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The sound velocities (elastic moduli) of V3Ge and V3Si are found to have very large discon-
tinuities in their temperature derivatives at the superconducting transition. A thermodynamic
treatment of these data (with the specific-heat behavior) for a second-order phase transition is
shown to yield a general dependence of T, on strain. It is found that all strains greater than

roughly 10 will lower T~ for cubic V&Si and raise T~ for VBGe. The results show that these
strain dependences are very large, mainly quadratic, and directly responsible for some of the

anomalous behavior of the superconductors. They predict, quantitatively for V3Si: (a) the re-
duction in T, which results from the structural transformation, (b) the arrest of the structural
phase transformation at T„(c) the strain dependence of the specific-heat discontinuity at T„
(d) the strain dependence of the structural-transformation temperature, and (e) the anisotropic
stress dependence of T,. The predicted dependence of T, upon the lattice parameter is a major
factor in accounting for the different T,'s among the A-15-structure compounds. The micro-
scopic source of this large strain dependence is discussed in terms of the Labbe-Friedel (den-
sity-of-states peak) model. It is a surprising result that this model does not predict the large
strain dependence of T~ for V3Si. . Finally, the "approximate" nature of the sound velocity data
at a phase transition is discussed and the general thermodynamic form for the corrections to
the nonideal case is given.

I. INTRODUCTiON

The A-15- (P-tungsten)-structure superconductors
have yielded a plethora of "anomalies", ' ' singu-
larly outstanding in magnitudes and perplexing in
their physical origins because they occur in those
materials which, today, have the highest known

temperatures for superconductivity. It is known,
for example, that the high-T, superconductors ex-
hibit elastic softening, while those with low T, do
not. ' Some samples of VSSi and Nb, Sn undergo a
cubic-to-tetragonal transformation at temperatures
T„smoewh taabove (but never below) T, . For
V,Si, where extensive studies have been made, it
was found that for nontransforming crystals, the
very large elastic softening on cooling is arrested
with the onset of supercondivity. ' In transforming
crystals, which exhibit of continuous increase in
the degree of tetragonality when cooled below T,
the transformation itself is arrested at T, . '

In this paper we attempt to reduce the number of
seemingly independent anomalies. This we do by
analyzing the behavior of the sound velocity near

the superconducting transition, and, by thermo-
dynamic arguments, extending these results to
"predictions" of some "anomalies" outstanding.
Some new and unexpected correlations also occur,
and these are presented here and in the following
paper (which also lists much of the data relevant to
our findings}.

It is known that for a second-order phase tran-
sition (superconductivity& one may expect some dis-
continuities in the behavior of the sound velocities
(ela.stic moduli). These discontinuities are analyt-
ically related to the strain dependence of the
thermodynamic critical field. ' In Sec. II we show
a simple extension of this usual result to yield the
general strain dependence of the transition tem-
perature if the specific heat is known. For longi-
tudinal strains the linear and quadratic strain de-
pendences of T, are related to the discontinuities
in magnitudes and temperature derivatives, re-
spectively, of the elastic moduli. For shear
strains, only the quadratic dependence of T, is al-
lowed and only the "slope" discontinuities may
occur.
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Sound velocity measurements of phase transitions
are increasingly popular although the precision of
measurement may sometimes outdistance the re-
liability of interpretation. In the latter part of
Sec. II we discuss the "approximate'* nature of the
sound velocity results in describing the phase tran-
sition. We state the form of the corrections to the
idealized case from general thermodyna, mic argu-
ments and briefly extend these results to cases
beyond those of interest in this paper.

Experimental description and results for V3Si
and V,Ge are given in Secs. II and III. Fortunately,
the behavior is "anomalously" large in magnitude
and the analysis of See. II may proceed unencum-
bered by the corrections earlier discussed.

The stra, in dependence of T is found to be very
large, mainly quadratic, and directly responsible
for severa1. distinctive behaviors of these super-
conductors. These include the arrest of the struc-
tural transformation at T„ the strain dependence
of the specific-heat discontinuity, and the a.niso-
tropic stress dependence of T, . The remarkable
dependence of T, upon interatomic spacing (for
hydrostatic strain) is shown to be a major factor
in accounting for the different T,'s among the
A-15-structure compounds. Further applications
of the results of this paper, particularly to alloying
of these materials, are given in the following paper.

The experiment and interpretation developed thus
far are not necessarily restricted to superconduc-
tivity, and the process is repeated for the structural
transformation to yield its strain dependence. The
results so obtained are not inconsistent with experi-
mental findings but the argument is tinged with an
assumption not wholly at ease with the experimental
data.

Finally, the microscopic source of these large
strain dependences of T, is sought. The Labbe-
Friedel model, successful in yielding many of the
observed anomalies, is a narrow (- 20 'K) peak in
the density of states wherein the Fermi level lies.
Such fine structure might easily appear to be the
source of a large strain dependence. It is a sur-
prising result of Sec. IV that this is not so.

