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The Hamiltonian describing two-dimensional electrons in a high magnetic field is diagonalized exactly for
a small number of particles. In addition to the energy spectrum the mean occupation number p(j)
= (C C ) of the jth Landau state in the lowest Landau level is also calculated. For v = n/m with m an
odd integer, p(j) has a period m [p(j) = p(j+m)], and there are m distinct ground states —in striking

analogy with a one-dimensional charge-density-wave system. In terms of p(j), profiles of the 3 kinks are

obtained in the ground state for v close to 3 . Creation energy of the kink is obtained from the energy

gap. The v =
2

case is markedly different.

I. INTRODUCTION

The discovery of the fractional quantized Hall effect' has
stimulated much theoretical work. The wave-function ap-
proach by Laughlin has provided a calculational tool as well
as a good framework to understand the physics when the fil-
ling fraction v of the lowest Landau level is very close to
t =1/p, where p is an odd integer. However, the nature of
the ground state and the stability of the proposed fractional-
ly charged excitations remain unclear. Moreover, the exten-
sion of this method to multiples of 1/p has led to fairly
complicated constructions. 4' Therefore it might be
worthwhile to pursue a more general, symmetry-related ap-
proach to understand some of the important features of the
problem.

In this paper, following Yoshioka, Halperin, and Lee we
adopt an effectively one-dimensional Hamiltonian (Sec. II)
and diagonalize it exactly for a small number of electrons.
We calculate the low-lying spectrum for a fixed v and for
different total momentum J. For v =

3 we find the system
is locked into one of the three distinct equivalent ground
states; for v = ~ there are five distinct ground states, etc.
For v =

2 there seem to be an infinite number of ground
states (Sec. III). The triply degenerate ground states imply
the existence of fractionally charged kink excitations. In
terms of the mean occupation number of the Landau state
p(j) = (C,."C,), profiles of the 3 kinks are obtained in the

ground-state solution for v very close to ~ (Sec. IV). The
creation energy of the kinks is estimated from the energy
versus J curve in Sec. III. Section V concludes with a few
comments.

II. MODEL HAMILTONIAN

in the z direction. The number of states in the lowest Lan-
dau level is given by the total flux in units of an elementary
flux N, =BL /(hc/e). The magnetic length I =abc/eB is'
related to N, by 2~1 N, = L . In the Landau gauge
A= (O, Bx), a basis set of the lowest Landau level consists
of Landau states labeled by an integer j (1 ~ j ~ N, ):

@l(r)= 1
& 1/2

XJP
exp i- exp-

I2
t

(x —x, )'
21 j

(2.1)

where

LxJ=aj= j
S

(2.2)

The Landau state $1 is a plane wave in the y direction with
momentum x,/I and a Gaussian distribution in the x direc-
tion centered about x =x, . In Eq. (2.2) a is the separation
between the centers of two neighboring Landau orbitals.

Because of (2.2) @, is periodic in the y direction; to make
things periodic in the x direction as well, the following com-
bination of @, should be used:

i —=j (modN, )
(2.3)

We assume Coulomb interactions between the electrons.
Imposing periodic boundary conditions and subtracting off
the interaction with a uniform background charge distribu-
tion leads to the following second quantized Hamiltonian in
which C~ creates the Landau state @,:

We consider N, electrons moving inside a square box of
size L in the x-y plane with a high magnetic field B pointing Jl J2 J3 J4

(2.4)
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where

j)jg3j4 Y J d r ~ ~Id r t@j't( r &)@j'~( r, ) V( r i
—r ~)bj3( r ~)@j4( ))

21 N, Iq !
Sj +j j +j exp /q (j) j3)o

2'
Z u — f — ~ ~ ~ ~0 +]

277Jyqz=, jz=—j~ (modN, ), jd= jt —j4

(2.5)

(2.6)

M
3.9e

2L
(2.7)

5' means momentum conservation j~+jq=—j3+j4 (modN, ).
Zero is excluded in the summation of (2.5) over momenta.
No matter how local V( r ) is the exponential factor in the
scattering matrix element A is of the order 1 as long as

jq = L/2'�/ because of the strong overlap between the Lan-
dau orbitals. eM in Eq. (2.7) is the Madelung energy per
particle of a square lattice with lattice constant L.

