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The resistivities of several AuMn alloys, containing between 0. 005 and 1.5 at. % Mn, have
been measured in the temperature range 0. 5-40'K. The magnitude of the spin resistivity is
determined from the decrease in resistance due to ordering in internal fields. This, com-
bined with a measurement of the coefficient of the logarithmic term in the resistance at tem-
peratures well above the resistance maximum, allows the Kondo temperature to be deter-
mined, the value so obtained being of the order of 10 ~3'K. The predicted resistivity at T =0,
in the absence of interactions, is shown to be comparable with the unitarity limit for
d-wave scattering. Information is also obtained concerning the magnitude and distribution
of internal fields within the alloys. The distribution is found to approximate to a Gaussian,
but with a dip in the region of very low fields.

I. INTRODUCTION

Previous investigations, ' and the present re-
sults, demonstrate that the temperature dependence
of the resistivity of dilute AuMn alloys is qualita-
tively the same as that observed in many other
dilute-magnetic-alloy systems. In very low con-
centration alloys, the resistivity increases log-
arithmically with decreasing temperature in the
liquid-helium temperature range. At rather higher
concentrations the logarithmic increase is termin-
ated and a broad maximum is observed, associated
with the onset of magnetic ordering, and the resis-
tance falls as the temperature is lowered further.
The main quantitative difference is the rather
small magnitude of the logarithmic term, which is

approximately 15 times smaller in AuMn alloys
than in AuFe alloys3 of comparable concentration.
As the spin value of Mn in Au is significantly lar-
ger than that of Fe in Au, it may be concluded that
the Kondo temperature in AuMn is extremely low.

In the present investigation, the resistances of
AuMn alloys containing between 0.005 and l. 5%
Mn have been measured in the temperature range
Q. 5-40'K. The decrease in resistance below the
ordering temperature is combined with the magni-
tude of the logarithmic term at higher tempera-
tures to provide an estimate of the Kondo tempera-
ture. The deviation of the resistance from a log-
arithmic temperature dependence is used to pro-
vide information on the magnitude and distribution
of internal fields within the alloy.
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II. RESULTS

The alloys were prepared by induction melting
appropriate quantities of Johnson Matthey "Spec
Pure" Au, and 99. 99/, pure Mn (Koch Light Indus-
tries). After an homogenizing anneal at 950 'C for
six hours, resistance specimens were prepared in
the form of tapes approximately 8 & O. 3 & 0. 01 cm
in size. This was followed by a strain-relieving
anneal at 500 C for two hours. The alloys were
analyzed chemically for Mn and Fe content, and
the Mn concentrations are given in Table I. The
Fe impurity concentration was found to be typically
5-10 ppm in both the AuMn and pure Au samples.
Simultaneous resistance measurements of five al-
loys and one pure Au specimen were made in a
conventional He, cryostat operating in the tempera-
ture range 0. 5-300'K, using a standard four-
terminal potentiometric technique. Details of the
apparatus and method of measurement have been
described previously. 3

The excess resistivity per atomic percent of Mn,
p/c, where p= p(Alloy) —p(Au), and c is the Mn
concentration in atomic percent, is plotted against
temperature in Fig. 1. The logarithmic-tempera-
ture-dependence characteristic of conduction-elec-
tron scattering from noninteracting rqg0;netjc im-
purities' is evident in the most dilute alloys. In
the more concentrated alloys this is modified by
interaction effects which lead to a decrease in
resistance at low temperatures. The temperature
T of the resistance maximum increases as the
concentration increases.

At higher temperatures (10-15'K) the excess
resistance p passes through a minimum and in-
creases as the temperature is raised further.
This results from positive deviations fram Mat-
thiessen's rule 'This de. viation (which is observ-
ed in both dilute magnetic'3 and nonmagnetic al-
loys ) varies initially as yp~, where P& is the pho-
non resistivity and y is a constant of the order of
1. Significant effects are therefore only expected
(and observed) in the phonon region, and for this
reason the analysis of the results is limited to
temperatures below 7 'K where the deviation is
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FIG. I. The excess resistivity per atomic percent of
Mn, p/c plotted against temperature. The nominal Mn

concentrations are as shown in the figure. The scale
refers to the 0. 1% alloy. Small vertical displacements
(not exceeding 0. 2 pO cm/at. %) have been applied to the
other curves for the sake of clarity.

sufficiently small to be ignored.