II. THEORY

The isothermal' elastic moduli are obtained
from the Helmholtz free energy F(T, Voc, X,}by

1 dF
cia ~0 d~&d~g r, xi

where e is the strain, Vo is the unstrained volume,
and X, are the remaining extensive variables of
the system. The difference in free energy between
the normal and superconducting states nea, r but be-
low T, can be written'"'

F"-F'=V — =
'-tT, (~) -T]'. (2)

8w Sm

We expand T, in linear and quadratic functions
of strain:

T,(e) = T, (O) + r e+ —,
' e a ~ =r Sc+ ,' S &—r n. S o

= T,(0}+r,(V-V,}+-,'~„(e,'+ ~,'+~,')

+12( 1 2 2 8+ 1 3) 2+44( 4 + 5 6 )
2 2 2

(for cubic symmetry). (3)

We define r as a 1&& 6 matrix whose components
are

(4)

and has a 6&6 symmetric matrix whose form is
similar to the c matrix but with components

82T
(6)

where & is the usual 6&&1 strain matrix. For cubic
symmetry

r4=r, =r, =o,

+11= ~22 +33& +44 +55

+12 +13 +23 «u =&~~)

T,(6) —T, (O) =-', (~„-a„)6' .

From Eqs. (1)-(3)one finds that the components
of the isotherma. l elastic modulus tensor undergo
a, discontinuity in magnitude:

c(g —c(~ = (- n /4v)I", &~

and a discontinuity in temperature derivative:

(6)

dci~ dci& ~ ~ d~
S N 2

dT dr 4 " 2g dk,.

For high-symmetry shear waves (deformations)
the discontinuity in c and the last term in Eq. (9}
are zero since all first-order strain derivatives
vanish. %Ye show in the Appendix that in our studies
the last term in Eq. (9) may also be neglected for
longitudinal waves.

The coefficient e is given by the specific-hea&
(at constant volume) discontinuity at T„

and all other n, j=0. In Eq. (3}s is the 6&&6 com-
pliance matrix and cr is the 6&1 stress ma, trix.
We consider two special cases. For volume strains

(V-Vo)/Vo-- 3eq,

T,(V-V, ) —T,(0) =3F e +-(n„+24,)&„. (6)

For a tetragonal strain where (c/a-I) = 6 and e, = —,'6,
l

2
—~3 —3~, %4= C5 = &6 y
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"Approximate" Nature of Sound Velocity Data at
a Phase Transformation

The elastic moduli obtained in a sound velocity
experiment are given in general by

cP@c = — 3 (X„II)
V0 dC

(i2)

where X, and I& represent all the thermodynamic
extrinsic and intrinsic variables, respectively,
which are held constant during the experiment and

4 (X„II) = U(X(, XI) ZXIII-
is the thermodynamic potential minimized under
the experimental conditions (U is the internal en-
ergy). The "approximate" nature of sound velocity
data arises because a change in experimental con-
ditions may (inadvertently) lead to a change in the
variables X&, I& held constant and, thereby, the
function 4 which determines the measured moduli.
This change of experimental condition is quite
likely to happen at (or near) a phase transition, and
leads to variations of the moduli which are not in-
trinsically due to the unique properties of the
transformed state. Thus, for example, before ob-
taining the strain dependence of F"—F one must
correct the data because the elastic contribution
from F" at T ( T, is not measured under the same
conditions as for T & T,. This is now formalized.

In general, if the proper thermodynamic potential
for the experiment changes from one of X, (entropy,
volume, mole number, . . .) to one of constant I,
(temperature, stress, chemical potential, . . .), the
change in the measured modulus is

TABLE I. Strains and associated elastic moduli for
high-symmetry sound waves.

Propagation
directions

[001]
[001]
[110]
[110]
[110]
[111]
[111]

Particle
motion

[001]
i [001]

[110]
[001]
[110]
[111]

1, [111]

Strain
tjjpe

Longitudinal
Shear
Longitudinal
Shear
Shear
Longitudinal
Shear

Elastic
moduli

2 Ci i + Ci 2
+ 2C44)

1

& ~ci i ci2)

3 (cf i + 2ci2 + 4c44)

3 ii + C44 —Ci2)

-QTCx CB Zr (F FS) (10)v v dT2

Finally, for strain c the elastic modulus is re-
lated to velocity of sound V, by

c = pVs(~)

where p is the mass density. In Table I we give the
strains and associated elastic moduli for high-sym-
metry directions in a cubic crystal.

dX (14)

Normally, plane-wave propagation occurs at con-
stant X at low frequencies and "relaxes" to con-
stant: at high frequencies. At intermediate fre-
quencies Iz, we can write for the modulus

c(a&) = cx —(cx —cI )f(Id/co, ),
where f(0) = 0 and f(~) = 1. The dispersion function

f and the "crossover" frequency „must come
from a physical model. In many cases

f=(1+~„'/(o') ' . (16)

When „ is caused to change by the experimental
conditions (i. e. , by a change of the I,) one obtains
the change in modulus

dc( ) Q x di Q f ( x I)

T
Cg —CT = Cz

B ty

(16)

The adiabatic -to-isother mal relaxation occurs
when the thermal diffusion time over a sound wave-
length is less than the sound period. Thus, (d„
= C„V3JK, where K is the thermal conductivity.
For our samples we estimate (cz —cr)/cr-10
but r&/to, - 10 3 in both the normal and supercon-
ducting states. Thus, the adiabatic moduli are
measured in both the normal and superconducting
states for T- T, and these are slightly (-10 ')
larger than the isothermal moduli derived in Sec.
II. However, the very small change in adiabatic-

Bf 8Qp'~'* "~s W' ') (i7)
B('d BI ~

ref/S&u, = —2f ~„/co for the f of Eq. (16)]. The low-
frequency behavior, generally treated theoretically,
is given by the first term on the right-hand side of
Eq. (17). The remaining term describes the modi-
fications which arise because of the finite frequency
of the measurements. This term depends upon
properties other than the elastic behavior (see be-
low), properties which also vary at a phase tran-
sition. To obtain the elastic behavior alone the
data must be corrected to remove these effects.
Although m„(a function of X or I) may never shift
through ~, the "corrections" given by Eq. (21)
may be relatively large. Two remarks are
pertinent. The "corrections" given by Eq. (17)
always appear in the form of dispersion (V a
function of ~). No "corrections" occur for high-
symmetry shear waves when X is a scalar since
dX/de = 0 in Eq. (14).

