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The hehcity moduli of various dilute, classical XF models on three-dimensional lattices are stud-
1cd w1th a v1cw to undcIstandlng some aspects of thc supcrAuldlty of Hc 1n Vycor glass. A spln-

wave calculation is used to obtain the low-temperature helicity modulus of a regularly-diluted XF
model. A similar calculation is performed for the randomly bond-diluted and site-diluted XY
models in the limit of low dilution. A Monte Carlo simulation is used to obtain the helicity modulus

of the randomly bond-diluted XFmodel over a wide range of temperature and dilution. It is found
that the randomly diluted models do agree and the regularly diluted model does not agree with cer-
tain experimentally found features of the variation in superAuid fraction with coverage of He in

Vycor glass.

There have been many studies of the effect of dilution
on bulk thermodynamic properties of a variety of spin
models. ' However, very little attention has been paid to
the effect of dilution on the helicity modulus Y, which
can be viewed either as the interfacial free energy of an
isotropic, n-component (n ) 1) spin system or a rigidity
modulus describing its response to a weak, long-
wavelength, helical magnetic field. In three dimensions,
Fishman and Ziman have calculated Y analytically for a
regularly (as opposed to randomly) diluted spherical (i.e.,
n = ao) model. In two dimensions, Solla and Riedel have
used a Migdal-Kadanoff real-space renormalization
group to calculate Y for a random, bond-dilute, classical
(i.e., spin S = oo) XF model (n =2). Most recently,
Ebner and Stroud have obtained Y for a model of a
granular superconductor. To the best of our knowledge,
Y has not been obtained for any other dilute spin model.

In this paper we report on three calculations —a low-

temperature, low-dilution, spin-wave analysis, a Migdal-
Kadanoff real-space renormalization group, and a Monte
Carlo simulation —-of Y for the three-dimensional, ran-
dom, bond-dilute, classical XY model. The Hamiltonian
for this model is

H = —g Jtj s;.sj, (la)
&',J&

'
where the sum is over distinct, nearest-neighbor pairs of
sites, (i,j), on a simple-cubic lattice, the spins s; are
two-component vectors of unit length, and the bonds J;J
are independent random variables with a distribution
given by

P(J;, )=(1 q)&(J;, ——1)+q&(JtJ ),
where q is the concentration of missing bonds. We shall
assume periodic boundary conditions in all directions.

There are a variety of models that can be mapped,
under certain conditions, onto quantum (spin S= —,, 1, —,,
etc.) or classical XF models. These include quantum lat-

tice fluids and Heisenberg models with a strong anistro-

py along one direction. 8 There are other systems which
resemble XF models by virtue of having an order parame-
ter that has two components. The most common example
is an interacting Bose fluid (e.g. , He). ' The superfluid
state and the superfluid density p, of such a Bose fluid are
the analogs of the ordered state and the helicity modulus
Y, respectively, of an XY'model. Our reason for study-
ing model (1) is that it might shed some light on the su-
perfluidity of "He in Vycor, ' a porous glass consisting of
a network of narrow, interconnected channels. " This net-
work is not ordered in any obvious way, but, as far as we
know, there is no information available on how random it
is. In the absence of such information, it is not unreason-
able to try and model the properties of He in Vycor by a
bond-dilute, quantum lattice gas. The latter can be
mapped onto the bond-dilute, spin S=—, XF model, '

which we further approximate by its classical (S = ac)
version, Eq. (1). The point is to see whether Y for the
simplified model {1)captures in some gross way the qual&-

tative' '" features of p, for He in Vycor.
Both r and the critical temperature T, become

depressed for any spin model ( n & 1) with increasing dilu-
tion [increasing q for model (1)], as do p, and T, with de
creasing total density p of He in Vycor. Clearly, a better
criterion than the mere depression of Y and T, with in-
creasing dilution is required to distinguish between dif-
ferent models. One such criterion' can be constructed by
looking at plots of R:Y(T,q) /Y( T =0—,q) versus
v = T/T, (q) for different values of q, the parameter
which measures the degree of dilution. The analogous
plot' of p, (Tp)/p, (T =0,p) versus T/T, (p) for He in
Vycor is shown in Fig. 1(a) for different values of p. Note
that, at least for low values' of p [for which T, (p) (800
mK], the curves in Fig. 1(a) show a distinct trend: for
fixed T/T, (p), p, (Tp)/p, (T=O, p) decreases as p de-
creases. Low values of p should correspond, roughly, to
high values of the dilution q in a model similar to (1).

