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The problem of a magnetic impurity in a narrow conduction band is studied using double-
time Green's functions. We have used a Wolff model in which a repulsive Coulomb interac-
tion of strength U is limited to the impurity site. The coupling of the impurity site to its
neighbors because of the kinetic energy is reduced by a scale factor relative to the coupling
of host atoms to their neighbors. The difference in the one-electron potential between host
and impurity sites is also taken into account. We have solved the decoupled Green's-function
equations in the infinite-U limit in the presence of a finite magnetic field. From this solu-
tion, a conserving calculation of the zero-field magnetic susceptibility y is performed and
numerical results obtained. We find that for a sufficiently weak coupling between the im-
purity atom and its neighbors, a Curie-law behavior of p can be obtained over the four de-
cades of temperature studied. Evidence of Kondo saturation of y is found for more strongly
coupled impurities. The susceptibility shows no evidence of singular behavior at zero tem-
perature.

I. INTRODUCTION

Recently the authors undertook a study of the
problem of a magnetic impurity in a narrow energy
band. ' 3 An equation-of-motion technique was used
in which particular care was taken in the treatment
of electron correlations at the impurity site. A
similar decoupling scheme has also been used in
the study of the Anderson model.

The model studied by the authors was a modifica-
tion of the Wolff' model; it was assumed that the

sole effect of the magnetic impurity was the intro-
duction of a strong repulsive interaction between
electrons of opposite spin on the impurity site. The
coupling of the impurity to its neighbors via the
hopping term in the kinetic energy was assumed to
be the same as that for any other atom and its
neighbors. The one-electron potential of the im-
purity was assumed to be the same as that of a host
atom. Our purpose is to study this model, relax-
ing the above-mentioned restrictions (equal coupling
and equal one-electron potentials), in the presence
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of a magnetic field. We show that the procedures
used by Appelbaum and Penn in Ref. 2 (to be re-
ferred to as I) carry over to this more general
case. The equation for the localized Green's func-
tions at the impurity site is then virtually identical
to that for the extra orbital in the Anderson model. '

The singular integral equation obtained from the
equation-of-motion scheme can be solved in the
infinite-U limit, where U measures the strength
of the Coulomb repulsion on the impurity site. The
static zero-field magnetic susceptibility of the im-
purity is found by a direct calculation in the zero-
field limit of (no —no,)/H, where no, is the occupa-
tion number of the impurity site for spin up (down)
and II is the magnetic field.

The outline of this paper is as follows. In Sec.
II we apply an equation-of-motion technique to ob-
tain a self-consistant equation for the impurity
Green's function. The equation is solved formally
in Sec. III. In Sec. IV this solution is used to re-
duce the calculation of the magnetic susceptibility
to quadratures. The magnetic susceptibility is
evaluated numerically and the results presented in
Sec. V. A comparison of this work with other cal-
culations of the magnetic susceptibility is contained
in Sec. VI.

where

Introducing

+ ~«~ODo)

B'(/= «d„; d/t, »„.

(2. 8)

(2. 8)

and we make the choice T(0) = 0. In other words,
we assume the coupling of the impurity site to its
neighbors is the same as for host sites, except for
a scale factor. The factor 1+y is expected to be
significantly less than unity because T,&

is propor-
tional to the overlap of wave functions located at
sites i and j. This overlap occurs in the exponen-
tially decreasing tails of the wave functions and the
impurity-atom wave function is more contracted
than that of a host atom.

We introduce the retarded double-time Green's
function'

00

((A, B))„=—— &A(t)B(0) —B(0)A(t)&e'"'dt .
77j

(2. 4)

The equation of motion for the one-electron Green's
function is

~«] ~ Tfo 2/+ U~(0&&noodoo ~/o &&
7f

II. EQUATION OF MOTION

The Hamiltonian we study is
a-„.-=(i/N"') Z( e '"'(d...

one finds that (2. 5) can be rewritten as

(2. 7)

X= gT(/d„d/, + —+no, no;+ Vino, +/2&an(, ,
f je e fy off

(2. i)
where d,', creates an electron with spin —,

' a= + —,
' at

site i, U is the strength of the Coulomb repulsion
at site i=0, 1/'is the shift in the zero of energy at
the impurity site, and 4 is the magnetic energy of
the electrons due to the external field; the g value
of the electron at all sites is assumed equal.

The hopping integral T, &
is taken to have the form

where

Ggf =&a20 ~ a)T 0)

(I/N1/2) p eg(P( F/)T(2 ~)

(2. 8)

(2. io)

f 1 y
e)")G2& = ()22 + & eeG "2 + (year+ V)

q

1+,—„U«n„d„;af.,»,
(2. 8)

T(/= T(2-i)+ To'/()(. 0+ T('of/. 0

where

(2. 2) Introducing

Gp = ~„.Ggg. ,' E)fi —~k E
Pc Gkog (2. ii)

T(()= T()(:yT(i) (2. 3) one obtains from (2. 8) the equations

[I —yF)(o) —aA) —VF((d —ah)]G;, ((d) —yE(o) —a/2)B„-, = — + UN'/ F((d —a/))«nopd„;a„-. ,»,
2'tl' CO —gA —E~o

(2. i2)
f w

[yE' ((d —a/))+ VE'((d —ah)]G„-. ((d) + [yE'(0) —on} —1]E;, = —— " —UN"'F'
2m (0 —fg, —0~

x((d —oa)«np-dp ' af. )), (2. ia)
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F"(~)= {I/XZ; e";/(~-eI}, (2. i4)