Several particular cases are now considered.
For X = S (entropy), I = T and the "adiabatic-
isothermal" difference, from Eq. (14), is easily
obtained:
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isotherrna, l relaxation on passing through T, con-
tributes velocity changes which are negligible com-
pared to the observed behavior.

For X= mole number N, and I= electrochemical
potential p, , one obtains with the aid of some Max-
well rela, tions

This change can be very large. For a free-electron
gas where p, is the Fermi level, one obtains for
the bulk moduli

Bg —8 = —,pN=~Q U=B„.
U is the internal energy. (In a typical metal the
electronic part of the total elastic modulus is - 10%.)
A fuller discussion of this case (including charge
transfer effects} will be given elsewhere24; its
contribution to our experimental results, however,
is found to be negligible.

Although unrelated to the present work, the case
of X =M (magnetization component parallel to II)
and I= II (applied field) is interesting since it yields

(20)

where N and 8 refer to the two phases. Like those
corrections described above, the quantity given by
Eq. (22} arises from the N-state behavior because
the measurement conditions differ in the S state.
In this sense it is not directly related to the thermo-
dynamics of the phase transformation and should
be removed from the data, before analysis for this
purpose. Since the third-order elastic moduli
(dine/dc) are normally -1 to 10, these corrections
may be considerably larger than those normally
taken to be due to thermal expansion. For V3Si
some of the third-order elastic moduli may be
large. However, the experimental results are
anornalously large and it is estimated that the
strietive "corrections" amount to less than 10% of
the observed magnitudes.

In conclusion, corrections to sound velocity data
generally must be applied before analysis because
the experimental conditions are normally not those
specified by the theory. These corrections are of
two types, "dispersive" and "strictive" and are
given by Eqs. (17) [with Eq. (14)] and (21). For
the materials in our studies the corrections are
found to be relatively unimportant.

III. EXPERIMENTAL

which is a, general relation between the magnetic,
rnannetoStriCtiv, and rnagnetoelastic behaviors of
a substance. This relation can give, for example,
the change in sound velocity for a metal in a mag-
netic field. " For X = I' (electric moment) and
I= E (external electric field) analogous equations
and effects occur.

Finally, one may treat the case X = Voc and I= o.
Although no physical relaxation is associated with
these parameters, the quantity C„,—C, does give
the change in modulus which arises because experi-
mentally it is 0 rather than Vo which is usually
held constant. In general, if a is the strain which
accompanies an experimental change in one of the
intensive pa, rameters, then

sc Bc.
(21)

aI~

gives the "strictive" contribution to c due to the
fact that measurements are not made at constant
strain. For example, in measurements made as
a function of temperature on a cubic crystal, dc/dT
= (dc/dV)(dV/dT) is that part of the temperature
dependence which arises from thermal expansion
via the crystal anharmonicity. This contribution
is part of the normal "background" temperature
dependence. At a phase transition, however,
Bc/Be and Bc/BI& may change and one would obtain
the "strictive" corrections

Crystals of V,Si and V3Ge were grown by react-
ing the elementa, l constituents in water-cooled
silver boats followed by a "floating zone" pa,ss to
induce the single-crystal growth. Two pairs of
plane-parallel faces, [001] and (110), were pre-
pared on each specimen.

For some samples of V3Si a cubic-to-tetragonal
transformation occurs for 25'K- T &17 K. To
avoid this complicating effect when studying the
elastic behavior" near T,(= 17 K) we have chosen
samples which do not exhibit the structural trans-
formation (as determined by x-ray and acoustic
measurements). Some of the properties of the
transforming crystals will be deduced from these
data.

Pulse-echo measurements of 20-MHz sound
velocities were made using the McSkimin pulse-
superposition method. For V3Si the measurements
are described in Ref. 14. For V,Ge the measure-
ment technique was modified for FM and automatic
frequency control (AFC) operation. Velocity mea-
surements were made for longitudinal waves along
[001] and [110]and for shear waves along [110]
with particle motion along [110]. These modes,
strains, and elastic moduli are given in Table I.
The precision was generally 10 '. No correction
for length changes was made. Errors arising
from this are insignifica, nt.

IV. RESULTS

d(c"-c ) dc" dV" dV
dT dV" dT dT

(22) In Fig. 1 we show the behavior near T, of the
longitudinal wave sound velocity in V3Ge for q~ li
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FIG. 1. Sound velocity of [001] longitudinal waves in

V3Ge vs temperature. The discontinuity of the slope
at T~ arises from the quadratic strain dependence of T,.
The zero position of 4V/V is chosen arbitrarily.

FIG. 2. Sound velocity of [110]shear waves with [110]
particle motion in V3Ge temperature. The discontinuity
of slope at T~ arises from the quadratic strain dependence
of T,. The zero position of &V/V is chosen arbitrarily.

