PHYSICAL REVIEW B

VOLUME 30, NUMBER 2

RAPID COMMUNICATIONS

15 JULY 1984

Gauge invariance and fractional quantum Hall effect

R. Tao and Yong-Shi Wu
Department of Physics FM-15, University of Washington,
Seattle, Washington 98195
(Received 27 April 1984)

It is shown that gauge-invariance arguments imply the possibility of the fractional quantum Hall effect;
the Hall conductance is accurately quantized to a rational value. The ground state of a system showing the
fractional quantum Hall effect must be degenerate; the nondegenerate ground state can only produce the

integral quantum Hall effect.

The discovery of the fractional quantum Hall effect in a
two-dimensional electron gas in a strong magnetic field by
Tsui, Stérmer, and Gossard""? has prompted a series of in-
teresting theoretical investigations.>~” One important and
controversial problem is whether the ground state of the
fractional quantum Hall system is degenerate. In our
many-body theory*> for this effect, the degeneracy is expli-
cit. Anderson® also suggests that Laughlin’s wave function
may have a broken symmetry. On the other hand, Laugh-
lin* and Haldane’ claim that the ground state is nondegen-
erate.

In a noteworthy paper of 1981, Laughlin® showed that in-
tegral quantization of the Hall conductance is a consequence
of gauge invariance. Can gauge-invariance arguments also
imply fractional quantization of Hall conductance? And
why are the Hall plateaus at the filling factor v=+,%,
32-, ... accurately quantized to rational values,? e.g., at
v =1 to better than 10~4?

This Rapid Communication presents some answers to the
above questions. Gauge-invariance arguments also imply
the possibility of fractional quantization of Hall conduc-
tance; the Hall conductance is accurately quantized to a ra-
tional value. The ground state of a system showing the
fractional quantum Hall effect must be degenerate; the non-
degenerate ground state can only produce the integral quan-
tum Hall effect. The presence of an energy gap is a neces-
sary but, perhaps, not a sufficient condition for this effect.
Our gauge-invariance arguments in this Rapid Communica-
tion do not tell which value of the filling factor is more
stable and have not explained the odd denominator rule ob-
served in the experiments,? but they suggest another possi-
ble explanation for this rule: the ground state of the Hall
system at a filling factor with an even denominator has a
special topological property in Hilbert space.

We consider the geometry proposed by Laughlin:® a rib-
bon of two-dimensional system bent into a loop of cir-
cumference L, and pierced everywhere by a strong magnetic
field B normal to its surface (Fig. 1). We also put a small
solenoid at the center of the loop. Initially, the solenoid is
not turned on. The radius of the loop is big enough so that
the surface of the loop can be considered as a plane. In or-
der to make our system capable of producing Hall current,
we assume that electrons can be fed in at one edge and tak-
en away from the other, but we only consider the electrons
on the surface. The ground state, V¥, of the two-
dimensional electron gas on the surface satisfies

H(Bl—exl; e ,EN"eKN)‘Vo=Eo‘I’0 , 1)
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where A is the vector potential of the strong magnetic field
B in a particular gauge; E, is the ground state energy; we
set ¢=1. The dependence of the Hamiltonian, H, on
T1, ..., Tw is not explicitly written in the formula. We
also assume that an energy gap separates the ground state
from the excited states. In the geometry considered here
V¥, is periodic in the y direction, with period L,

Wo( Ty, . . T )

j=12,...,N . (2)

L THLY, ) =Wo(Ty, ...

Now we switch the solenoid on and adiabatically increase
the magnetic flux of the solenoid from zero to an arbitrary
value ¢. During this process some electrons can be
transferred from one edge to the other. Because of the en-
ergy gap, the system remains in a ground state which may
be different from the original one. The new wave function
WV is given by
H(P,—e(A+73),...,Pv—e(Ay+3))VY=E¥ , (3)
where @ = ap is the vector potential of the solenoid at the
surface of the loop; £’ may depend on a. Let

N
Y(T, Ty..., ?N)=exp[i(ea/ﬁ) S

Jj=1

Xu(?l,?z,...,?}v) , (4)
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FIG. 1. Diagram of the loop and solenoid.
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so that
H(P—eA,, ..., Pn—eANu=FEu . (5)

Since the wave function ¥ is periodic in the y direction, we
have, from Eq. (4),

u(Ty, ..., T,+Lp, ...)

=exp(—iedp/k)u(Ty, ..., Ty ...) , (6)
j=1,...,N,

where ¢ =al is the magnetic flux of the solenoid. If
¢ #= ndy (o= h/e, nis an integer), u cannot be periodic in
the y direction, and u is different from ¥,

Now let us consider the case ¢ =¢,. From Eq. (6), u is
also periodic in the y direction. By gauge invariance!® we
must also have E'= E,. This can be proved directly. Be-
cause wu is also an eigenstate of Hamiltonian
H(Bi—eA,, ..., Pv—eAy) with the lowest eigenvalue
and satisfies the same boundary conditions as ¥y, u and ¥,
must have the same eigenvalue, i.e., Eo=E’. But this does
not mean that ¥ and ¥y must be the same. We have two
possibilities to consider: either the ground state of the sys-
tem is nondegenerate or degenerate.

If the ground state is nondegenerate, u is the same as ¥y,
by gauge invariance, the system simply maps back into the
initial state. The net physical result is that N, electrons are
transferred from one edge to the other. Then as Laughlin®
showed, the energy increase due to this transfer is

AU=N0€VH , (7)

where Vy is the potential drop from one edge to another.
The Hall current is

Iy=0U/3¢=AU/¢po= VyNoe*/ h (8)
and the Hall conductance is
0-H=1H/VH=N0e2/h . (9)

Clearly only integral Hall conductance is produced.

If the ground state is degenerate, at ¢ = ¢, # can be dif-
ferent from ¥, though, by gauge invariance, they both are
ground states of H(P;—eAy, ...,Pn—eAy). Therefore,
after the magnetic flux of the solenoid changes from zero to
¢, the system may still not map back into the initial state.
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We then increase the magnetic flux of the solenoid ¢ to
2¢0, 3¢y, . ... If the system maps back to ¥, at a finite
value of ¢, say, pdg, then we have fractional quantization
of Hall conductance. Suppose g electrons in total are
transferred from one edge to the other. The same argu-
ment as above yields

oy=1(q/p)e¥h . (10)

The fractional Hall conductance is now accurately quantized
to a rational value as in the integral case. The above discus-
sion clearly demonstrates that if a system shows the frac-
tional quantum Hall effect, the ground state of that system
must be degenerate. On the other hand, if the system can
never come back to its initial state as the magnetic flux ¢
increases, there is no quantization of Hall conductance even
though there is an energy gap. For example, if the ground
state of a Hall system has an infinite degeneracy, the system
may never map back to its initial state.

Gauge-invariance arguments can also relate oy to the fil-
ling factor. Their relationship can be obtained by consider-
ing the angular momentum.!! The charge carriers here are
electrons (or holes). Our argument does not tell which
value of filling factor is more stable. This should be deter-
mined by calculation of energy gaps. The above discussion
does not explain the odd denominator rule observed in the
experiments. Usually the guess is that this odd denomina-
tor rule is due to absence of an energy gap at fillings with an
even denominator. Our gauge-invariance arguments suggest
another possibility: the ground state of the Hall system at
these fillings has a special topological property in Hilbert
space such that it can never come back to its initial state as
the magnetic flux of the solenoid increases. We consider
this possibility to be more interesting since some recent nu-
merical calculations show the possible presence of energy
gaps at filling factors with even denominator.!? We specu-
late there is a more profound reason for this rule.
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