III. GROUND-STATE DEGENERACY

is a good quantum number, the result depends on both
v = N, /N, and J. For a given J the ground state C j can be
expressed as a linear combination of all possible Slater states

!j&,j&, . . .) = C, C, !0) with the same total J:

,jIJi.jz ) (3.1)

The energy E (v,J) of the ground state C&j has the sym-

metry property

E(v,J) =E(v,J+N, ) = E(v,J+2N, ) = (3.2)

since a uniform shift of all the particles by one step

As it stands 8 [Eq. (2.4)] is a one-dimensional Hamil-
tonian describing N, electrons in an N, site ring. For small

N„H can be diagonalized exactly. Since the total momen-
tum

N

I

j; j;+ I (and therefore J J+N, ) does not change the
energy. It follows immediately from (3.2) that E(v,J) is
independent of J if N, and N, are relative primes, as mN,
can be made equal to any integer (modulo N, ) for a suitably
chosen integer m. This happens when v is almost irrational
so that N, and N, are large relative primes. The analog of
this in the charge-density-wave system is the independence
of the total energy on the phase angle 0 of the charge-
density-wave condensate. This continuous translational
symmetry in the charge-density wave, however, is "bro-
ken" down to a discrete symmetry when v = n/m is rational.
As a result of symmetry reduction the system is able to
achieve a lower energy for some optimal choices of 0 lead-
ing to m distinct ground states. The kinks connecting dif-
ferent ground states become elementary charged excitations
instead of the electrons and holes.

The analogy suggests that something phenomenologically
similar may happen in the anomalous quantum Hall effect.
Take, for example, N, = 3N, If E(v,J) a. s a function of J
has a minimum at J= J+, it must have another one at
J+ + N, and J+ + 2N, . Then we would have the possibility
of three stable degenerate ground states (Fig. 1). In princi-

ple, for v = n/m there could be more than m equivalent
ground states which are guaranteed by the symmetry argu-
ment. In the calculations that we have carried out the m-
fold degeneracy is exact when m is odd. For m = 2 the de-
generacy is certainly more than twofold.

In Fig. 2 we display the low-lying spectrum for v = N, /

N, =~, N, =4, 5, 6, and for various J. Only the lowest-

energy state is shown for each J in the six-particle case.
The energy is measured in units of e~/I. In Figs. 2 and 3
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FIG. 1, Possible energy dependence on the momentUm J at a

fixed v = —.13'
FIG. 2. Low-lying energy spectra of 4,5,6 electrons in a 12-, 15-,

and 18-site ring, respectively.
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FIG. 3. Love-lying energy spectra of 5,6,7 electrons in a 10-, 12-,
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shorter dashes are used to indicate degenerate states with
the same J. The number of dashes gives the degeneracy.
As is obvious from the figure the ground-state degeneracy
is exactly threefold and there is an energy gap of about
0.06e2/l separating the true ground states from the excited
states. For v = —,, N, = 5, 6, 7, the energy spectra are shown1

in Fig. 3. The ground state is more than twofold degenerate
and the degeneracy probably increases with the number of
particles.

One quantity to partially characterize the degenerate
ground states locally is the charge density of the Landau
ring, i.e., the mean occupation number of each Landau state
p(j) = (CJ"C~). This quantity is plotted in Fig. 4 for v =

3

and v = ~. For v = ~ and N, = 6 the magnitude of the os-2 1

cillation of p (j ) vs j is already very small so that p (j ) is
practically a constant.

Another useful concept in this connection is the parent
state. A parent state is a certain unperturbed Slater state
from which one can generate an eigenstate of the model
Hamiltonian by adiabatically switching on the electron-
electron interactions. Since the total momentum is con-
served the J of the Slater state determines the J of the
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FIG. 5. Ground-state energy per electron as a function of v.

eigenstate. It turns out that the ground states of v = ~ can

all be generated from some particularly nice parent states,
i.e., Slater states which consist of orderly arrays of Landau
orbitals. For example, the state I 1, 4, 7, 10, 13) has a

J = 35=—5 (mod15) corresponding to an optimal choice of J.
Similarly, the state I 1, 5, 6, 10, 11, 15) is a parent state of the
eigenstate whose charge density p(j) is shown as the dotted
curve is Fig. 4. As anticipated by Tao and Thouless a regu-
lar arrangement of the electrons in the space of Landau or-
bitals enhances the correlation energy.

In Fig. 5 we have collected data on the ground-state ener-

gy per particle for different v and different N, . It appears
that the energy versus v curve is nonanalytic near v = ~.
Just as in the case of ordinary one-dimensional charge-
density-wave systems we believe that the qualitatively dif-
ferent behavior of the system at v = ~ (the ground-state de-

generacy) is responsible for this nonanalyticity. For v=~
the oscillation of the energy as a function of N, seems to
have stopped after N, = 7. The N, = 8 result is not displayed
because it is indistinguishable from the N, = 7 and N, = 5
results. From the figure it seems there is no dip at all at
V=~.

