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The ordering of one- and two-dimensional spin systems of finite thickness and cross section is
considered in the presence and absence of a symmetry-breaking magnetic field. The exchange
interactions are allowed to vary randomly or regularly throughout the lattice. Itis shown rigor-
ously b; applying Bogoliubov's inequality to a subdomain of the system that, provided the
(suitably averaged) exchange interactions do not fall off too slowly, no spontaneous ordering can
occur. Explicit bounds on the spin-spin correlation function, summed over the sites in a sub-
domain, are obtained which indicate how the short-range order decays with distance. Detailed
numerical plots for the order as a function of the subdomain size are presented for various real. —

istic values of the temperature. Conditions under which these curves yield bounds on the spa-
tial decay of the spin-spin correlation function are also discussed.

I. INTRODUCTION

This paper represents a continuation of the pro-
gram begun in the previous one' (hereafter referred
to as I), which discussed Bose particle systems.
Since there is particular interest in spin systems,
and since the arguments and numerical analysis will
differ somewhat, the magnetic casewillbepresented
in a self-contained fashion (although some allusion
will be made to analogous procedures used in the
Bose case). The reader should consult the Introduc-
tion and Sec. II of I for a general description of
notation and strategy2 (to be summarized briefly
below), but those interested solely in spin systems
can omit the discussion of second quantization in I
[Eqs. (I 2. 3)-(I 2. 15)].

We consider an anisotropic Heisenberg ferromag-

net of &I(Q) localized spins S(r) occupying the sites
r of a regular lattice contained in a three-dimen-
sional domain Q. We take the Hamiltonian to be
[(I 2. I)]

Ão = ——,
' g; g;.J,(r, r ')S'(r)S'(F )+g; h(F) ~ S(r),

Of XyPy g

where h(r) is the external field in energy units
(h = ~g pzH), while J,(F, r ') is the exchange coupling.
We will allow J,(r, r') to be regular or to vary ran-
domly throughout the lattice, subject only to the
condition of "planar" isotropy, i. e. ,

Z„(F,F')=Z, (F, r')= J(r, F')=J(F', F) for r, F & &

(I.2)
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decay to zero but the bounds will decrease more
slowly than described above.

The outline of this paper is as follows: In Sec.
II the basic inequality [analagous to (I 3. 43)] is ob-
tained for the special case of nearest-neighbor in-
teractions; this inequality is extended to general
interactions in Sec. III (but less care is exercised
in obtaining best possible results). The inequalities
for both nearest-neighbor and long-range interac-
tions are analyzed in Sec. IV, while more detailed
numerical bounds, principally for the nearest-
neighbor case, are presented in Sec. V. In Sec. VI
we conclude by showing how bounds on the pointwise
correlation functions may be found.

II. BASIC INEQUALITY FOR SPIN SYSTEMS

In this and the following sections we discuss spin
systems on the basis of the Heisenberg-Ising Ham-
iltonian (1.1) subject only to the axial symmetry
condition

J„(r,r ') = J,(r, r ) =J(r, r ') = J(r, r) (2. 1)

Note that J(r, r ') may be of either sign and no re-
strictions are placed on J,(r, r )

In the interests of clarity and simplicity we will
suppose the lattice on'which the spins are located
is of simple cubic structure with spacing a. In
addition, we will assume that the lattice domain 0
containing X(Q) spine can itself be contained in a
"box" domain A, which, in the case d = 2, contains
exactly R, layers of an infinite square lattice stacked
to form a simple cubic lattice of nominal thickness
L, -=, a. Similarly, in the one-dimensional case
we suppose A contains exactly ~X, infinite linear
chains arranged in rectilinear array to form a
simple cubic lattice of nominal cross section L,
-=X,a &Z,a. The case in which the boundaries of
A are not oriented parallel to the primitive lattice
vectors and in which the lattice is not simple cubic
involve no new difficulties of principle but, clearly,
lead to some geometrical complications. The
meaning of a "slice" subdomain I' containing X(I')
spins remains as illustrated in Fig. l.

