol
in their investigation of cubic BaTi03, a refinement of the
pioneering work of Hofmann et al. . In the present
work of KNb03 we have attempted to quantitatively
predict not only the fluctuating polarization, but also the
dielectric-constant anomaly at T, i, from crystal optical
data. The result is satisfying within the framework of a
simple model calculation. It might be improved by taking
cubic anisotropy into account.

As an outlook for future work we would like to remark
that any order-paraineter fluctuation as given by its auto-
correlation function (g ), or by the susceptibilities X(q)
via the fluctuation-dissipation theorem, should give rise to
refractive-index anomalies of the kind studied in this pa-

per. The only prerequisite for its observability is its cou-
pling to that optical-susceptibility component which
transforms in the manner of the identity representation of
the crystal point group. Hence, on one hand, different
contributions to (P ) cannot be distinguished on princi-
ple, e.g. , these may be due to relaxation modes (order-
disorder mechanism) and to (nearly) soft modes (displa-
cive mechanism), as in our present example. On the other
hand, if deviations from linearity of n (T) are completely
absent, as, e.g., for PbTi03 near its ferroelectric phase
transition, one must search for compensating effects.
For PbTi03 one may think of the influence of hard opti-
cal modes, which transform in a way similar to g and
which are known to couple to the optical susceptibility
as well.
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