F(~}=F'(-~) F'(~}= »(~}—1 F'(~}= »'(~}
(2. iS)

assuming the band is symmetric about the zero of
energy. The zero of energy coincides here with the
Fermi energy, the case of half-filled conduction
band is being considered. By summing over k in
(2. 12) and (2. 13), onefinds after some algebrathat

((d,.; d'„)) = —Q 6',;
S'(~- «)(I/2~+ V(&m,.-d„;d,'.)&)

1 —(2y+ P)F'(~ -«}—VF(~ -«)
As in I, we write an equation for the two-particle
Green's function (&no do do ))

Dividing (2. 19) by (m —« —e~} and summing on q
one finds that

(1+y)F'(oo —«) +
E(oo —«) (2. 22)

Z I o„«n ood, ,„dt,&) = (I/iV'") (i+ y) ~, «,r, ,
{2.23}

we obtain

«~o;do. ; do. »= {I/&'")Z;r;, (2. 24)

Q,. I'o,.(&nood, ;; d,",» = (1+y)'((u —oL —E ')

x «no.-d„; d,', )) . (2. 2S)

%'e now need an equation for

«dog do~ dpo ~ do~&&: J 40 .
After decoupling according to (2. 19) it takes the
form

(co —« —VP)«no;do, ; do, ))

Q r„.«,.-d,;; d,",)&
277 Jt

—Q r„,«d od„d;;; dto, »

-Z rj o(&do;do. dj .-,' do. »

Since we will be interested in the infinite-U case,
we can ignore the last term on the right-hand side
of (2. 1V).

The equation for «no;d&. .. do, &) after decoupling
ls

(& —«)gdo.-d„d, -; dt. »
= —(do; d~; & {I/»+Zo I'oo&&do. , do, )&)

+Pro Tg o&(do-do do 'dt &)-
+&» I'~o&d~odi'-&&&do. ' do. && .

By Fourier analyzing (2. 26) one obtains

(&u —od —e -)I'-" —(~ —«) —Q I'-"
lr.

dOr &Pc ~ dog &qg + I+ 7 E

——Z o-r- +ye; 2r-'—
N

q,

(2. 26)

(2. ie)

(oo —«)«n„- d, ,„do, » = Q r, .„«n„-d,.; d,', )&:

j WQ,

+Z r o &d(;;;&—~ Z &d,', „;-& D,', , (2. 27)
k

where we have used the decoupling approximation

((d', ;d„d, ; dot. »= &d';;d„-&&(d,;; d'„)&:

at most one of i,j,j = 0 . (2. 19)

See I for a complete discussion of the decoupling
procedure. By Fourier analyzing (2. 18) one finds

(oo- «- e;)rf= —(I/&}~I e. r»

where

Doo=((d„; d,', )&,

r;" «do=do a-. fo. do.,»,

Z=(l/X)Q„- Z';.

Using

(2. 26)

(2. 29)

(2. 30)

+ (&u —«+ ye-)(I/N) Zfir„", (2. 20)

rg= «n„-a;. ; d,".)& .
& ro~ &(do;do. dg"-' do. &)= iso ~~, r,-' (2. 3i)

~+ V '~ Ig

gt
o 0 o~ 0 ~ q q

and {2.27)

, ((d d, d, o; d, &) = —{1+y)o[e —« —F '(v —«)]&(no;do„' do, »

B'(v —«)IPoo{v} o, I/2o+ {I+y}&(~)
(2. 32)
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where

d (ra —rra)=, r Z (d;a ) —N 2 (d;a;r}) (w —aa —r ),
q
~Q

(2. 33)

B (w —aa}= „,E 1'„(dr.- a;.-) —N 2(d,-.-a;, )) (w —aa —a;)
(1 + y)

gt
(2. s4)

(2. s5)

Combining (2. 32) and (2.25) into (2.17) and (2. 16) one finds for the local Green's function in the infinite-U
limit,

DM((u+ i5) = F((u —oh)[(1 —(na;))/27( —(1+ y) A'((u —ord)/2'((u —oh)] [(1+y)2 —(2y+ y )((u —o4)

xF((u —oA) —B'((u —oh) —VF((u —o&) —(1+y)'(F '((u —oh) —(u+ ah)dt'((u —oa)]-'

III. INTEGRAL EQUATION

Converting (2. 35) into a closed explicit equation for D()()((u) involves expressing A'((u) and B'((u) in terms
of integral operators acting on D()p((u) This is done in Appendix A for a truncated Lorentzian density of
states. We find that

"o f (u'- or D22, (u'-i 5 —oh d(o
'

A'((u —oh+ i5) = F((u —o&)2D
-nD

() ~ y)rrra(w —aa) ' f(w'- aa)da '
B' (u —o&+i5 =

(0 - 0'6 —hl + g, 5

(s. 1)

(1+ y)4DF((u —og) ND f((u —o4)Dao((u —i5 —o()))d(u

r 4) —0'k —('d + g6
-nD

Substituting (3. 1) and (3. 2) into (2. 35) we obtain

2)( 7I' „() (u —(u —6+ i 5

(3. 2)

d ( dra'f(a' —a) .dr ( dw'f(ra' —a), ,

)~ ~

)f (u —(u - 6+ i5 J (u —(u —6+ i5
-nD -nD

(s. 3)

where @'((u+ i5) = @'((u —i5)*, (3. 5b)

d= (1+ y)2D . (3 4)

Examination of this equation and Eq. (26) of Ref.
4 reveals that our equation for the impurity-level
Green's function and Theumann's for the extra-
orbital Green's function in the Anderson model are
identical if one makes the correspondence d wpaV2d

and V-ed, where p is the density of states of the
conduction band, V~„ the s-d mixing strength, and

e„ the d-electron energy level. Theumann's integra1
equation is derived for a constant density of states
and the asssmption that F((u+i5) may be replaced
by —i((p((u). It should be pointed out that while the
t matrix in the Anderson model is proportional to
D()()((u), this is not true here, as we show in Appen-
dix C.