[001]. The normal-state results below T, = 5. 9 K
mere obtained for all modes by applying a magnetic
field of 23 kpe transverse to q. This may result
in a slight stiffening (ac/c-10 ') over the zero-
field result when longitudinal modes are used.
The data, have been corrected to remove this slight
(temperature-independent) shift when present.

According to Eqs. (8) and (9), a discontinuity in
both magnitude and slope may occur at T, . The
data of Fig. 1 show a transition "width" of - o.1
but no discontinuity in magnitude. In view of the
width (a comparable width has been observed in
magnetic measurements) the discontinuity in mod-
ulus c"—c -10 ' c". The prominent feature in
this (and all other elastic) behavior is the large
change in dc/dT at T, The data s. how

forming VBSi —see following paper} the discontinuity
in \1/c)\dc/dT} is +450&10, about four orders of
magnitude larger than typical values.

The complete data for (1/c)(dc/dT) at T, for the
three elastic moduli of V3Ge and V3Si are listed in

Table II. No discontinuities in the magnitude of c
(permitted for longitudinal waves only) were ob-
served. The minimum discontinuity which would

be detected mas severely limited by the large slope
dc/dT at T, and the temperature "width" of the
transition (-0.1-0.2 'K). On this ba.sis we esti-
mate the fractional discontinuity in cff to be - 10
and 5~10 for V3Ge and V3Si, respectively.

We have chosen in Table II —,'(c„—c,a) as one of

N $' ) = (- 4. 9&& 10 ')c"
dT

for cff at T=T, . This is tmo orders of magnitude
larger than that found for typical superconductors.

Figure 2 shows the allowed [Eq. (9)] disconti-
nuity in slope arising from the quadratic shear strain
dependence of T,. The wave in this case is q& ]I

[110]and particle motion p ~~ [110]. From the data
we obtain

d c"- ')
(Q 9x 10-4) N

dT

OJ

E

C
4—

O

Pe2—

V3 Si

for 2(c&& —c&2) at T = T, .
The behavior for this shear wave in VSSi (non-

transforming) is extraordinary. In Fig. 3 we give
the elastic modulus for this wave from 4. 2 to 100 'K.
The results for T & T, have been discussed pre-
viously. ' At T = T, (17 to 17.2 'K for nontrans-

T

IO 20 30 40 50 60 70 80 90 IOO

T ['K]

FIG. 3. Sound velocity of [110]shear waves with [110]
particle motion in V3Si vs temperature. The large
softening above T~ has been discussed in Refs. 9 and 14.
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TABLE II. Elastic moduli at the superconducting phase
transition.

V3Ge

c(T,)

(10"erg/cm )

1 dc'
c dT

C

1 dc
c dT

(10 '/ K)

d{c"—c )
dT

C

(10 erg/cm~'K)

1 (c« —c,,)

c44

3.04
0.983
0.723

—4 1
7 ~

—0, 76

+0.7
& 1.4
+0. 11

—14.6
8.7
0.63

Specific-heat discontinuity at

T, (C —C&) =9.25 &10 erg/cm 'K (7.25x10 cal/mole K)

Lattice parameter 4.78 A

Density 6.88 g/cm3

c
2 (C11 —C12)

l.82
0.08
0, 766

V3Si (nontrans form jng)

+58 ~-8

+ 600 &150
+ —3

91
36
3.8

Specific-heat discontinuitya at

T, (C& —C& ) --6. 5 &10 erg/cm (0. 49cal/mole K)

(nontrans forming)
- 6. 1 & 10 erg/cm (0.46 cal/mole 'K)

(transforming)

Lattice parameter 4.72 ~

Density 5.72 g/cm3

aSee following paper for specific-heat data.

the three independent components necessary to
describe the elastic behavior of a cubic crystal.
This particular modulus describes the very
anomalous shear behavior of these crystals. 7' 4'

Many of the interesting physical results come from
the behavior of this modulus and it is a satisfying
aspect of the data that neither the corrections of
Sec. II nor the discontinuity uncertainties just
discussed apply to this shear modulus. But it
can be further remarked from the data in Table
II, that although this modulus was the most impor-
tant in describing the elastic instability at T & T„
the slope discontinuities at T, (and therefore, the
strain dependence of T,) are, in fact, larger for
C1i.

The specific-heat data for V,Si and VSGe are
given in the following paper.

V. DISCUSSION

is the very large discontinuity in dc/dT, implies
[from Eq. (9)) either a large quadratic strain de-
pendence of T, or else [using Eq. (8)] that

d inc& d lnT
dc

We shall assume in what follows that the former is
true and give in the Appendix the evidence which
makes this choice reasonable.

The complete first- and second-order strain de-
pendence of T, for V3Ge and V3Si is given in Table
III. Several observations can be made before spe-
cific applications of these results:

(i) For both compounds, the quadratic strain de-
pendence is very large and dominates the linear
term at f, uniaxial strains of 10 and 4X10 for
V3Ge and cubic V3Si, respectively. ' The general
strain dependence of T, upon tetragonality and lat-
tice parameter c for V3Si can be described in
both cases by parabolas. The maximum T, is at
5 = 0 for the former and at a approximately equal
to, or slightly less than (inferred from alloy be-
havior —see following paper) the lattice param-
eter of VBSi.

(ii) For the cubic V,Si sample all shear strains,
and all longitudinal strains greater than - 4&& 10
will lower the superconducting transition tem-
perature. For V,Ge, all shear strains, and all
longitudinal strains (of the high-symmetry types)
greater than 10, raise the transition tempera-
ture.