Q~1984 The American Physical Society
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(2) is always violated.
In a simple effective-medium theory, in which model

(1) is replaced by a pure one with bonds of strength 1 —q,
R(r, q) is independent of q. However, a simple, though
crude, effective-medium argument for a weakly interact-
ing Bose gas does give (at least at low temperatures) the
trend we are seeking: p, (T,p)/p, (T =0, p) decreases as p
decreases for fixed T/T, (p). Such an argument begins
with an interacting Bose gas (such as He) and assumes
that the only effect of the Vycor glass is the uniform
reduction of the strength of the interaction with decreas-
ing density p of He in Vycor. For a weakly interacting
Bose gas, '

p, ( T) /p = 1 —2m T /45pc, as T~0, (3)

where c = [no(T) V(0)/m]'/ is the speed of sound, no(T)
is the condensate density, V(0) is the zero-momentum
Fourier component of the interaction potential, and m is
the mass of the bosons. [Note that p, (T =0,p) =p, and
irt=kii ——1.] To lowest order in T, we can replace c by
c ( T =0) on the right-hand side of Eq. (3). Since
no(T=O) is proportional to p, (T=0,p)=p, we can
rewrite Eq. (3) as

p, ( T)/p= 1 —I/i/( T/T, )4p (4)

0.8—

UI" 0.6-

0.2-

0.0
0.0 I.O0.804 I.20.2

Thus, for a spin model that mimics the behavior of He in
Vycor, a plot of R (~,q) versus ~ should be similar to Fig.
1(b), i.e., for fixed ~, R (~,q) should decrease as q increases
(at least for sufficiently large' q),

R (T,q2) &R (~,qi ), (2)

where the equality holds only for ~=0 or 1. In the regu
larly diluted spherical model, the analog of the inequality

0.6
~ (q)

FIG. 1. (a) Plot of the scaled superAuid density

p, (T,p)/p, (T =0,p) vs the scaled temperature T/T, (p), where

p is the total density of He in the Vycor sample, and T,(p) is
the critical temperature for the superfluid transition at this den-

sity. These experimental data are from Ref. 14 (also see Ref.
16). (b) Schematic plot of the expected variation with q of the
scaled helicity modulus R(~,q)= Y(T,q)/Y(T =0, q) vs the
scaled temperature ~=T/T, (q) for a dilute spin model that
mimics the behavior of the superfluid density of He in Vycor.
The larger q is, the more dilute the model, as in model (1). [See
discussion in the vicinity of inequality (2) and Ref. 17].

where W is independent of T and p, and we assume that
the critical temperature T, -p . (T, -p / for a nonin-
teracting Bose gas, ' and the corrections to this behavior
are small for a weakly interacting Bose gas. ) Equation (4)
shows that, for fixed T/T, (p), p, (T)/p decreases as p de-
creases.

Rasolt and Stephen have recently used a classical ap-
proximation to an interacting Bose gas to study the super-
fluid transition of He in Vycor. Their study is confined
to the vicinity of the critical point and does not consider
the global trends [e.g., inequality (2)] that we concentrate
on. We reserve a comparison of our approach with that
of Rasolt and Stephen for the concluding remarks at the
end of this paper.

Our principal results are as follows.
(i) A spin-wave analysis of the randomly bond-dilute

model (1) indicates that the inequality (2) is satisfied for
sufficiently low values of q and w. [We consider configu-
rations in which only one bond is missing, and obtain r
exactly to orders q, T, and qT. To obtain a scaled plot
such as Fig. 1(b), we need (1/T, )dT, /dq

~ e 0. We have
estimated this quantity from a variety of numerical results
(see Table I).z3]

(ii) A low-temperature, spin-wave analysis of the XY
version (see below) of the regularly diluted spherical
model indicates that the appropriate analog of the in-
equality (2) is violated (at least for sufficiently large dilu-
tion and w«1).