The key to solving (3.3) is to notice that while
there are in principle four sets of integral equations
for D'((u + i5) and D ((u +i5), the equations separate
so that D'((u+i5) couples with only D ((u —i5) and
similarly for the other two quantities.

With the substitutions

1 I" f((u'-4)d(u'
7(i) Z —(u

-nD

1 f((u'+ &)d(u
'

2 &i „o Z —& I

1 "a f((u'- a)4'-((u'- a —i5)d(u'

nD

(s. 6)

1 " f((u'+ 4)4'((u'+ a+i5)d(u'
2

=
7(i g-CO

-nD

the two simultaneous equations we need to solve are

+'(u+i5 =
b-+ i((u —6 —V)/d+ X,((u —&+ i5)
1 —i((u —& —V)/d+C, ((u —&+i5) '

(3 6)
b' —j ((u+ b —V)/d+ X2((u+ & —i5)4-((u —i5) =
1+i((u+ 6 - V)/d+@2((u+ &+ i5)

(3.7)

with

((u+ i5) = 4midD()()((u+ i5) 1 (S. 5a) (s. Io)
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b'=1 —2(n~) . (3. 11)

+X, (re+ i5)[b'- i(&u —V)/d],
(s. 19)

Examining the discontinuity of 4, (z) and @2(z)
across the real axis one finds

C, (&u+ 4+ ib) —C, (~+ 4 —i5)

= [X ((d+ 6+ ib) —X (QP+ b —i5)]@ (& —ib)

( —D & (d + 6 & D) ~ (3.12)

C, (~ - &+ ib) —@,(~ —&- ib)

= [X,(~ —b, + ib) —X, (&u —a —ib)]@'(&u+ i5)

(-D«u —a&D) . (S. 1S)

Substituting (3. 13) and (S. 12} into (3.6) and (3.7),
respectively, and then translating the frequency
axis in (3.6) by+4 and (3.7) by —a one finds

HD =1+2+ (&u —V)'/d'+X, (&o —i5)[b'-i(~ —V)/d]

+X,(~ —i5)[b + i(~ —V)/d]

+ X,((u —ib)x, ((u —i5) . (s. 20)

d 2772 „L} Z —&

The constant C is determined by expanding both
sides of (3. 21) in a Taylor-Laurent series. One

finds

The solution to (3. 18) can be written down by inspec-
tion and is

( )
i(Z- V}

d

C, (~+ i5) —C, (~ —i5) b'+ (~ -V)/id+ X2(&u+ i5)
X~((o+ ib) —X~((u —i5) 1 —(& —V)/id+ &bq((u —ib)

( D& co & D), -(3.14)

0 na
C=1+ ——(2nd)-' lnH (~ )d~

d
-nD

(s. 22)

C,(~+ ib) —@,((u —i5) b —(~ —. V)/id+X, (~+ i5)
X,(&u+ i5) —X,(~ —ib) 1+ (~ —V)/id+ C, (~+ ib)

( —D& ~&D) . (3. 15)

Equations (3.14) and (3.15) can now be solved as in

I. Clearing fractions in (3.14) and (3. 15) and add-

ing, one finds that

—x, (z)x, (z)+ 4, (z)+,(z)

-x,(z)[o'- i(z- v}/d]-x, (z)[b-+ i(z- v)/d]

+ c,(z)[1—i(z- v)/d]+ 4, (z)[1+i(z- v)/d]

(s. 16)

is continuous across the cut (-D, D). Since the
function is analytic above and below the cut and con-
tinuous across the cut, it must be a polynomial.
Examination of the asymptotic form of (3. 16) re-
veals that (3. 16) is a constant, denoted here as A,

& = lim —. [C'z(Z) —C', (Z)]+ —. [X,(Z) —X,(z)j
Z z

$d

Do( 4) + 6+ 25

C(~ +i5)+1+ i(&u —V)/d H„
c,(~ - ib) + 1+ i(a& —V)/d HD

'

H„= 1+&+ (~ —V)'/d' —i(~ —V) [X,(~+ ib)

—x, (&+ib)]/d+x, (ar+ ib)x, (~+ ib)

+O'X, (&u+i5)+ b X,(~+i5),

Hu= 1+&+ (~ —V)'/d' - i(&u —V) [X,(~+ i5)
—Xa(& —i )5] /d+X, (~+ ib)X, (~ —ib)

(3. 23)

+ O'Xq((u+ ib) + b Xq((u —i5),
whose solution is

1+i(z —v)
d

(s. 25)