(ii) For VSSi, all shear strains, and all longitu-
dinal strains greater than -4&10, lower the
superconducting transition temperature. For VSGe,
all shear strains, and all longitudinal strains (of
the high-symmetry types) greater than 10 ',
raise the transition temperature.

(iii) The largest longitudinal strain dependence
occurs for e along (001) for V,Si and V,Ge. The
largest shear strain dependence occurs for (110)
planes sheared in [110]directions in both cases.
The largest shear and the largest longitudinal
strain dependences are comparable.

(iv) The VSSi data presented above are for non-

transforming crystals. From these results the be-

The values of n /4w for V,Ge and V,Si obta. ined
from the discontinuities in the specific heats are
given in Table IG.

For longitudinal strains, the failure to see a
discontinuity in the related moduli allows an upper
limit only on the magnitude of F =dT, /Ch. . (The
algebraic sign of the first-order strain dependence
cannot be obtained from sound velocity measure-
ments )The lim. its for the magnitude of F are
given in Table III.

The major feature of the elastic behavior, which

Q /4«erg/cm 'K )
~„(K)
4 jg('K)
444( K)
i1, I

(.K)

T~ (E) —T~ (0) = I 6 + 2 g,~

V,Ge

1.56 x10
+9.4x10"
—1.8 x10
+0.4 x10'

&45

V3Si

3.82 x104
—24 x 104

5x104
1 x10'

&50

TABLE III. Quantity n2/471. and the components of the
tensor describing the strain dependence of T~.
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havior of transforming crystals is easily obtained
(see below). There is, in fact, little distinction
to be made between transforming and nontrans-
forming crystals for the effects described here.
For high tetragonal stress levels (o & Sx 10'dyn/cm')
there is little difference in the elastic behavior of
transforming and nontransforming crystals at T, . In-
deed, at these stress levels there is little difference
structurally between transformed and nontrans-
formed crystals since both have single-crystal
tetragonal structures with comparable distortions.
Therefore, one does not expect the results of
Table III to be grossly in error when applied to a
transforming crystal. At lower stress levels,
however, the behavior in a transforming crystal
is complicated by the stress-strain relation. An

applied stress may first cause (in part) domain
rotation which can lead to "macroscopic" sample
strains but little or no microscopic strains.
(Such effects would not generally exhibit cubic or
tetragonal symmetry. ) With further stress the
domain size may change. In either case the
microscopic strains (which cause the change in
T,) would be difficult to calculate. Further un-
certainties at small strains are introduced by the
(unknown) I' terms. Thus, for transforming
V38i the important results will find verification
at strains &10 and, in that case, will not be es-
sentially different from that given by the results
for the nontransforming crystal (Table III).

The quantities given in Table III essentially
exhaust the numerical data directly obtained by
this experiment. Their relevance to the super-
conducting behavior, however, is broad. We
cite some examples.

Change in Tc Due to Structural Transformation
in V3Si

For the structural transformation of VSSi the
tetragonal deformation is 7

(c/a) —1 = 2. 5 x 10 =— 5.

Since no volume change occurs,

(c -ao)/ao=e, = 3'5

(a -a,)/a, = e 3
= -'3 5

(with &4=&3=&3=0), where ao is the cubic unit cell
size. The change in T, due to the structural trans-
formation, then, from Eq. (7), is

T,(tetr) —T,(cub) = 3(n3q —Lq3) 5 = —0. 3& 'K. (23)

We have ignored the linear term I e since no volume
change occurs with the structural transformation.

Since not all samples of V,Si transform, one can
attempt to check this result by comparing T,'s of

transforming and nontransforming samples. It
has been shown' that transforming samples (a)
have a, small amount of second phase, (b) have a
higher resistance ratio R(300'K) /R (4. 2 'K), and

(c) are elastically softer. In checking the result
of Eq. (27) as described above, one assumes that
these differences do not alter T, by a comparable
amount. For (a) and (b) this seems reasonable.
Furthermore, the value of 6 given above is a rep-
resentative one. Observed values vary among
samples; presumably 6 may vary from zero to
values somewhat greater than 2. 5 &&10 '. One then
expects, from Eq. (23), that the reduction in T,
for tetragonal V3Si will vary from zero to -0.4 'K.
In the following paper we present evidence in sup-
port of this result.

The reduction in T, expressed by Eq. (23) is
based only on the tetragonal strain. It does not
consider the possible effect on T, of atomic dis-
placements within the unit cell, if such should oc-
cur. A search for some of the displacements
which are possible in the transformation has yielded
essentially negative results. '

Stress Dependence of T~

Since the quadratic strain effects exceed the
linear effects at small ". train levels, one expected
result is that the shift in T, with stress will no
longer exhibit the isotropy (i.e. , proportional to
volume change only) expected for a cubic crystal.
This has been observed by Weger, Silbernagel,
and Greiner. The direct test of this result, by
the measurement of dT, /da, is partly encumbered
by the nonlinear stress-strain relation at large
strains, particularly for V~Si. Fortunately, suf-
ficient data for V,Si exist for a quantitative test of
Eq. (3). Patel and Batterman' have shown that for
V3Si at low temperatures, nonlinear elastic be-
havior occurs for strains greater than 10~. Their
data show that for stress o, (along [001]) the strain
e, (along [010]) at & 25 'K is given approximately
by

o,(dyn) = (5 x 10")e, + (10")~,' .