(iii) We have used a variety of Migdal-Kadanoff cal-
culations to obtain R (w, q) for the model (1). In all these
calculations, the inequality (2) is violated for all v. This
contradicts the spin-wave result for qi, q2, v« 1 given in
(i) above. Thus, Migdal-Kadanoff approximations cannot
be relied upon to predict the dependence of R (v, q) on q.

(iv) Our Monte Carlo results for R(v, q) versus v for
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Lattice

fcc
fcc
fcc

'Reference 23(c).
"Reference 23(b).
'Reference 23(a).

2

3

3

3

Dilution

Site

SltC

1.22+0.02'

1.16+0.01"
1.36+0.03'
1.15+0.01'

q =0, 0.4, and 0.55 are shown. in Fig. 2. The conclusion
that can be drawn from this figure is that R (r,q) is not a
very sensitive function of q [unlike p, (T,p)/p, (T =0,p),
which changes substantially with p, as shown in Fig.
1(a)]. Unfortunately, the error bars on our data are so
large that it is impossible to tell whether the inequality (2)
is satisfied or violated.

TABLE I. Values of 8 for various randomly diluted, three-
dimensional spin models [our Monte Carlo calculation yields
8—:—(1/T, )dT, /dq

~ ~ o=1.13]. We can obtain an upper
bound on 8 for the classical, bond-dilute XF model on a
simple-cubic lattice from the data given here as follows. (i)

8(bond dilute) ~8(site dilute): the removal of one site disorders
the system more than the removal of a bond because, in the
former case, more bonds (equal to the coordination number of
the lattice) are broken. We belive that the argument presented
here can be made rigorous [Ref. 23(b)]. (ii)

8(S= oo ) &8 (S =
~ ): We can plausibly expect that it is easier

to disorder a quantum model than a classical one. This expecta-
tion is borne out by numerical calculations for the n =3 Heisen-

berg model, but we have not been able to make the argument
rigorous. If we combine the inequalities (i) and (ii) with the data
given in the table, we obtain the bound 8 g 1.22 for the 5 = oo,
bond-dilute XY model on the simple-cubic lattice. This bound is
certainly not Ilgorous, but is ba,scd on arguments that arc vcI'y

plausible. Also, it is consistent with our Monte Carlo estimate
of 8=1.13.

In the remainder of this paper we describe the spin-
wave analysis and the Monte Carlo simulations referred to
in (i), (ii), and (iv), respectively. We do not give any de-
tails of our Migdal-Kadanoff calculations because they
are completely unreliable for our purposes. We close with
some concluding remarks on the relevance of our results
to the superfluidity of He in Vycor.

SPIN-WAVE ANALYSIS

Model {1)

We calculate Y(T,q) by using a straightforward exten-
sion of a formula suggested by Rudnick and Jasnow for
pure spin systems, namely

8 f(T,q;ko)

Oko
(&)Y(T q)=

ko ——0

s; = —st s111(k o R; ) +s; cos( k o Rt )

where f( T,q;ko) is the "quenched-averaged"' free energy
density of the model (1) in its ordered state with a twist of
wave vector ko in the order parameter (see below). We
evaluate f( T,q;ko) and Y(T,q) for low q and T via a
classical version of the spin-wave approximation used by
Banavar and Jasnow for a pure [q =0 in Eq. 1(b)] quan-
tum XF model. The strategy is simple: At low tempera-
tures, and for a given configuration of present and miss-
ing bonds, we assume a "helical" state with

&si" & =Mocos(ko Rt) and &si~& =Mosin(ko. R;), where

Mo is the magnitude of the magnetization per spin, x and

y refer to the components of the spin, R; is the position of
the ith site, and the angular brackets denote a thermal
average. The free energy density f is evaluated in the
spin-wave approximation for each configuration, averaged
over the distribution (lb), and differentiated as in Eq. (5)
to obtain r.