V =
IO

IV. KINK EXCITATIONS
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FIG, 4. (Top): Mean occupation number of the Landau states for
&&=5~ &&=15. (bottom): Solid curve for &,=4, %,=10, and bro-
ken curve for N, = 6, N, = 15.

The ground-state degeneracy established in Sec. III
prompts the construction of a kink as a solution connecting
one ground state on one side to another ground state on the
other side. Since we impose periodic conditions, this re-
quires that we consider a 3N, + 1 site ring.

Take the v = N3 /N, = ~ case. The parent state5

4 =
I 1, 4, 7, 10, 13) has J= 35=—3 (mod16). The parent

state is an orderly array of Landau orbitals except for a "de-
fect" between the last orbital and the first orbital. The ex-
act ground-state charge-density distribution p(j) for J= 3
(the bottom curve in Fig. 6) indeed shows a kink center
about j=15. This ground-state configuration which con-
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FIG. 6. Profiles of the 3 kinks.1

by shifting the orbitals at j=2, 7, 12, 17, . . . by one step we
have created a kink at the center with charge —~e. The
resulting parent state

I. . . , —9, —8, —4, —3, 1, 3, 6, 8, 11, . . .)

sists of a —, background plus a charge —e/3 kink seems to
be very stable as it is separated from the first excited state
by 0.06e'/i. The top curve in Fig. 6 is the profile of an op-
positely charged kink.

The insight we have gained allows us to give a nice inter-
pretation of the energy gap separating the ground state from
the excited states in Fig. 2. Take the A, =5 case. The J= 5
and J= 10 ground states can be generated from the parent
state 4 t = I 1, 4, 7, 10, 13) and 42= I2, 5, 8, 11, 14), respec-
tively. 42 is obtained from 4~ by shifting all particles by
one step. For 5 (J & 10 we have to shift some particles.
To keep the parent state as orderly as possible we should
shift those particles in a row. For example, I 1, 5, 8, 11, 13)
would be a good choice. This is equivalent to creating a
kink at j= 3 and an antikink at j= 12. Consequently, the
difference in energy between the lowest-energy states of
J = 5, 10, 15 and those of other values of J represents the
creation energy of a kind-antikink pair. From Fig. 2 this en-
ergy is about 0.07e~/l.

Although we have presented detailed calculations for the
v = ~ case only, the conclusion can be generalized to higher

commensurabilities. For v=n/m there are m degenerate
ground states and the kink excitations have charge
+ (e/m ).

As an illustration we consider the 5 case. Starting from
the parent state

~& =
I . . . , —9, —8, —4, —3, 1, 2, 6, 7, . . .)

V. CONCLUSION

In this paper we have tried to extract some essential
features of the ground-state and elementary excitations of a
two-dimensional electron system in a high magnetic field
from some numerical calculations. We find that when the
filling fraction v is rational v= n/m (m odd) the ground
state is m-fold degenerate. The ground states can be partly
characterized by the mean occupation number of the Lan-
dau states and by the parent states. The kinks connecting
different ground states are fractionally charged elementary
excitations. When v differs slightly from v = n/m, the
ground state consists of the v = n/m ground states plus
kinks which are probably pinned by the impurities, giving
rise to the observed plateau in the Hail conductance.

To illustrate this for I = —, we use the argument that
Laughlin used for the integral Hall effect. ' In the presence
of an electric field E in the x direction the energy of 4, is
Ex, . Under a virtual change of the magnetic potential
5A»= (hc/e)(1/L ), @, goes into @,+t. This is equivalent
to shifting the entire condensate by one step. The change
in the electric potential energy is therefore e'EL, where
e'= ve = —,e is the average charge per Landau state. When

v deviates a bit from v = ~, the system is composed of a

uniform v = -7 condensate plus some kinks which because
of the excess charge they carry are pinned by the impurities.
The change in the electrical potential energy is therefore
due to the underlying T condensate only, i.e., the Hall con-

ductance is the same as that for v= 3. We would like to
emphasize that e" is not the charge of a kink for n & 1

(v = n/m).
In the absence of impurities because of the translational

invariance in the y direction the kink is an extended homo-
geneous object in that direction in contrast to the vortexlike
object that Laughlin proposed. It is, however, conceivable
that the latter can be expressed as a linear combination of
the kink solutions judging from the fact that both the kink
and the vortex have the same charge and about the same
creation energy. '
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