Thus, for cr, & 5 x 10 dyn/cm (500 atm) the
elastic behavior is roughly quadratic. At low
stress levels,

From Eq. (3) we calculate uniaxial stress depen-
dence of T, for the [001] at stress levels -5
-10x10 dyn/cm2'

T, (&r) —T,(0) = (b»/2)E3 (r +1)+&33c3 (1—2r)

= —5. 5 x 10 ' a, deg cm /dyn. (24)

This compares reasonably well with the experi-
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mental result (- 5&& 10 ")o, deg cm /dyn obtained

by Weger, Silbernagel, and Greiner. These
workers also found that comparable levels of
[111]uniaxial and hydrostatic stress produced no
detectable change (to within +0. 5 K) in T, . This
is in agreement with the calculated behavior using
the 6 in Table III and the elastic moduli. Physical-
ly, the effect is small for these types of stresses
because the crystal is much stiffer and the result-
ing strains are smaller.

For V3Ge the interesting result is that all high

symmetry strains & 10 ' increase T, and at a rel-
atively rapid rate U.niform strains (eq type)- I /c

would raise T, by about 9 K. Such strains are
difficult to produce uniformly by mechanical means.
In the following paper we shorn the behavior of T,
when such strains are achieved by alloying. These
surprising results show that for superconductivity
the major effect of alloying (to replace the Ge
atoms) comes from changes in lattice parameter
rather than the change in chemical composition.
Unfortunately, no direct test {e.g. , d T,/do) is
known to the author which would allow a check of
the quadratic strain dependence of T, . (Nor is
any information available on the elastic behavior
of V,Ge at high stress levels. )

Other Strain Effects on Tc and Width of Transition

The degradation of T, due to accidental strain
will be serious, particularly for V3Si. Strains
& 5 &10 will greatly depress the supereonducting
transition in V,Si. Such strains may occur in very
thin films and these effects mill be at least partly
responsible for the low T, 's of V3Si films thinner
than 1000 A. With comparable values of strain
one would expect the T, of V3Ge to be raised about
2 'K. V~Ge thin films are superconducting down

to at least 200 A with T, 's comparable to or greater
than bulk sample values. '

Inhomogeneous strain will appreciably "broaden"
the superconducting transition. This is expected
and observed, again, for thin films. Other occur-
rences in "stress effect" measurements are dis-
cussed in the following paper.

Order of Superconducting Transition, Thermal Expansion
Effects, and Arrest of Structural Transformation

at T

Consider the free energy of the system written
to show the strain-dependent part near T,:

F(e) =F"(0)+ ec"~ —(o'/Bv)[T, (~) —T]', (25)

where e the strain relative to the "normal" cubic
state and the last term is set equal to zero for
T & T,(e). For T & T,(e), F initially increases with
strain. If dT, /de &0, however, the crystal will
become superconducting at some finite strain and

further strain may, depending upon the magnitude
of the last term in Eq (2. S), eventually lead to the
condition dt/de & 0. If T, exhibits a positive qua-
dratic straindependence then, at sufficiently large
strain, the free energy given by Eq. (2S) will
always be less than that at zero strain. Thus, for
a sufficiently large positive strain dependence of
T„superconductivity will occur as a first-order
transformation. (In this case, of course, it is
necessary to reexamine the thermodynamics of
the elastic behavior. } To calculate the strain
which minimizes the free energy one must include
higher-order strain terms (anharmonic effects) in
Eq. (25). This equation, applied to the data for
V,Ge, shows that at T & T,(0) the free energy under
strain will be less than that at zero strain for
strains of the order of unity. This is far too large
a strain to ignore the (unknown) anharmonic terms
and it is these terms, no doubt, which prevent the
first-order transition. For V3Si, the magnitudes
of the relevant terms in Eq. (25) are far more
favorable for a first-order transition. This is
particularly applicable to the term a& c & since for
certain strains the modulus and the corresponding
elastic energy are very small. However, dT, /de
& 0. Had dT,/de been positive one could expect a
first-order transition at T, with a spontaneous
cubic to tetragonal deformation ' of considerably
smaller (and more reasonable) magnitude than
that calculated for V36e.

An interesting consequence of the large qua, -
dratic strain dependence of T, oc cur s in the thermal
expansion behavior. From Eq. (25) at equilibrium,
one obtains when T is near but below T,

dF——= o= c e ——[T~(E) —T)
dE — = — 4p

Te 2 d&
x ' ——[T,(e) —T] —= 0.

4n ' — d~ (26)

At T = T, the change xn thermal expansion zs then
given by

„dc a dT, dc™
dT 4p dE dT (27)

For the cubic state E = 0 the discontinuity in de/dT
at T = T, arises only from the linear strain depen-
dence of T, (i.e. , the coefficient I') and is~10~'K ~.

The large quadratic strain dependence of T, will
affect d&/dT at lower temperatures only.