To apply Bogoliubov's inequality (1.7), we choose

C=P; S'(r)g(r), g(r) =u(r)e'"' (2. 2)

in which k is arbitrary. W'e will first present a
simple form of the argument which does not utilize
a "corridor" —that is, a region surrounding the
subdomain I' in which u(F) drops slowly to zero (see
Sec. III of I). The somewhat more elaborate analy-
sis allowing for a corridor will be presented for
nearest-neighbor interactions following Eq. (2. 51);
the resulting, numerically better bounds will be
discussed in Sec. V. For the present, therefore,
we consider

u(r) =1 for r I'

=0 otherwise

With this choice we find

(2.3)

&[[ c,x„],c']& = .'Q-, Q,, J(F, F') ig(F) -g(F') i'

x [(S"(r)S"(r')& +(S'(r)S'(r ') ) ]

,g„ ig(-)i'[a„(-)&s"(-)&

+k„(F)&s'(r)&] (2.4)

&&iSa&+ &gsa& '- II(S&e.+ S|e,) ~ (Sae.+ Sae, )ll

'- ll(sl)'+ (s;)'ll'"il(s")'+ (s;)'ll'"
& ll(s*)'+ (s')'ll (2. 5)

where e„and e, are orthogonal unit vectors and II ~ I]

denotes the spectral norm of the operator, i. e. ,
essentially the modulus of its largest eigenvalue.
Then by using a representation in which S and S'
are diagonal we see that

ll(S")'+ (S')'ll = maxfs(s+ 1)—(S')'$

=S =S(s+ 1)

= s(s+ 1)——,
'

for 8 integral

for S half

odd integral.
(2. 5)

Combining these results in (2. 4) yields

&[[c,x„),c']& & —,'s'Z. ;2& i
J(F, F')

i ig(F) -g(r') i'

+ P; ig(F) i
[h„(F)&s"(F)&+h, (r)&s'(F)&]

Next we choose

A=+-, Qa f"(F)e *"'f(R)S'(r)S (R)

(2. '7)

(2. 3)

where f(r) is arbitrary apart from the restriction

if(F)i =1 for FCI'

=0 otherwise

Then with [see (1.5)]

(2. O)

= [st(1')] ' 2 P f (r')f(r)(s'(F')S (r)&

(2. IO)

[which is in accord with the definitions (I2. 19) and
(I2. 23)], we obtain for the Bogoliubov numerator

I&[c»]&l'=[st(r)( (f}- (f '""})1' . (2. 11)

where ( ~
& denotes the statistical expectation value

calculated with Ã&. Now use of Schwarz's inequality
yields
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Now we introduce specific wave vectors appro-
priate to the lattice contained in the box A, namely,

k = (R((, k~) = (k„;2@i,/L„2ml, /L, ), d = 1

= (k„,„,k„„;2n'I, /L, ), d = 2 (2. 12)

L & s'st, [st(1)] n(f}+stpst(r) Z [(s'(F))+s']
rcr

& sI„[ot(I')]'[S'nff]+ S(S'+ S)] (2. 22)

where we have used the identity and inequalities

where k is restricted to the first Brillouin zone of
the simple cubic lattice, i. e. , k, is a continuous
vector with

(slsi) =-(s(s+ 1)—(sf)'+ s;)
&s +(s;)&s +s (2. 23)

lk„ l
& m/a, %=X, g p (2. iS)

l =0, 1, 2, . . . , & —1, e=y, z. (2. 14)

Then, defining the number of sites in a cross sec-
tion of A by

Xz 2 t (2. iS)

we have, for all sites r and r in A,

st-'P- (a/2w)' J dk 8'""-"'=6-- (2. 16)

& (S'(R )([S"(r)] + [S'(F)] )S (R)), (2. I&)

L, =-st, g g (s'(F)s, (R)s-(F)) .
rcr ~cr

Both these terms are of the form

(x'I x) (( I (((x'x),

(2. 20)