It is convenient to introduce the variables

q 0
q = 0.4

q = 0.55 I

I

I 'l t I00'
0.0 0.5 I.G

&(q)

FIG. 2. Plots of the scaled helicity modulus
& (&,q) ='f( T,q)/"f( T =0, q) vs the scaled temperature
w= T/T, (q) for the bond-dilute XF model for q =0
[ T,(q}=2.208+0.005 and Y(T =0, q}=1], q =0.4 [ T,(q)
=1.208+0.005 and Y(T=O, q)=0.405+0.004], and q =0.55

[T (q)=0.80+0.0»nd Y(T=0, q}=0.178+0.004]. Data are
obtained from the Monte Carlo calculation described in the text.
A solid line has been drawn through the q =0 data.

s;"=s,"cos(ko R;)+seisin(ko. R,. ) .

(Note that (s &=0 and (s;"&=Mo.) We now make the
sp1n-wave approximation,

s;"=1 P;/2+0(P; ), —s =P;+O($,'),
where ~P; ~

&~1 for low T. If we define the Fourier-
transformed variables

8( k ) =(1/N) '~ g PJexp(i k RJ ), .

where X is the total number of sites in the lattice, the
spin-wave approximation to the Hamiltonian (1) may be
written as

~sw =C+ g 8(k)G '(k, k ')8(k ') —g 8(k) V(k),
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C—:—$ J~Jcos( ko R,J ),
&~,j&

G 0'=f „„5„-„,=(2—2cosk x)5
7

(16)

6 (k, k'):—(1/N) g J;,cos{ko R;J)u;J{k)u J(k'), (8)
&,j&

'

V(k)=(1/N) ~ g JIjsin(ko RJ)u J(k),
&~,j&

—ik. R; ik. R;
u;J =e '(1 —e "),
and R;J =R;—RJ. The total free energy of the model (6)
follows by doing Gaussian integrals and. is

F= C+(klI T/2) Tr ln(6 '/kII T) ,
'

( Vt—G—V)+F0, (11)

wllclc Fo colltallls 01lly tcrIIls Independent of ko, kII 1S

the Boltzmann constant, and

VtGV—:g V*(k)6(k, k')V(k') .

(We shall use this condensed operator notation below. ) By
substituting Eq. (11) in Eq. (5), we obtain the unaveraged
helicity modulus

Y„= lim ( I/X) Q Jq —(kII T/2Ã)Tr(66„')
X~ oo &,j&

'

By symmetry, the sum over k is N/3 (N/d in d dimen-
sions). Tlllls,

(18)

a result that must be multiplied by (1—q)l, the weight of
the zero-impurity configuration.

&le-lf7tpQPltg Case

The Green function is obtained by combining Eqs. (8),
(10), and (15),

6 =Go —(u Ipu II /N),—I (19)

where we have assumed that the bond between sites 1 and
2 ls missing. By using thc identity

(u IIGou 11}/N = (1/N) g (2—2 cosk a )/f „=—,
'

Lastly, V„=O because no bonds are missing. Hence the
zero-impurity contribution to the helicity modulus from
the second and third terms of Eq. (12) is

Yo——( kII—T/2X) g f-„ /f- .

—(1/X)( VtGV„) (12)

where 6 is evaluated at ko ——0, the prime on the sum indi-
cates that only bonds in the x direction enter the sum (this
is because we have chosen, without any loss of generahty,

ko ——kox),

6„'(k,k ')=(1/N) g Jiuj(k)uJ(k '),
&~,j&

(13)

V„(k)—:{I/X)'~ y J; u,J(k)
&,j&

' (14)

%'e now average the helicity modulus r„over the dis-
tribution (lb). Our result is accurate to O(q) and is ob-
tained by considering configurations in which all bonds
are present ("zero impurity") and those in which only one
bond is absent ("one impurity"}. Note that the first term
in Eq. (12) can be averaged directly and yields 1 —q. The
second and third terms require more care and are best
handled separately for the zero- and one-impurity cases.

Ol

6 =60+ (3/2X)(60ulpu IMAGO) .