III. ANALYSIS OF RESULTS

There have been several calculations' ' of the
resistivity of a dilute magnetic alloy in a magnetic
field (either external, internal, or both). Yosida's'
calculation to second-order perturbation theory
reveals several important results. At high tem-
peratures, T»II, ' the resistivity can be written

Mn conc.
(c at. %)

(Nominal)

Mn conc
(.c at. %)

(Analyzed)

D ~d

(@&em) (p& cm 'K2) (pQ cm 'K4) d& 0.5'K
(pO cm 'K )

('K) (pG cm) (pA cm)

TABLE I. Data relating to the resistivities of the AuMn alloys.

Qp A C

0.005
0.01
0.02
0.05
0.1
0.2
0.5
1.5

0.0025
0.004
0.018
0.036
0.11
0.18
0.54
1.58

0.68

2.4
3.9
8

20

0.0088
0.0185
0.0355
0.095
0.24

0.0129
0.0242
0.0472
0.124
0.246
0.476

0.000 31
0, 000 83 0.000 07
0.001 44 0.000 58
0.002 95 0.0045
0.0053 0.022
0.0091 0.089

0.000 07
0.0022
0.026
0.24

0.016
0.020
0.027
0. 028
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p=AV +AJ S(S+1),

where A= Snm*'cv/2e SE~, c is the impurity con-
centration, E„ is the Fermi energy and v the
atomic volume of the host, and m. ~ is the conduc-
tion-electron effective mass. J and V are defined
by the s-d Hamiltonian X= V+ 2JS ~ s, where S is
the impurity spin, s the conduction-electron spin
density at the impurity site, and V is the screened
coulomb potential of the impurity (we assume V
»J). In the temperature range T»H, one-third
of the spin-dependent term is contributed by
elastic non-spin-flip scattering and two-thirds by
spin-flip scattering. As the temperature falls
below II, the populations of the allowed spin com-
ponents M, of the impurities are modified (the
local field is directed parallel to the z axis) and,
at T=O, spin-flip scattering falls to zero. Non-
spin-flip scattering contributes two terms, one
proportional to J M„"which increases to AJ S
at T=O. The second term —4AJ M, arises from
an interference between spin and potential scat-
tering, and this dominates the variation of the
resistance at low temperatures in an applied mag-
netic field or for ferromagnetic ordering. For an
alloy of the kind considered here, which exhibits
antiferromagnetic ordering, I, is zero, and the
interference term therefore makes no contribution
to the zero-fieM resistance. Thus, for an alloy
undergoing antiferromagnetic ordering, Yosida'
shows that to second order in J, and in zero applied
field, the spin resistivity decreases by an amount
A J S [fromAJ S (S+ 1) to A J S ] as the temperature
falls to zero.

Abrikosov' summed the perturbation series to
infinite order in J/Ez and determined the resistiv-
ity in the presence of an external magnetic field, or
for ferromagnetic ordering. We will assume that
for an antiferromagnetically-ordering system the
interference term in Eq. (15) of Ref. 8 averages to
zero for the reasons just described, and this equa-
tion may then be written

[1—2JN(0) ln (D/k T„,)]
S S+1 —Mg

where x=H/T, and T,« = T for x«1 and is of the
order of H for x» l. D is an energy of the order
of the bandwidth, and N(0) is the density of conduc-
tion-electron states at the Fermi level. The term
in large parentheses results from the modification
of the equilibrium populations of spin states in a
finite field and is similar, though not identical, to
the result found by Yosida. The scattering of elec-
trons from impurities in each M, state has now been
modified by many-body effects, and this has led to
the replacement of the exchange potential J by a

renormalized potential J« for the scattering of
electrons within an energy kT of the Fermi surface,
given by

J
1 —2JN(0) In(D/kT„, )

The temperature dependence of J,« leads to the
approximately logarithmic variation of resistance
with temperature for x« 1, and its field dependence
leads to a logarithmic field dependence of the re-
sistivity in the limit x» 1. The third-order per-
turbation calculations of Harrison and Klein, and
of Heal-Monod and Weiner, ' demonstrate that the
simple separation of the resistivity into the product
of two terms (a modified J and a term in S) is in-
correct, though their results are identical to that
of Abrikosov' (to third order in J) in the limits of
high and low temperatures if T,« is written