For a crystal which has undergone a cubic to
tetragonal transformation at T & T„ the strain at
T, (relative to the cubic state) is

e =(-', 5, --', 5, --'. 5, O, O, O),

where 5-=(c/a —1). In this case, by Eqs. (27) and
(7}, the temperature dependence of this deforma-
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tion will undergo a discontinuity

d6 e 2 -(~„-n,„)5dT 4F egg —cf2

(C11 12) 5
din
dT

(2s)

+2.6&10 'KdT''
Experimentally, one finds that the tetragonal dis-
tortion at T& T, resulting from the phase trans-
formation is increasing quite rapidly with decreas-
ing temperature and has an approximate value

3x10-~ 'K
dT

just above T,. Thus, the large quadratic strain
dependence of T, causes a discontinuity in d5/dT
which largely cancels that due to the transformation.
This curious result, due to the large quadratic
strain dependence of T„explains why the onset of
superconductivity "arrests" the progress of the
structural transformation at T, . For nontrans-
forming crystals which exhibit a large elastic
softening above T„ the large quadratic strain de-
pendence of T„of course, "leads" to an arrest of
the lattice instability at T,.

Strain Dependence of Specific-Heat Discontinuity
at T

For a transforming crystal of VSSi some typical
values are 6=2. 5x10 3and

(cent cf2) 5x 10 dyn/cm

(which is smaller than for nontransforming crystal).
The last term in Eq. (2S) is negligible for a trans-
forming crystal. One obtains for the discontinuity,

observed in some crystals of VGSi is of this type.
The assumption may be questionable because the
observed specific-heat increase occurs over about
2 deg around the temperature T of the structural
transformation. However, it is quite reasonable to
believe that this is "spreading" due to sample in-
homogeneity since T is known to vary appreciably
with small changes in sample preparation. The
specific-heat samples are sufficiently large to in-
corporate inhomogeneities known to be related to
the structural transformation. Furthermore, ex-
cept for this transition region the specific-heat be-
havior does not differ greatly from that in the cubic
state. %'e assume, therefore, that the structural
transformation is of the type discussed in Sec. II.

The calculation of the shear strain dependence of
T is now identical to that for T,. One obtains for
the structural transformation the results given in
Table IV. The shear strain dependence of the
structural-transformation temperature is roughly
at least a, factor of 5 smaller than that for the
superconducting transition temperature. For the
longitudinal strain of c„, however, one can no
longer ignore the strain dependence of a and only
an upper limit on 6» can be estimated.

It is easy to show that the calculated stra, in de-
pendence of T is too small to have been seen in
previous experiments. If the applied stress in
such an experiment leads to strains at T& T com-
parable to those which result from the transforma-
tion, thenthe crystal will be "in" the transformed
state at T- T„and no transformation anomalies
mill occur. To observe the strain dependence of
T in V,Si, then, the "applied" strain ([001] type,
for example) must be less than (c/a) —1= 2. 5X 10 '.
From Table IV and Eq. (7) the resulting shift in

The strain dependence of the specific-heat dis-
continuity &C„=C, —C„" at $ is readily obtained
from Eq. (10):

aC (&) —nC„(0) T, (e) —T,(0)
n, C„(O) T.(O)

where, for reasons given in the Appendix, we
have ignored the strain dependence of O', . This
simple result is compared to published data in
the following paper. Fair agreement with experi-
mental results is obtained.

Strain Dependence of Structural-Transformation
Temperatures

The analysis given in Sec. II is not restricted to
the superconducting transition bv' may apply to
any second-order phase transition accompanied by
a discontinuity in the specific heat. In this section
me shall assume that the structural transformation

TABLE IV. Quantity n2/47t, the e1astic behavior, and
the components of the tensor describing the strain de-
pendence of T~ for V38i.

a /47( - 8 x 103erg/cm 'K

1 IRT(C —C )
C dT

(oK 1)

2(cff —cf2) ™0.25'K

c -O'K '

2(+ff +f2) - -2 x 10 'K

&44= O'K

( b f f I {estimated) &104 K

~ ran&10'K
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T will be less than -0.08'K which is too small to
have been observed in previous experiments.

One defect of this treatment for the strain de-
pendence of the structural transformation is that
Eq. (27) does not Iced to a breakdown of symmetry
at T„unless the shear modulus c» —c» - 0 at T .
Although this modulus becomes unusually small on

cooling to this temperature range, its value at T
is finite. This inconsistency would be removed if
a small "spontaneous" tetragonal distortion' oc-
curred at T . ' In view of past measurements, '
this distortion must be - 5x 10
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Dependence of Tc upon Lattice Parameter

The elastic behavior near T, of all of the high-
temperature (A-15) superconductors is quantitatively
similar to that found for V3Si. ' It is, therefore,
a general feature of these compounds that (i) they
possess a very large negative quadratic strain de-
pendence of T„and (ii) as grown, the lattice param-
eter is that which nearly maximizes T,' (i. e. ,
they have a small I'e term). The magnitude of
the strain dependence of T, accounts for much of
the differences in T, among some of the compounds.
Figure 4 shows the dependence of T, upon lattice
parameter (hydrostatic strain) for V,Si and V~Ge
calculated from the results of Table III. The large
shifts in T, for strains which do not break the sym-
metry is unexpected from current models proposed
to explain other anomalies. For example, although
the elastic instability previously reported is largest
for symmetry breaking strains, the effect predicted
here is related to small changes in magnitude of the
bulk modulus. On a fractional basis these changes
were insignificant compared to those for the soft
shear modulus.

The magnitude of the strain dependence can be
judged by comparing the effects of a typical change
in lattice parameter for a metal between 300 and
4 'K (see Fig. 4). Although the low-temperature

lattice parameters are called for, only the values
for room temperature are available for both cora-
pounds. Some relative displacement of the curves
will occur because of possible slightly different
thermal contractions. For V3Ge the lattice param-
eter is reported as both 4. 77 and 4. 78 A. The
latter value has also been obtained recently by
Levinstein of our laboratory and has been used in
the figure.