Equation (3.21) constitutes a solution to (3. 18); it
is necessary however, to determine A. and b' self-
consistently by examining the asymptotic form of
@g and C'3. To this end it ls advantagous to obtain
a form of &I2 symmetric with that of (3.21); going
back to (3. 15)-(3.17) we obtain an alternative to
(3. 18),

—D;o(ru'- L —i5)f(~'- a)]du&'. (3. 17)
C' + jz 1

"
ln H(&u') 647'

27T2 ~D Z
(s. 26)

Using (3.15)-(3.17) one obtains after some rather
simple algebraic manipulation the boundary value
problem

with
nD

C'= 1 ——'+ (2~d)-' inH(~ ')d~' .
d

(S. 27)

C, (~+ ib) + 1 —i(~ —V)/d, H„
C, (~ —i5)+ 1 —i(~ —V)/d Hu

' (s. 18)

H~= 1+&+ (~ —V) /d +X2(& —ib)x, (&u+ib)

+X,(~ —i5)[b + i(~ —V)/dj

Expanding (3. 21) and (3. 26) in Taylor-Laurent
series and equating equal powers of Z one finds

I I . gP

limzc, (z)= 1 ——. '+ ' —',', (3. 28)
2d 2P 2' 87t' d '
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with

zd 27r 2&d 8+d

nD
—4d d~ f(~)lmD, ,(~ —i5)

- nD-4

M, = J lnH(ru) ~"d&u, M,'= J InH'(~) ~'d&u .
(3.30)

Substituting (3.28) and (S. 29) into (3. 17) results in
an implicit transcendental equation for A. and b'.
We need two more such equations so we can deter-
mine the three unknowns A and b'.

Expanding (3.9) in powers of 1/Z one finds

pnD

limZC, (Z) = (vi)-'~~ d~'f(~'- &)@ (~'- & —i5),
g» 00 -nD

nD

lim lmZ@, (Z) = 4d d&o f(&)imDOO(&'d+ i5)
g»~ -nD

IV. MAGNETIC SUSCEPTIBILITY

$=1im (4. 1)

Equation (4. 1) is the usual definition of x if we set
&us = 1; adding (3. 33) and (3.34) yields

limZ1m(4&, + 4'2) = —2dXb +
g» eo 7r

(4. 2)

We now expand 4, and 4~ in powers of &. The first
step is to expand H and H' in (3.19) and (3.20) and
(3.24) and (3.25) in powers of h. For H' one finds

Our aim in this section is to convert the formal
solution we have obtained in the previous section
for Dao(~) into a calculation of the static zero-
field magnetic susceptibility. In Appendix 8 we
show that the magnetic susceptibility of the host and
impurity is just the sum of the Pauli susceptibility
of the host and the local susceptibility of the im-
purity. There is no net polarization induced in the
host for a Lorentzian density of states. The quantity
to be calculated is therefore

pnD 4

+ -„ f(~)d~,
"-nD 4

(S.31)
HD+ 2ih[gf'- fj + boj—Xg - ((o —V)f'/d+ —,'a]H'(~) = & + 2&(xf- »f )+ Si~(»i - xg+ -.o)

na
limimZ4, (Z) = —2dno +-
g» 00 w

+b, —+4dimDOO(-nD+i5) (3. 32)
1

H„'=1-f'(~)+ an, + [(~- V)/d- g(~)]"'

+ 2if((u) [((o —V)/d —,;(& ')], (4. 4)

nD
2dno + + ~

'rr 7r
(3.33)

H'd = 2n, [1+f(&d)]+ [(& —V)/d- g(&d) l ~[1-f( )&]d-

nD
limZ 1m@3 (Z) = 2dno, — + —.
g» 00 r 1r' (3. 34)

Equations (3.34), (3.31), and (3.17), together with

(3.28)-(3.30) serve to define three transcentral
equations from which n0, and A can be found. The
formal solution to (3.3) has been completed.

In going from (S.32) to (S. 33) we have dropped the
term 4dImDOO(-nD+i5). Now ImDOO( nD+i5) is-
the density of states of the impurity level at the
host-band edge. Physically that region cannot be of
any importance and the density of states should go
to zero there. This result is not in accord with
the behavior of the integral equation (3.3), where
the spurious logarithmic singularity introduced by
the truncated density of states forces ImD(~+ i5)
to have unphysically large values near the band
edge. The region over which this behavior occurs,
however, can be shown to be of the order
(nD/v)e "d~~ and consequently does not affect the
calculation of such quantities as n' in the limit
nD/d» 1, and clearly has no influence on such things
as resistivity and specific heat. Expanding (3. 10)
in powers of 1/Z one finds similarly that

dAa=lim
d6»0

(4. 8)

1T ld —(d 1l' &d- M

1 d&df(&d ) . 1 6 dh&f((d )

-nD nD

n0 n0 +n0- y b0=- j. —n0,

(4. 7)

(4. 8)

and where the superscript prime indicates deriva-
tive with respect to frequency.

H(&u} =

HN(&)+ 2&5[5» f —Xf. + &i~[5~2 .Xg'+ 2 a]
H' ( ) + 2' &f z -if+ »i —x '- [( —v) ld]f + -' ]

(4. 9)
If (4. 3) and (4. 4) are in.serted into (S. 30) and InH(&'.")
and lnH (&'d) are expanded in powers of 4, one ob-
tains expressions for M„and M„' in powers of &.
Inserting these into (3. 28) and (3. 29) and then in
turn into (4. 2) generates a linear equation for X anci

a, whose coefficients are complicated integrals
of H„, H'd, etc.