[In d dimensions, the factor —', is replaced by d/(d —1).]6 ' follows from Eqs. (13) and (16),

6 =6„0 —(ullu Ip/X)5, „-,
—1 (21)

where the second term contributes only lf the mlsslng
bond is aloIlg tile x dllcctloll (recall tllat ko=kox).
average the second term in Eq. (12) we need Tr(66~ ).
By combining Eqs. (19)—(21) wc obtain

Tr(66„')= g f-„ /f -„+(3/2&}g f-, .g-„.-. /f -„
k k

—(3/2X) g i
ull(k)

i 5, -/f- . (22a)

[a—:RI —RI aIld tllc sum ls thc salrlc as thc ollc 111 Eq.
(17)],Eq. (19) can be rewritten as

(Gull)-„= 2~ (Goulz)-„=3ulz(k}/2f-„,

Zero-&mpunty ease

The Green function given by Eqs. (8) and (10) is (at
ko ——0)

60 '(k, k')=f 5„„,=(6—2cosk.x —2cosk y

Since g f-„=f-„,the contributions from the last two

terms in the above equation cancel identically when we
sum over the possible orientations of the missing bond.
We are left with a sum of the type that appeared in Eq.
(17), and so

—2cosk z)5- -, ,k, k'
g Tr(66 ') =3K/3=% . (22b)

where the subscript 0 lndlcatcs that Qo boQds arc mlsslng»
and wc have set the lattice sparing equal to 1. From Eq.
(13) we obtain

The last term in Eq. (12) is obtained by combining Eqs.
(14), (19), and (20), and summing over the possible orien-
tations of the missing bond, we obtain
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g V„GV„=(1/X) g (u I2Gu I2)5--

Thus t4e one-impurity contribution to the last two terms
in Eq. (12) is

YI —— kII T—/2 I /2N —.

Since we have already summed over the orientation of the
missing bond at a fixed site, this term will have to be mul-
tiplied by the weight factor X(1—q)' "q.

We now combine Eqs. (18) and (24) with their appropri-
ate weights and 1 —q, the average of the first term in Eq.
(12), to obtain

FIG. 3. Regularly diluted, two-dimensional square lattice.
The spins at the vertices (solid circles) are connected via the I
"decorating" spins (open circles). Only nearest-neighbor spins
interact with one another as indicated by the lines or "bonds. "

Y(T,q)=1 —3q/2 kIIT/6—+O(q „T ) . (25)

R(r,q)=1 —A(q)r+O(r ), (26)

dT~
A(q)= [klIT, (q =0)/6] 1+ —+

2 Tq dg ()

[Note that the coefficient of the qT term in this expansion
is 0. Also, the corrections of O(T ) would require going
beyond the spin-wave approximation. ] Equation (25) can
be rewritten as [see inequality (2)]

simple as it is in Eq. (la). In spite of this complication, a
spin-wave analysis can be used to obtain Y for all I at low
temperatures by using methods similar to the ones used to
obtain Eq. (25) (of course, no configuration average is re-
qull'Cd). T11C allalog Of Eq. (25) IS

Y(l, T)=1/(1+1) —(I+3l)klIT/6(1+1)'+O(T ), (29)

which can bc fcalrangcd to glvc

R (~, I)=Y(I,T)/Y(l, T =0)=1 D(l)r+—O(r'),
where"

+O(q')
D (I)—:(1+31)klIT,(1)/6(1+ 1) . (31)

The inequality (2) will hold at sufficiently low q if
A (q &0) & A(q =0), i e., if

dT

T~ dq 0 2
e (2g)

A spin model on a lattice can be diluted regularly by
"decorating" each bond between spins with I additional
splns as shown ln Flg. 3 for a square lattlcc. The hlghcl
I is, the more dilute the system is.

%C consider a classical XF model on such a three-
dimensional, decorated simple-cubic lattice. The I spins
decorating each bond forin a one-dimensional chain.
They can be integrated out directly without introducing
non-nearest-neighbor couplings (as in any one-dimensional
"decimation" transformation). However, the form of the
interaction between nearest-neighbor spins is no longer as

To the best of our knowledge, 8 has not been calculated
for the classical g I' IIlodel on a three-dlmcnslonal
simple-cubic lattice. Our Monte Carlo calculation indi-
cates that 8=1.13. We have also estimated 8 from its
values for other models (see Table I) and find 8&1.22.
Thus the inequality (2) should be satisfied by the model

(1) for low q and T. (We have obtained similar results for
the site-dilute, classical XI'model. '

)

The analog of the inequality (2), namely R (r, l2) ~ R(r, l, )

for lI ~ l2, is satisfied if D(l) &D(0), which, by virtue of
Eq. (31), requires

T, (I)/T, (I =0) &(I+1)/(I+3l) .