Also given in Fig. 4 are results for V,Ga. For
this compound no single-crystal elastic moduli data
are available. The curve in Fig. 4 has been ob-
tained by scaling the longitudinal wave polycrystal-
line data relative to that for polycrystalline VSSi. '
This could lead to errors of a factor of 2 or so but
this does not alter the major features of the figure.
For comparison, the strain dependence for V3Ga is
about four times smaller than that for V3Si.

Microscopic Source of Strain Dependence of Tc

Many of the anomalous properties of the A-15
structure high-temperature superconductors have
been explained by assuming that the Fermi level
lies near a large narrow peak in the density of
states. ' Labbe and Friedel have applied the
tight-binding approximation to the linear chains of
A atoms in the ASB compound for which there oc-
curs the singular density of (d-band) states

(30)

dT BT dQ eT dQdV eT dV
d~' 8Q' d~ eQB V d~ e~ 8 V' d~

BT~ d Q BT~ d V
aQ da' aV d~

(31)

For high-symmetry shear deformations, 8/se —= 0
and all terms on the right side of Eq. (31) vanish
except the last two. Of the two remaining terms,
that term proportional to d Q/de would be the
source of the large quadratic strain dependence of
T, arising from (bare) band-structure effects.
However, in the Labbe-Friedel model the coef-
ficient for this term 8T,/BQ has been found to be
nearly zero for V38i. Thus, the large shear-

where 8 is a normalization constant and the E's
are measured from the Fermi level. It might be
supposed that such a singularity could readily yield
a large strain dependence. I now show this not to
be the case for shear deformations.

Consider T,IQ(e), V(e)] to be a general function
of Q, the number of electrons present in the band
referred to in Eq. (30), and V, an electron-phonon
coupling constant. (In what follows, the symbol Q
may equally well represent the density of states at
the Fermi level. ) The quadratic strain dependence
of T, is then written
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The difference in elastic moduli between the
normal and superconducting states is given quite
generally by Eq. (2) for an unspecified function
H, (T, a). We now assume that the temperature de-
pendence of this function is given by the usual
"critical field" behavior

H, (e, T)=H, (~)[I — '/T'(Ta)] . (Al)

This assumption can be checked using the specific-

strain dependence of T, does not arise from the
density of states in the Labbe- Friedel model or from
any parameter z in which BT,/sr =0.

The conclusion that the large quadratic strain
dependence of T, does not arise from peaks in the
density of states is not strongly tied to the deta. ils
of the Labbe-Friedel model. The only result of
this model which is used sT,/sQ = 0 is a fair rep-
resentation of the experimental fact that there is
little one can do (either chemically or mechanically)
to raise the T, of V~Si. As such, it should be the
result of any realistic theory for V3Si.

These findings show that the unusually large
strain dependence of Tc does not arise because
energy shifts of (E —E,) near the singularity in
n(E) due to strain cause large changes. Indeed,
these shifts have little effect because, physically,
the details of the fine structure are washed out by
the thermal broadening (kT, fine s-tructure in the
density of states). The large strain dependence of
T, is, in this model, related to a very large (qua-
dratic)straindependenceof BV, and, quite likely,
V alone.

It will be shown in a future publication that these
superconductors exhibit a remarkable degree of
anharmonicity. This anharmonicity has had con-
siderable (but unrecognized) influence in some, and

perhaps many, of the properties of these supercon-
ductors. Its importance to superconductivity is not
clearly understood, but it probably represents the
macroscopic manifestation of the large strain de-
pendence of V noted above.
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APPENDIX

heat behavior, and the evidence showing that it is
largely correct (to- 10%) can be found in the data
in the following paper. From Eq. (2) we find

Ho= ——,eTc for T= T,. At T =0

1I e d&c 3 d~ dTc—c
~

=— +4QT
4g 2 dc ' dc dc,

cd@'
g 2 CPQ

+ 2Tc +4QTc'd~ d~

&PAL,

+2@ Tc (A2)

For high-symmetry shear deformations the first
three terms on the right-hand side vanish by sym-
metry. The fifth term is one-half the value t

"—c
obtained by extrapolating the behavior near T,
[Eq. (9)] and represents (by extrapolation to within
10%) the observed value. Therefore,

do 2a dT,
dE Tc d

(for the shear deformations in our study) and prob-
ably with a considerably large difference.

In the interpretation of the data for longitudinal
waves described by Eq. (9) I assumed

dTc»4 dedTc
d»' e d~ d~

(A3)

T, d(c —c')
(E 8) dT

=100 .

It does not seem likely that this is almost exactly
canceled out (over a range in temperature) by the
fourth term. Thus, the assumption given by Eq.
(A3) is probably correct and only the fifth term in
Eq. (A2) is important.

I now wish to justify this using Eq. (A2). For
longitudinal waves, the first, second, and fifth
terms on the right-hand side of Eq. (A2) represent
(to within a factor of - —,') one-half of what is obtained
by extrapolating the behavior at T, [Eq. (9)] to
T=O. The latter result is, towithin-20%, just
the observed behavior. If Eq. (A3) is not correct,
however, it is then easily seen that the third term
of Eq. (A2) exceeds the second term, as well as
the (experimental) sum of all terms, by the factor
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