We need a second equation in the turo unknowns
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g and a to complete our solution. This is obtained
from (4. 6) and (3. 17). Examination of (3.17) using
(3.33) and (3. 34) reveals that

so that

d HeA
11m =0.

Rex = 2n, + O(~'), (4. ia) Using (3. 17), (3. 18), and (3. 29) we find

1 Re(M&+ M() Im(M() —M() ) V Re(MQ+ MQ ) (4. 1i)

Examining (4. 11) it is easily shown that it is of
order ~, so that

The problem of calculating g has thus been reduced
to quadratures.

&) = lim lm(A)/6 as 6 0 . (4. i2) V. NUMERICAL PROCEDURE AND RESULTS

y(0)&r+y&0)P+y())~~ I/«
~y() ) ~y &0)

py
(0)

I ~y(0&(p+ f&0)p+f&&)y

&y(0) +y(0&p+ f (& &~

sQ) = &fa' ' - (&&f0"'+ Pfs"'(1)

&(00= —2+ &f0 —O'f0 + Pfa
(1) (0) (0)

(4. 13)

(4. i4)

/«- (I/»'d') J' d&0lnl H„/
mD

p= (I/2»0d0) J d&d argH&& —V/«

y= I/«0 .
We have defined f„& ' as

(4. iS)

f„=f &0™f„(&0)d(d

with

f& (I &)0)V H&(.+~HN) I H. I

~.=- VH."+~HV
I H.

l
',

y, =,H„IH„I

(4. 16)

f HN'="-""
iH i

-H -iH i
, H&d - ~)/deaf +if+f g

BD P

fH&~( H„" 1
f5=

tH t2
g'

~H t0

(4. 17)

2 jll„j' IID

E&luations (4. 11) and (4. 12) furnish us with our sec-
ond linear equation in g and a. The solution to
(4. 2) and (4. 12) is straightforward, though tedious
We find for y,

y, = (a»B —
ad& C) (&(»a20 —a»ap&)

The evaluation of y given in (4. 13) reduces to a
rather long delicate numerical problem. The tem-
pera, ture dependence of y, which we expect phys.-
ically to be Curie-like, means that if we study g
over a temperature range of four decades, we ean
expect that g may vary by four decades. A study
of (4. 13)-(4.17) indicates that this comes about
through a cancellation among the terms making up
the denominator of (4. 13). The implication of this
analysis is that we must be prepared to calculate
the integrals entering (4. 14) to five places or better
if we are to expect at least 10% accuracy at the
lowest temperatures. To accomplish this aim, the
domain of integration of the integrals in (4. 16) was
broken into a large number of parts and these parts
mere integrated by an eight-point Gaussian-integra-
tion routine. The accuracy of this procedure mas
tested by using trial integrands of similar structure
to f„(&d) which could be done exactly. '

As our main aim was to study the susceptibility
in a range where me could expect Curie behavior
we chose for our parameters V= —1 and d= 0. 1.
Before we can evaluate y in (4. 13) we need to know

n0. This is found in the same way as described in
I, where this calculation is discussed extensively.
We find n0= 0. 94996. n0 is quoted to five figures
because, as we shall see, y is a very sensitive
function of n0. Thus the integrals entering n0 mere
evaluated to six 81gnlf leant figures.

In Table I we list y calculated at various tem-
peratures. For D = 1 eV this covers a range from
1100-0.11 'K. We notice that while p is certainly
temperature dependent, it does not vary as I/T
The results imply a strongly magnetic impurity,
but not fl ee-spin-like.

At this point it was felt morthmhile to investigate
the sensitivity of && to n0. While n0 has been de-
termined self-consistently we also know that the
energy cutoff introduced in the host band structure
(Appendix A) results in an approximate error of
l%%uQ in n0 We have t.herefore treated n0 as an ad-
justable parameter with a freedom of variation on
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TABLE I. The susceptibility as a function of tempera-
ture for the case d=0. 1 eV, D=l eV, V'=- leV, and np

=0.94996 is determined self-consistently.

TABLE III. The susceptibility as a function of temper-
ature for the case d=0. 2725 eV, D=l eV, V= —1 eV and

Op= 0. 8556 is determined self-consistently.

0. 11x104
0. 11x10'
0. 11x102
0. 11X10
0. 11x10P

8. 1
64. 5

251
465
683

0. 11x104
0. 11x103
0. 11X10
0. 11x10~
0. 11x10p

5.75
23.3
58. 8

127
226

the order of 1%. We find a very small change in no

results in a susceptibility which is Curie-hke. In
Table II we have listed C, the Curie constant, de-
fined at gT= C(T)j, as a function of T. It has very
little variation over four decades of temperature.
Its rms value differs from its average value
by 3%

We have also investigated the case where V= —1,
d= 0. 2725. We find for this case that no-0. 8556
when determined self-consistently. Values for X

are shown in Table III. Again we find behavior
similar to that found for d=0. 1 in Table II.

In attempting to vary no for this case it proved
impossible to achieve Curie-law behavior over the
four decades. At T/D=10~, saturation has occured
for the example shown in Table IV. This is no&

entirely suprising since if we calculate the expected
Kondo temperature~ for this system we find T,/D
-1.1 &10 '. It is a characteristic feature of de-
coupling procedures that the transition in physical
properties predicted by decoupling theories occurs
over a number of decades' around T,. We there-
fore believe we are observing a saturation of the
susceptibility due to the Kondo effect in this case.