(In d dimensions, 3 is replaced by d.) The inequality (32)
has to be violated for sufficiently large I, for T, (l)~0
monotonically as I—+(x). Thus, the regularly diluted XF
model violates the analog of inequality (2).

MONTE CARLO RESULTS

Our MOIltc Cal'10 slmulatlon of thc lllodcl (1) Is sl1111181'

to the one of Ebner and Stroud for a model of a granular
superconductor. The only new feature of our calculation
l.s that. wc Usc a phenom cnologlcal rcnormallzatloIl
method ' to evaluate T, (q). The helicity modulus is ob-
tRIIlcd by using tllc formula [wlllcll CRIl bc derived from
Eqs. (1) and (5)]

&(T,q)=()/))') g J,,cos(n; —nj))
(~,j}

2—(1/N)(1/kII T) g JJsin(a; —aJ )
' (I',j}

where o,;—a is the angle between the spins at sites i and
j, and the prime on the sum indicates that only bonds in
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the x direction enter the sum. The thermal average is per-
formed in the usual way, and the average over the distri-
bution (1b) is perfomed by evaluating Y for several (typi-
cally 10) realizations of a lattice. We have done simula-
tions on lattices of size M &(M XM, with M =5, 8, and 10
for q =0, M =8, 10, and 12 for q =0.4, and M =6, 8,
and 12 for q =0.55. In most cases we have used 5000
Monte Carlo steps per spin, although in a few difficult
cases we have used 10000.

To obtain T, (q), which is required for the scaled plot of
Fig. 2, we use the phenomenological renormalization
method described by Binder, "' and by Barber and
Selke. " ' We plot 1/M(

~
1( ~M)

'~ ~ versus T for dif-
ferent values of M, where

~
g

~

~=
(

(1/E) g exp(iu~) ),
J

iV =M', and the exponents P=0.3455+0.002 and
v=0.669+0.002 are obtained from Ref. 34. (Note that

—
[
T —T,

~

~ as T~T, .) The curves for two
different values of M, for instance Mi and M2, intersect
at a temperature T(Mi, Mq). The temperatures
T(Mi, M2) rapidly approach the critical temperature
for the infinite system as Mi, M2~ao. By this method
we obtain T, (q =0)=2.208+0.005, which is in very good
agreement with other calculations. We also find
T (q =0.4) =1.208+0.005 and T,(q =0.55) =0.80+0.01.

In Fig. 2 we show plots of R(r, q) versus r for q =0,
0.4, and 0.55. For each value of q, our data are obtained
from the largest lattice that we have simulated. The
zero-temperature values of the helicity modulus are
Y(T =0, q =1)=1, Y(T =0, q =0.4) =0.405+0.004, and
Y(T =0, q =0.55)=0.178+0.004. The error bars are
shown only for the case q =0.55, which yields our noisi-
est curve. (A large fraction of this error comes from the
average over the different configurations of the bonds. )

Given our large error bars, it is impossible to decide
whether the inequality (2) is satisfied or not. The only
possible conclusion that we can draw is that the effect of
dilution on model (1) is not as dramatic as for He in
Vycor [Fig. 1(a)]; however, even this conclusion is moot
because we really do not have an explicit quantitative rela-
tion' between p in Fig. 1(a) and q in Fig. 2.