(T2+ P2H3)2/8

where P=0. 32 for x«l and P=O. 77 for x»1.
(A T„,of this form, but with a temperature-inde-
pendent P, has been suggested by Suhl. '6)

In the analysis which follows, the spin-dependent
resistivity is estimated from the decrease in re-
sistivity due to ordering in internal. fields. This,
combined with a measurement of the coefficient of
the logarithmic term in the resistivity for x«1,
allows the Kondo temperature to be determined
[the Kondo temperature is defined by' Tx = (D/k)
x e '/~~"' ']. Thus, from Eq. (1), the resistivity
change &p„=p(T„)—p(0) [where p(T) is the ex-
cess resistivity at temperature T„of the resistance
maximum and p (0) is the excess resistivity of the
alloy, extrapolated to T= 0] is given approximately
by AJ2„f S (for very low Tx) and the coefficient of
the logarithmic term by —4AJ', «N(0) S(S+ 1). The
third-order perturbation result is similar, but with
J,«replaced by J. For TK=10 ' 'K, &p„and dp/
dlnT are, respectively, 2. 2 and 3. 3 times larger
than the values predicted by third-order theory,
and values of J and T~, deduced assuming the val-
idity of this theory, will be in considerable error.
We will therefore assume Eq. (1) to be correct in
the limit T» T~ and obtain

&p 1nT/T»
dp/dlnT 2(S+ 1)

'

From this ratio, and a knowledge of S, a value for
the Kondo temperature can be obtained without as-
suming values for the rather uncertain parameters
A and V. It will be assumed that the internal fields
can be described by a temperature-independent
probability distribution curve P(H) of the kind de-
scribed in detail by Klein and Brout. '

It is readily shown that for very low Tx (i. e. ,
I lnTxl » 1), for temperatures in the region of 1 K,
and in the absence of interactions, Eq. (1) can be
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written

p= ~V'+ B(1 »—nT/l inTxl )

where

(2)
0.5

A

pncm

B= AJ S(S+ 1)[ln(D~/kT„)]a
) lnTE )

is the spin resistivity in the absence of internal or
external fields at T = 1 'K. In the presence of a
temperature-independent distribution of internal
fields (the validity of this assumption will be dis-
cussed below), the resistivity can be written, for
x« 1,

p=A —B 1nT —C /T +D /T —O(1/T ), (3)

where

OA

0.3

0.2

O. I

B
yACm

—O.OI

—0.005

A =AV+B,
B'= 2B/l inT, l,
C =H +eB(1 21"T/linTxl+9W/llnTxl)

D = H (S + S+ 1)4 B

21nT 15 (2+9P ) P
llnT I 4 (S ~ S ~ 4) llnT I )

0.05 O.IO 0.15

C at.%
0.20

FIG. 3. A plot of A'. (open circles) and B' (crosses)
against nominal concentration c at. %, where A.' is the
resistivity at T =1'K in the absence of interactions and
8' is the coefficient of the logarithmic term in the resis-
tivity.

@~em

0.242

0.240

0.462

0.460

0.458

g~ and 04 represent the second and fourth moments
of the internal field distribution. For ~ 1nT& I » 1

and for temperatures in the range 0. 5& T&10'K,
the coefficients C and D are approximately in-
dependent of temperature. The terms in P [which
arise from the term T,« in Eq. (1)] give a negligi-
ble contribution to C and D'and will be neglected.

From Eq. (3), the slope dp/dlnT is given by

0.238 0.456
dp/dlnT= —B +2C /T —4D /T4 (4)

0.236 0.122

0.048 0.120

0.046 0.118

0.044
0.024

0.013
0.023

0012 I I i I I

0.5 1

~ace ~ ~

FIG. 2. The excess resistivity p plotted against
1 ~poTg, The n+' indicate experimental values of p.
Crosses represent the quantity p+C'/T -D'/T, which
is the expected variation in resistivity in the absence of
interactions.