It is difficult to access the proper role that no

serves as an adjustable parameter. It may of
course be that since we have treated no approxi-
mately due to our introduction of an energy cutoff
it is not unreasonable to expect that the proper no
for y might differ somewhat from that we have ob-
tained "self-consistently. "

Another possibility is as follows. A major feature
of decoupling schemes is that they introduce in a
realistic fashion width to the impurity levels due

to their interaction with the band electrons. It is
the finite width of the impurity levels which makes

it difficult to obtain a Curie-like susceptibility, this
width tending to peg the susceptibility at a value
more like that of the host band than an isolated
spin. We know that the strong Coulomb repulsion
on the impurity site acts in such a way as to over-
come this tendency and to effectively suppress this
one-particle width in so far as it enters X. What

we may be observing in this calculation is that a
small part of the one-particle spectral width enters
into the calculation of y due to the unavoidable er-
ror in the treatment of higher-order nonsingular
terms by the decoupling procedure. By varying no

we are effectively compensating for this tempera-
ture-independent piece and thereby allowing the
Fermi-surface singularities ' to operate to gen-
erate the Curie law.

VI. COMPARISON AND DISCUSSION

There have been a large number of calculations
of the magnetic susceptibility of a local moment in

a host metal over the last few years, and a com-
parison of this calculation to all of them is clearly
impractical. Our aim in this section is to place our
work within the broad context of this literature and

to make a detailed comparison for only a few closely
related works.

The first category of calculations has been done
for the s-d model. These, by force, produce a
Curie law at higher temperatures, since an isolated
spin is assumed a priori to exist and be only weakly
coupled to the conduction band. The calculation due

to Zittartz~~ is the most advanced in this category
and uses a Kubo expression for y. Using the
Nagaoka decoupling and Hamann's integral equa-
tion" he finds that X goes negative at the' lowest tem-
perature. There are two sources of difficulty which

TABLE II. The Curie constant C(T) —= Tx as a function
of temperature for the case d = 0. 1 eV, D= 1 eV, V= —1
eV, and np=0. 949429.

TABLE IV. The Curie constant C(T) =—TX as a function
of temperature for the case d=0. 2725 eV, D=1 eV, V
= —1 eV and np=0, 838.

T ('K)

0. 11x10
0. 11x103
0. 11X10
0. 11x10i
0. 11X10

C(T)

0. 82
0. 83
0.77
0.69
0.74

0. 11x104
0. 11x103
0. 11x10'
0. 11X10'
0, 11x10p

c(T)

0. 846
0. 834
0.377
0. 084
0. 0144
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could produce this result. The first is simply an
inadequacy in the decoupling procedure. The sec-
ond is that the decoupling scheme is not a conserv-
ing approximation' with respect to a calculation of
g using the Kubo formula. This second possibility
is what prompted us to determine y from a direct
calculation of lim„o(no —no, )/H T.his procedure
is of neccessity conserving.

More closely related to the present work are
those calculations in which a local spin is not as-
sumed to exist on the impurity. A number of these
approximations' use time -dependent Hartree-Fock
on random-phase approximation (RPA}. In gen-
eral, they do not yield temperature-dependent values
of y; a large enhancement of y over that expected
from a band electron can only be obtained by art-
ificiajly restricting U to a very narrow range. This
present calcul&tion is aimed at remedying this situ-
ation by using an equation-of-motion technique.

An alternate attempt to remedy this difficulty
is due to Suhl and co-workers and has been referred
to as a renormalized RPA. This approach did
succeed in producing a reasonably Curie law for
high temperatures, albeit with a Curie constant
only 40'/&: oI the expected one, but fails in its treat-
ment o:f saturatjpn due to the Kpndo effect.

The most successful calculations to date involve
the use of functional, integral techniques for calcu-
lating the grand parti. tion function from which the
susceptibility has been obtained. "'o This gives
6'uric-law behavior in the high-temperature regime
with a Curi. e constant which approaches the expected
}t~ne for a, free spin as U- ~. The method suffers
from the difficulty of being extremely complex when

extended to t.ow temperature, and only a small
amount of success has been obtained in calculatnig
any o'ther physical properties using this method.

Since the completion of the calculation described
i«»s papery a, report by Mamada and Takanp '
has been brought to our attention. Their aim is
also to calculate p and they adopt the Anderson
model tp study. They follow the decoupling proce-
dure used by Theumann and ourselves and con-
sequently arrive at precisely the same integral
equatio('1 (3. 3) as ours.

At this point our approach diverges. Mamada
and Takano ' calculate X from the expression

&= (Z &at I)&~)0~a)) ) (6. 1)

as was done by Zittartz. '3 In the process of per-
forming this calculation they are forced to introduce
new equations of motion for Green's functions which
do npt previously appear in the hierarchy of equa-
tions for Doo(o)). These equations can only be
solved by introducing a, decoupling procedure which
goes beyond that employed for the calculation of
Doo(o)). In particular, their extra decoupling proce-
dure, translated into the notion and context of this

paper, adds the factorization

(d(, d), d~; d(), ) =&d(od~, )&d„,; d( )

—(d,', d„,)(d„; d„): (6. 2)

By definition

APPENDIX A

I I t 1A (to —tttt)= ttt
( )Z (t( tttt p) — Z (ttgtt ~ ))1+ y l-, a

((o —oh —e„.) .
Introducing the operator

F„o„.=i J f(o)')(O„,„„-O„,.«)do)',

we have

& toad. ) =& «aa'doo)).