CONCLUDING REMARKS

We have investigated the effect of dilution on the heli-
city moduli of three-dimensional, simple-cubic, classical
XY models. By considering configurations in which one
bond is missing, we find, for the randomly diluted model
(1) at sufficiently low dilution and temperature, that cer-
tain features of the helicity modulus [Fig. 1 and inequality
(2)] are qualitatively similar to the behavior of the super-
fluid density of He in Vycor. However, the helicity
modulus of the regularly diluted model (Fig. 3) shows just
the opposite behavior [see discussion in the vicinity of in-
equality (32)], at least for large dilution and at low tem-
peratures, as does the helicity modulus of the regularly di-
luted spherical model of Fishman and Ziman. It is
tempting to conclude, therefore, that, in order to under-
stand the superfluidity of He in Vycor, it is crucial that

the dilution be random. This should not come as a
surprise because the structure of Vycor is far from regu-
lar, but some caution should be exercised in accepting
such a conclusion for two reasons. (i) Our calculations are
just not good enough to check whether model (1) satisfies
the inequality (2) for large dilution. Unfortunately, the
analog of inequality (2) for the experiments on He in
Vycor is satisfied unambiguously only at low densities of
"He (i.e., large dilution). ' Note that the lowest T, in Fig.
1(a) is 2 orders of magnitude smaller than T, for bulk
He. To obtain a comparable suppression of T, in model

(1), we need q) q, =0.753, the percolation threshold for
the simple-cubic lattice; however, Monte Carlo simula-
tions in this regime are impractical. (ii) It is quite possible
that the features of Fig. 1 that we have chosen to
highlight are completely nonuniversal and depend in a
complicated way on the geometry of Vycor. If this is the
case, it is futile to use inequality (2) to decide whether ran-
domly diluted spin models provide a better description of
the superfluidity of He in Vycor than regularly diluted
ones or vice versa. Qnly more experiments on the super-
fluidity of He in different porous media can decide how
universal the trend embodied in inequality (2) is.

We have already noted that a model of a weakly in-
teracting Bose gas, in which the strength of the interac-
tion decreases with decreasing density of He in Vycor,
satisfies the appropriate analog of inequality (2) [see dis-
cussion in the vicinity of Eqs. (3) and (4)]. Such an ap-
proach is based on the assumption that Vycor allows us to
observe a superfluid transition at low densities, but does
not change the basic form of the Hamiltonian. Since
Vycor provides, in all likelihood, a quenched random po-
tential that affects the basic interactions, we feel that
models which treat Vycor in such a crude "effective-
medium" approximation must miss some features of this
system. Rasolt and Stephen ' have proposed a classical,
n-component spin system as a model for a dilute, interact-
ing Bose gas. The particle density, corresponding to the
density of' "He in Vycor, is controlled via the spherical-
model constraint. Their treatment focuses on the cross-
over from ideal- to interacting-Bose-gas critical behavior
and does not address the global trends in p, (Tp) dis-
cussed here. Their results are for n =1 ( He corresponds
to n =2), which leads to "Fisher renormalization" of the
critical exponents that characterize the superfluid transi-
tion in the interacting gas. It is not quite clear for what
values of p and T the "effective-medium" approximation
of Rasolt and Stephen is valid.

For weak dilution, an argument due to Harris shows
that the critical exponents of a pure system are unchanged
by a quenched random potential, if the specific-heat ex-
ponent a &0 for the pure system. (a= —0.008+0.003 for
the XY"model in three dimensions. ) As far as we know,
there is no conclusive result for the effect of strong dilu-
tion on the critical exponents of an XFmodel in three di-
mensions. The Migdal-Kadanoff calculations we have
done do not lead to new critical behavior even for strong
dilution; however, it is not clear how much one should
trust a Migdal-Kadanoff calculation in such matters, for
it does not even yield a random fixed point" for the
three-dimensional Ising model (Kinzel and Domany ).
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(a=0.12~0 for the three-dimensional Ising model, and
thus on the basis of the Harris criterion, new critical
behavior, governed by a random fixed point, is expected. )

At the moment it is not feasible to use Monte Carlo
methods to obtain critical exponents for the dilute model
(1). Even Monte Carlo renormalization-group calcula-
tions on the pure XF model in three dimensions have not
succeeded in obtaining reliable values for critical
exponents. '"' The experiments are not yet at the stage
where the critical exponents for the superfluid transition
of He in Vycor can be measured precisely. ' ' '

Thus we feel that there are various open questions
which need to be investigated, both theoretically and ex-
perimentally, before we can obtain a full understanding of

the superfluidity of He in Vycor, in particular, and in
porous media in general.
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