(2. 2i)

where the inequality is easily proved, for example,
by expanding in terms of the eigenvectors of Y.
The first term I., may thus be bounded by using
(2. 5) and the second Lz by noting that ]( —S'((=S.
This finally yields the inequality

where 6; p is the Kronecker 5 function.
We will integrate the whole Bogoliubov inequality

(l. 7) subject to

k, -=0 and ~ &
I k~~ I

& z t - v/~ (2. i7)

Nonpositive terms on the right-hand side and non-
negative terms on the left-hand side of the inequality
may be integrated over all k~j and further summed
over all k„since these operations can only
strengthen the inequality. .Now the left-hand
side L(k, ~, k&) is intrinsically positive, and so on

extending the sum we obtain

L = (a/2m) J dk„L(k„, 0)

P f*(R')f(R)[(s'(F)s (R)s'(R')S (r))
rcr Bcr 5 cr

+ (s'(R')s-(F)s'(F)s-(R))], (2. 18)

where the subscript w denotes integration subject to
(2. 17). By use of the spin commutation relations
this reduces to the sum of the two terms

L =st Z Z Z f (R)f(R)
rcI Bcr R'cr

Since there is particular interest in results for
nearest-neighbor models, and since the arguments
for long-range interactions are somewhat more
elaborate, we analyze the right-hand side of (1.7)
first for nearest-neighbor interactions and, as
mentioned, without the introduction of a corridor.
Note that the analysis of the left-hand side and of
the numerator of the Bogoliubov inequality (1.7)
[see Eqs. (2. 8)-(2. 23)] is quite independent of the
choice of u(r) outside I', and hence of the presence
of a corridor. In this case we have

d(F, r')= J(F;5)

=0

if r and r'= r+ 5 are

nearest neighbors

otherwise . (2. 24)

lg(F) -g(F') l'= 0,

l

eiI ~ (r-F& I
l

2

neither r nor r in I

r and r both in I'

only one of r or r in I' .
(2. 26)

Furthermore, we have generally

1
I

' = 4 sin'(-,' k 5)

=2[1—cos(k 6)]& (k 5)~ (2. 26)

If (5 is a nearest-neighbor vector, i. e. , 5=5
=+ae (o. =x, y, z), then k. 5=k g. In order to uti-
lize (2. 25) we split the double sum over r and r
in (2. 7) into three pieces:

(i) an identically zero contribution from terms
with neither r nor r' in I';

(ii) a "bulk" contribution U, (k) from terms with

both r and r in I";
(iii) a "surface" contribution Ua independent of

k, from terms with only one of r or r' in I".
Now the sum defining U& may be decomposed into

sums over nearest-neighbor bonds parallel to the

x, y, and z axes. We can then define correspond-
ing mean nearest-neighbor couP/ing strengths by

J„=-,'[&(r)]-' Z Q ld(F;6.)l
rcr

(2. 27)

where 5 = +ae, (n = x, y, or z). Then if the over
all mean nearest-neighbor coupling, which will
provide our basic measure of the interaction strength,

Now to simplify the first term in the bound (2. 7) for
the double commutator, we note that
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is defined by

Jr = max (Jr'j (2. 28)

reduced to zero rapidly enough to ensure that

~ -o as &(r)- (2. 37)

we find, using (2. 26), that

U, (l) & S'st(r) J„u's' . (2. 29)

It is clear from (2. 27) and (2. 28) that in a uniform
lattice one simply has Jr= ) Ji. If, in a nonuniform

lattice, one has a uniform bound IJ'(r, r')l Jo for
r, r ' in I', one may replace Jr by Jo in (2. 29) and

all subsequent formulas. We may also remark
that, since ultimately we will only need (2. 29) in

the case where k, =o [in accord with (2. 17)], we

may restrict a in (2. 28) to n = x for d = 1 and a = x
01 y for d=2.