= F„.(I/N ' ~o) Q; G~I)

Using (B4) and (85) it is easy to show that

(A 1)

(A2)

(A3)

since

r; (1+ y)E-'(o)+ oa)
kq' 00

(A4)

1
ov at)o) Doo

(do;a„";)——Q (do;a;-)

(l, y}E D (N,, )
(... )

1 (A5)~1/ td 00
p7

Inserting (A5) into (Al) yields A'(o)) in terms of
Doo(~))

~() z()~ D ( )(' '"'-' ''"')
(A6)

~e turn now to B'(o) —ad). By definition

at most one of i, j, k= 0 .
This means that one is separating like-spin elec-

trons as well as electrons of opposite spin. This
complicates the question of whether the g they
calculate is conserving with respect to the decou-
pling procedure they use for IP~o((o). For high tem-
perature they find a Curie law; for very low tem-
perature they find that y diverges as (TgT) In(T/T~).
This latter result is in disagreement with the nu-
merical studies we have done here, which show
very rapid saturation of y for T & T,. It is in further
disagreement with studies done by Anderson and co-
wprkers2 ' that show there are no lpw-tempera. —

ture singular properties associated with a magnetic
impurity in a metal.
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((d —« —e») .

By Fourier transformation

(A7) ~(~) = (1+ y)'&', (~) + (I + y)'&»(~), (A13)

Z &i, (dt.-a;y)-& '2 (d,.-a;.-.))

&', (~)=F(~)F„.—, , (A14)
2w (4) + 0'6 - co

=(1+y)N ' Qe». (af.;a»;) —N 'Q(az;a;;) 83((d) = E((d)E„, [(d'+ « —E-'((d'+ «)]

(A8}

and

—y(y+ 1}Da,[(d+ « —F((d+ «)]
(1+ y)'E'((d+ ard) [F(~+«)]-'D,',

CO+ 0'6 —E'p

(A10)

E' =N' Z e»-. G»». = (1+y)[&+« —E(&+ «)]D,'a
k, k'

(Al 1)

Substituting (A10) and (All) into (Ag) one finds

2 Td ((dt;ay) —yy 'Z (dna, ';)}

— 1+ N iE —+
1 F '((d+ oh)-

( y) ( dy dy(~+yd —y)

= (1+y)N 'r F„.
i
Z e» G»». —N ' Z &».G-„-.

q, k'

(A8)

With the help of (A4) and (B4) and (B5) one finds

1 E '((a+ «)Q e»y G»»y = — +
ty 2rr 2rr((d+ « —e»)

D 1p'( )=—, (A16)

~ /F '( )--F-'((a'+ (ra)

(A15)
We now specialize to a Lorentzian density of states.
As was discussed in I, this leads to convergence
problems which necessitate the introduction of a
cutoff parameter. Because of the presence of the

magnetic field this cutoff must be introduced with

particular care. The cutoff in fact arises from
terms like

[F-'(~'+ «) —E '(~)]/(~'+ « —~),
which reflect the density of states of the host band.
We must remove the explicit field (b) dependence of

those terms so that our cutoff does not become
field dependent. This involves making a change in

variables from +'+ o~ to +'before the cutoff is
introduced, and then introducing the cutoff. We
have dwelled on this point since failure to take due

care of it leads spurious contribution to the suscep-
tibility from the band edge. 24

For a Lorentzian density of states pa((d),

F(&) = ((d+ iD) (A17)
—(1+ y)»D,'a[(d + « —E((d+ «)]

(1+y}'F'((d+ or )D;,
[E((d)+ «)] ((d + « —e }i"

Substituting (A12) into (A7) yields

(A12)

Substituting (A17) into (A6) and (A13)-(A15), and

introducing a cutoff +nD in the integral (after the
change of variables discussed above), one finds for
2'((a —«+ i5) and 8'((d —«+i&) the expressions
given in (3.1) and (3.2).

APPENDIX B

From (2. 8) one obtains directly

Q G"-= —E((d —«)+ —Q e-G~((d —ab —e„-}- + —Q G&+, r, Q I";((d —ob, —e;), (Bl)N y „-+~ U -1

k 2& N -- q q
q, k

Og &„q g1
q

Q G„-„-=—F((d —«) —yDoa((d)+ —Q((() —« —e») [yE»+N UI'» + (y((() —ar»)+ V}G»] .
k

Using (2. 12) this becomes

g G" = —F((d —«) —yD' ((())+ —Q " [(I+y)G, ((()) —[2a((d) —« —e-) jN 1 ~ ((a —« —e»)-' ty -1
kk 2~ N». F((d —«) k' k

Solving (2. 12) and (2. 13) for G'„, ,

G';(Id)=(F'( +y)+Vddy)]-'( —Gyy' yyt'; + — (y -y--yd)-'.
2rr 2)r

(B2)

(B3)

(B4)
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and using

((n„-dp, ; d„)) —(1+ y)[co —« —E '(co-—«)]+ co —«+ ye;
~ —06 —6-

(B5)

one arrives at

Z G;, (co)(cp —« —~„-) '= " {F '(co —«)+ r[F(co —«)1']. (B6)