(assuming that B, C, and D are independent of
temperature and that terms of order 1/T' and high-
er can be neglected). To determine the coefficients
B, C, and D, the measured slopes are analyzed
as a power series in 1/Ta. An expression of the
form of Eq. (4) was found to be appropriate for all
alloys at temperatures above T, and the values
of the coefficients so obtained are listed in Table
I. The rejection of terms in 1/Ta can lead to a
substantial underestimate of the coefficient D' of the
1/T' term, and we estimate that this term may be
in error by as much as a factor of 2. The coeffi-
cient C can be obtained with more confidence and
has a probable uncertainity of +20%. The uncer-
tainty in the coefficient B of the logarithmic term
is + 10/c in the 0. 2% alloy, and + 5% in the more
dilute alloys.

In Fig. 2, the excess resistivity p of each of the
alloys is plotted against lnT. The crosses rep-
resent the values of the quantity p+ C /T —D /T',
which is the expected variation of the resistance
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where IH I is the mean field, and from Eq. (2), the
resistivity at T = T in the absence of interactions
ls

p (T )=AV +B(1—2lnT /~lnT„~).

Thus from (3), (5), and (6)

(6)

in the absence of interactions. The 1/T' term is
approximately one-sixth of the 1/T term at T = T .
The crosses are linear in lnT (and can be written
A' —B lnT), thus demonstrating the internal con-
sistency of the analysis. Values of A (the resis-
tivity at T= 1'K in the absence of interactions) are
also listed in Table I and a plot of A and 8 against
nominal concentration is shown in Fig. 3. Both A

and B are linear in concentration, with slopes

A '/c = 2. 40 + 0. 05 p 0 cm/%

and

B'/c= 0. 048+0. 008 pQ cm/%.

The small intercept in 8 at c= 0 could be accounted
for by the presence of approximately 5 ppm of Fe in
solution.

From Eq. (1), the resistivity at T= 0 is given ap-
proximately by

( ) ~ S 2lnPIHI
S+1 jlnT l

» T~, and on the value of 2 assumed for the spin S.
(If we take S= 2, then the mean value of the Kondo
temperature is given by log«T&= —10.9+1.5 and
/=0. 10+0.01 eV. )

IV. INTERNAL FIELD DISTRIBUTION

From the measured coefficients B, C, and D
and using Eq. (3), values of the second and fourth
moments of the internal field distribution curve can
be obtained, and these are listed in Table II.
(H2)~'~ and (H )

'~ provide a measure of the breadth
of the distribution curve, and these quantities,
divided by the concentration, are plotted in Fig. 4.
The fact that (H4) '~' is systematically lower than
(Ha)~'~~ is probably due to the fact that D is under-
estimated in the present method of analysis (be-
cause of the neglect of terms of the order 1/T ).

It is apparent from Fig. 1 that the resistivity
at temperatures well below T is linear in tempera-
ture. Measurements by Macdonald et al. on a
Au 0.04% Mn alloy demonstrate that this dependence
is valid down to 0. 1'K. Harrison and Kleine and
Beal-Monod and Weiner' have shown that such a
linear dependence can be explained if the probability
distribution curve I'(H) is finite at H=0. It may
be shown from Eq. (1) that the coefficient of the

~

lnTx~ = 2(S+ 1)(&p'/B')+ 2$1n(T /P~H~ )+ 2 lnT,
(&)

where &p = p (T„)—p(0). It is shown in the dis-
cussion below on internal fields that T /I H I -1.5.
Thus, the second term is independent of concentra-
tion and is approximately equal to 1.3S.

The positive resistivity contribution due to the
breakdown of Matthiessen's rule is apparent in the
resistivity of all of the alloys above 8 'K where
phonon scattering becomes signif icant. This pro-
hibits an accurate estimate of B (the coefficient of
ln T) in alloys containing more than 0. 2% Mn. Also
p(0) (and hence &p ) can only be determined reliably
for c&0.05%. Thus, an estimate of Tr is limited
to the alloys containing 0. 05, 0. 1, and 0. 2% Mn.
Using the experimentally determined values of
&p, B, and T and assuming a spin S= —,

' (as de-
termined from susceptibility"'" and specific-heat20
measurements) we find values of Ilog, OTr I = 10.8
+2, 12.6+1, 14. 5+2 for the three alloys, and the
mean value of the logarithm of the Kondo tempera-
ture for AuMn is equal to log«TE = 12, 7+1 5.
Using

(D/y) s-1/2J'N(0 )

'5/%

30—

20-

70-

0 I

0.01

0

I

0.03

0
X

0

I

0.1

b
0

I

0.3

0
X

X

0

I

).0 3.0

C at.%

and assuming the free-electron value for N(0) for
Au, we find J=O. 09+0. 01 eV. It must be empha-
sized that the correctness of this value for TE
depends on the validity of Eq. (1) in the limit T

FIG. 4. The parameters T~ /c (crosses), (H ) /c
(triangles), (H~) /c (open circles), and &/2cP(0) (open
squares) (in units of 'K/at. %) which characterize the
internal-field-distribution curve, plotted against nom-
inal concentration c (at. %).
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linear term is given approximately by

(8)

—
2 i/2

P(0) (H')

TABLE II. Values for the Kondo temperature Tz, and
parameters relating to the internal-field-distribution
curve for the AuMn alloys.

c at. %
(Nomina]) I ogloTK (+ )

f /2 oK (04) 1/4 oK P(0) oK«f T oK

0. 01
0. 02
0. 05
0. 1
0. 2

0. 5
1.5

—10.9+2
—12.6+1
—14.5+2

0. 23
0. 51
0. 98
1.62
2. 52

0. 47
0. 93
1.48
2. 27

0. 172
0. 112
0. 057
0. 031

0. 68
1.4
2.4
3.9
8
20

where P(0) is the value of P(H) at H=0. The coef-
ficient 4. 3 is calculated assuming S = —',, but it is
only weakly dependent on S. From Eqs. (5), (6),
and (8), we obtain a ratio

&p' 1 ln(T /P IH j)

(dp/dT)r, 4. 3P(0) I ln Tr I

0. 20
P(0)

Values of 1/P(0) obtained from the measured ratios
are listed in Table II, and 1/2cP(0) is plotted
against concentration in Fig. 4 (we have assumed
that the slope measured at 0. 5 K is the same as
that at T = 0). T /c is also included in this figure,
and may be compared with the parameters
(1/c), (H )', (1/c)(H )', and 1/2cP(0) which

characterize the distribution curve.
Several conclusions can be drawn from the re-

sults shown in Fig. 4.
(a) The magnitudes of the parameters relative

to one another, and therefore the shape of the dis-
tribution curve, are approximately independent of
concentration.

(b) The quantities (H2) '~, (H4) '~', 1/P(0), and
T are not linear in concentration. Although non-
linearity might be expected for the more concen-
trated alloys, a, linear dependence for c& 0. I%%uo

would be expected to result from an HKKY inter-
action between impuri. ties.

(c) The ratio (H )'L 4/(H )
'~ = 0. 9 + 0. 2 for the

0. 05, 0. 1, and 0. 2% alloys. This value may be
compared with a ratio of 1.0 for a unique field and
1.3 for a Gaussian distribution. A ratio close to
one precludes the possibility of a, cutoff Lorentzian
distribution with a cutoff significantly greater than
the width.

(d) The ratio

= 3. L and 3. 5 for the 0. 1 and 0. 2% alloys, respec-
tively. This is slightly larger than the value 2. 5
for a Gaussian distribution and suggests that there
is a, dip in the P(H) curve at zero fields. This is
consistent with the behavior of the specific heat of
Au 0. 08/o Mn and Au 0. 16% Mn as measured by
du Chatenier, 0 who observed a decrease in C/T
(where C is the specific heat) below 0. 7 and I. 0
in the two alloys. The decrease in the slope dp/
dT of the resistivity of the Au l. 5/o Mn alloy (Fig.
1) below 2 'K also indicates the existence of a dip
in the P(H) curve at very low fields.

(e) The RMS field (H~) '~ is approximately equal
to 0.65 T and corresponds closely to the tempera-
ture of the maximum of the specific heat of AuMn

alloys of comparable concentration. a

(f) The fact that the deviation from the logarith-
mic temperature dependence varies at high tem-
peratures like 1/T~ and that the RMS field so ob-
tained is comparable with the mean field at T
«T [as estimated approximately from P(0)]
strongly suggests that the field distribution is not
varying strongly with temperature and makes plau-
sible the assumption of a temperature-independent
field distribution in the above analysis. This is
also true of other dilute alloy systems such as
AuFe, '

C@Mn, etc. This conclusion is, at first
sight, inconsistent with the behavior of the hyper-
fine field as determined by Mossbauer-effect mea-
surements in AuFe alloys. 3 The Mossbauer split-
ting is observed to increase rapidly from zero as
the temperature falls below a Curie temperature
T& which is comparable to the temperature of the
specific-heat maximum in AuFe alloys of a similar
concentration, and this suggests that the internal
fields increase cooperatively below T~, as in a
simple ferro- or antiferromagnet.