Inserting (B6) into (B3) one finds that

NF(&u —«) 1 d InE(co —«), 0 (1+ y) d lnE
27c 2 7r dcp

(B7)

Equation (B7) can be used to calculate N', the total
number of electron of spin 0 in magnetic field 4.
For a Lorentzian density of states

hence

E(co) = (co+ iD)-', (B8)

—lnF (co) = —E(~)d
dco P

Now

Q G„-f= E(co —«)+ D0'0(co) .
f 27T

N'= 1f(co) Im+~G„","(co)dcp

(B10)

= (V —1) J f(co)p (co —&)dcp+ np, (Bll)

where p (co) is the host density of states per atom
and np the occupation numbers for the impurity
level. Aside from the Pauli susceptibility, the
total excess susceptibility due to the impurity is
calculated from no, —no . The arguments above,
which carry through exactly for the Lorentzian den-
sity of states, are approximately valid for any

smoothly varying density of states if (1+ y) is small,
corresponding to a, narrow impurity level.

APPENDIX C

In this Appendix we obtain an expression for the
conduction electron t matrix. Starting from (2. 8)

a &kk r v(~ —o6 —ef) Gk g
= + —Ef.+(yak+ V)

2m

N Gf '+N 1/2 ((nppdps &f ' ~)) (Cl)

1 r(1+r)D;, E '(~ «)—
N (d —g " —0'6

key

Using (A4), (A10), together with (B5) it is straight-
forward to show that

2&kk»OO
2m(cp —e„--era) N

tA(~) 2v ~kdD00(~) ~

t'„( )= c2p(1+ y)'D/p' .
(c4)

(c5)

Inserting (C5) into (C3), and evaluating F(~) near
the Fermi surfa. ce, one finds (we set 6= 0)

t(~) = iD(-', it„(~)p' —I/2v) . (C6)

Now we know" ' that as cp- 0, t„(~)- I/pip, the
unitarity limit. This means that t(cp) - 0. As the
Kondo state is formed in the d-band level the scat-
tering in the d band tends to zero.

1 y(1 +y)D00 F (~ o&)
N (d —&k i —0'6

1 [(1+y)'O'„F '(co oa)——F '(cp —era)/2m]

N (cp-~k-oa)(cp-~g, —oa)
(c2)

Equation (C2) is easily interpreted. The first term
describes electron propagation in the host lattice,
no scattering. The second term describes the im-
purity resonance in the total Green's function. The
next two terms reflect the fact that the impurity
level is a resonance in the host band, and therefore
the electron may resonate between the scattering
states and the impurity level. The final term just
measures the scattering rate of the conduction elec-
trons due to the impurity. Notice that if r- —1,
decoupling of the impurity from the conduction
electrons, the resonanting terms vanishes and the
host electron scattering rate is just

-E '(cp-oa)/2v .
This is just the t matrix for scattering from a va-
cancy in the host lattice.

In general we identify the t matrix as

t'(~) =(1+y)'D»(~)E '(~-o&) -E '(00 o&)/2v -.

(C3)

As we observed in Sec. III, the f, matrix in the
Anderson model, t„, is just proportional to the ex-
traorbital Green's function. The extraorbital
Green's function and Dtp(cp) are identical within the
decoupling scheme; consequently
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The resistivities of several AuMn alloys, containing between 0. 005 and 1.5 at. % Mn, have
been measured in the temperature range 0. 5-40'K. The magnitude of the spin resistivity is
determined from the decrease in resistance due to ordering in internal fields. This, com-
bined with a measurement of the coefficient of the logarithmic term in the resistance at tem-
peratures well above the resistance maximum, allows the Kondo temperature to be deter-
mined, the value so obtained being of the order of 10 ~3'K. The predicted resistivity at T =0,
in the absence of interactions, is shown to be comparable with the unitarity limit for
d-wave scattering. Information is also obtained concerning the magnitude and distribution
of internal fields within the alloys. The distribution is found to approximate to a Gaussian,
but with a dip in the region of very low fields.

I. INTRODUCTION

Previous investigations, ' and the present re-
sults, demonstrate that the temperature dependence
of the resistivity of dilute AuMn alloys is qualita-
tively the same as that observed in many other
dilute-magnetic-alloy systems. In very low con-
centration alloys, the resistivity increases log-
arithmically with decreasing temperature in the
liquid-helium temperature range. At rather higher
concentrations the logarithmic increase is termin-
ated and a broad maximum is observed, associated
with the onset of magnetic ordering, and the resis-
tance falls as the temperature is lowered further.
The main quantitative difference is the rather
small magnitude of the logarithmic term, which is

approximately 15 times smaller in AuMn alloys
than in AuFe alloys3 of comparable concentration.
As the spin value of Mn in Au is significantly lar-
ger than that of Fe in Au, it may be concluded that
the Kondo temperature in AuMn is extremely low.

In the present investigation, the resistances of
AuMn alloys containing between 0.005 and l. 5%
Mn have been measured in the temperature range
Q. 5-40'K. The decrease in resistance below the
ordering temperature is combined with the magni-
tude of the logarithmic term at higher tempera-
tures to provide an estimate of the Kondo tempera-
ture. The deviation of the resistance from a log-
arithmic temperature dependence is used to pro-
vide information on the magnitude and distribution
of internal fields within the alloy.