However, the resistivity responds to the mean
field averaged over a time of the order of 10 ' sec,
whereas a well-defined Mossbauer splitting is
only observed if the mean field at the impurity site
is nonzero when averaged over a time of the order
of 10 ' sec. Thus, it may be speculated that at
T & Tc, the locaL fieLd at a given impurity site pre-
cesses in a time very much shorter than 1Q ' sec
and produces no Mossbauer splitting but affects the
resistivity and specific heat. As T approaches Tc,
the precession time of the local field increases
rapidly and exceeds lQ 8 sec at temperatures below
T&, and a M'ossbauer splitting is observed. How-
ever, it must be empha. sised that from resistivity
measurements we can demonstrate that the mag-
nitudes of the precessing fields do not change sub-
stantially from above to below Tc. (There is no
sharp change in the slope of the resistance or spec-
cific heat around Tc. ) The comparability of the
magnitudes of the local fields both in the ordered
and disordered states is not surprising in a dilute
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random alloy where the average coordination num-
ber of impurities is close to one. It is only in con-
centrated alloys, or pure ferro- or antiferromag-
nets, where the coordination number is large, that
the local field averages to a small value at high
temperatures, but increases cooperatively below a,

rather well-defined transition temperature.

and the predicted resistivity at T= 0 (in the absence
of interactions)

p'(0) = (2f+ 1)p0 cos'5„.
Using the measured values of A /c and B /c and

asuming S= —„we find

sin5„= 0. 23+ 0. 02, p'(0) = 28 + 7 pQ cm/at. %,

V. DISCUSSION
and

(2l+ 1)p, = 30 + 7 p Q cm/at. /0 .
Another estimate of J can be obtained if the RKKY

expression for the interaction between two impur-
ities separated by the mean interimpurity distance
is compared with the experimental value of (g~)'~~.
Taking (H2) '~ -1.6 'K for c= 0. 1% and assuming
S= —,', we obtain J= 1.1 eV. This is more than an
order of magnitude larger than the value of J= Q. 09
eV derived from the logarithmic term in the resis-
tivity. Blandin ' has pointed out that this discrep-
ancy results from the assumption that J is a 6-func-
tion potential in the derivation of the RKKY inter-
action. If it is assumed that J is an extended po-
tential of l = 2 symmetry, which scatters each of
the ten E= 2 partial waves incoherently, then we ob-
tain a value of J= 0.22 eV from the mean interaction
energy. If it is further assumed that the interaction
energy is proportional to J3«(T) rather than J~,
then, since J,«(T)/J- l. 5 at T = 1 'K for T»= 10 "
' K, we obtain J= 0. 15 eV, which is in reasonable
agreement with the value obtained from the logarith-
mic term in the resistivity.

The magnitude of the potential scattering A V2/c
and the spin resistivity at T= 1'K, B/c, can be
estimated from the measured values of A /c and
B'/c. Using Ec[. (3), we find

AV'/c= l. 7 pQ cm/at. %

and B/c=0. 71 pQ cm/at. %.
Abrikosov's expression, Eq. (1), in zero field,

is the high-temperature limit (for V/E»«1 and
for s-wave scattering) of an expression given by
Fischer, in which the potential scattering is de-
scribed by a potential phase shift &„. For an ex-
tended potential, scattering partial waves of / sym-
metry, and assuming JN(0)«1, Fischer~6 finds
that the resistivity may be written

p= (2I+ 1) —,
'

p, col —cos26„1n(T/T»)

~ [(In(T/T»))'+ w'S(S~ I)] "']; (10)

where p0= 4vh/» e k» is the s-wave unitarity limit,
k„ is the Fermi wave vector, and z is the number
of conduction electrons per atom. Assuming the
validity of this expression at T= 0, we may esti-
mate the resistivity of AuMn at T= 0 in the absence
of interactions. Comparing Egs. (2), (3), and (10),
we have

AV /c= (2l+ 1)p0sin~6„,

8/e= (2f+ I) p0 cos25„[v S(S+1)/4(lnT») ],

Although these values depend strongly on the value
assumed for S and the estimated value of T~, the
predicted value of (2I+ 1)p0 is in reasonable agree-
ment with the free-electron value of the d-wave
unitarity limit in Au alloys of 21 pQ cm/at. %.
[The values deduced assuming S= 2 are log, DT»
= —10.9 + 1.5, A V /c = l. 8p, Q cm/at. %, p (0) = 22

pQ cm/at. %, and (2l+ 1)p0= 24 pQcm/at. /o. ]
The expression for T~ derived by Fischer, 6

T» ——(D/k)exp[ —I/2JN(0) cos~ 5„],
differs from that used in our previous discussion
as the result of an interference between spin and

potential scattering. (This higher-order inter-
ference does not average to zero in the absence of

a magnetic field as does the first-order interfer-
ence between J and V discussed in Sec. III. )

Using this expression for T~ and the value deduced
for cos 5„, we find a value of J= 0. 10+0.01 eV
from the estimated value of TE.

The rather small value (l. 7 pQ cm//0) of the
predicted resistivity at T-E» demonstrates that
the up- and down-spin subbands of the virtual state
are well separated on either side of the Fermi
level, with d-wave phase shifts at the Fermi level
for up- and down-spin electrons close to m and 0,
respectively. This is, therefore, consistent with
the measured spin value of —„which also indicates
total polarization of the virtual state. A very
small value of the antiferromagnetic J resulting
from the covalent admixture of conduction elec-
trons and local d orbitals ' ' would be expected in

this case, and the resulting J may be further re-
duced by normal ferromagnetic atomic exchange,
leading to the very small value 0. 1Q eV which we
observe.

The predicted resistivity at T= 0 of 28+ 7 pQ

cm/at. % follows from the assumption of resonant
spin scattering of all ten l= 2 partial waves at that
temperature. The change in phase shift from -w

to - v/2 for the up-spin electrons and from -0 to
-v/2 for the down-spin electrons takes place
mostly within an energy range of the order of kT~
of the Fermi energy.

VI. CONCLUSIONS

From the behavior of the low-temperature re-
sistivity, the internal field distribution has been
shown to approximate to a Gaussian, but with a
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dip in the I'(H) curve at low fields. The results
also indicate that the strengths of the fields do not
change substantially as the temperature increases
from well below to well above the ordering tempera-
ture.

Use has been made of the fact that T» (and hence
J) can be derived from the ratio of the spin resis-
tivity (as determined by the decrease in resistivity
on ordering) and the coefficient of the logarithmic
term for x «1, while the resistivity in the absence
of interactions at T=0 and T-EJ; can be derived
from the magnitudes of these quantities. From
measurements on dilute AuMn alloys we obtain
T»-10" K and a T=O resistivity of 28+7 pA

cm/%. This latter value is consistent with the

resonant scattering of all ten / = 2 partial waves,
as expected for the compensation of a Mn atom of
bare spin —,'.

The possibility of inferring the existence of a,

Kondo condensation so far below the lowest tem-
peratures available experimentally is associated
with the small physical scale of the isolated mag-
netic atoms which are being compensated. Ther-
mal fluctuations spread the transition over many
decades in temperature and produce a measureable

effect at temperatures far higher than T~. By
contrast, a superconducting transition, which in-
volves every site in the metal, produces little
modification of the properties above the transition
temperature, and its existence cannot be demon-
strated if it falls below the lowest attainable tem-
perature.

Although most of the properties of a dilute mag-
netic alloy are modified by the Kondo effect at
temperatures far in excess of T~, few can be mea-
sured with sufficient accuracy to determine a very
low T». Thus magnetic susceptibility, nuclear
orientation, Mossbauer effect, and nuclear mag-
netic resonance, which rely for their estimate of
a very low T~ on the detection of very small devi-
ations from a Curie Law (1/T temperature depen-
dence), are extremely susceptible to uncertainties
in specimen temperature, interactions between
impurities, etc. , which themselves lead to devia-
tions of the kind that are sought. The effect on the
impurity resistivity is to produce a deviation from
a constant value and this, coupled with the very
high inherent accuracy of resistivity measure-
ments, enables a reliable estimate of a very low

TE to be made.
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