To simplify the surface term U& we define the

number of nearest-neighbor bonds crossing the
boundary or "surface" of F by

st, = P
ICr 7+)Ca-r

(2. 3o)

&a =S &~J~ (2. 32)

Again, in a uniform lattice we have J& =
I J), while

a bound I J(r, r')
I

& J, on the "surface" interactions
enables one to replace J~ by J, in all the following
formulas. On combining terms, the relation (2. 7)
now yields

&[[C,Z„), C']) S'J, st(r)s'[n'+ ~], (2. 33)

where

a X = (J~/Jr)[&~/&(r)]+ (1/JrS )H(h; I'j, (2. 34)

in which

Hlh„=j-=[&(:-)] ' 2 [h„(r)(S"(r)&+h, (r)(S'(r)&]
rc~

(2. 35)

as in (I 3. 11).
Note that if 1'= 0, the first term in (2. 34) van-

ishes identically since &~ = 0. Furthermore, if the

transverse magnetic fields vanish, we have

X -=0 for I'= 0, h„(r) = h, (r) = 0 . (2. 36)

More generally, note that the first termwillvanish
as X(r)- ~, as it is essentially a surface-to-volume
ratio. However, unless the transverse fields be-
come uniformly small in the subdomain I', the sec-
ond term in (2. 34) can remain finite. In what fol-
lows, we shall assume, unless explicitly stated other-
wise, that the transverse fields in I', if present, are

and the corresponding mean coupling strength across
the surface by

J.=(st.) ' ~
rCl 6

r+fi~ 0-F

The surface contribution to the double commutator
is thus

By (2. 11) and (2. 33), the right-hand side of the
Bogoliubov inequality (1.7) thus satisfies

„„-„-,&(r)i,T [n(fj-n(fe'"'«j]'
J — SeJ 2 k +X

(2. 38)

Integrating this inequality subject to (2. 17), we find

R: (s/2v) f dfji R(kii

I(~, Z)=(2v) ' f dk„/(y'„p)) (2. 4o)

Its explicit value and its behavior in various limits
are given by formulas (I 3.22)-(I 3.24). (These
forms will be introduced when needed. ) The second

integral in (2. 39) is

J(~, X) = (a/2v) J dk„n( fe'" 'j/(k„+ A), (2. 41)

which may be bounded (as in the Bose case) by (i)
noting that n( j is non-negative; (ii) extending the

integral to all k„after removal of a factor (v~+ A) ';
and (iii) summing on all k, and using (2. 10), (2. 16),
and (2. 23). This yields

J(x, ),) (z +X) 'Q(a/2v) f dk„n(fe'"'j
k~

& &,(~'+ ~)-'[St(r)]-' p (S'(r)S-(r))
rcpt

& st„(~'+ ~)-'[S'+ M'„(r)], (2. 42)

where we have introduced the mean magnetization
in I' defined by

M,'(r) = [St(r)]-' Q (S'(r))„. (2. 43)

On using (2. 42) to strengthen (2. 39) and combin-
ing with the first part of (2. 22), the integrated
form of Bogoliubov's inequality for a spin system
becomes

X,[&(r)][S (n(fj+ S)+ SMo(r)]') & 2 (n (fja'Ihc, ).)

—2n(fj& (z +X) '[S +M„'(I')]) . (2. 44)

Collecting terms and transposing yields

where

1+
( )('g )

+
( ))qol(tc, X)+', (2. 45)

qo = (ks T/Jr)(a /S'St~), (2. 46)

[n (fja I(z, A) —2n(f]J(v, X)], (2. 39)
S Jpa

where the positive term involving n2( fe" «j has
been dropped. The integral I(z, X) is defined by
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q, = (k, &/&, )(2ls'a)(s'+ M„'(r)],

q, = (s/s')[s'+ M„'(r)],
and where

(2. 47)

(2. 48)

By construction we then have the property [see after
(I 3.33)]

hu(r„b)= ~u(r) —u(r+ b)
~

& v ' for rCA, (2. 53)

r]= n(f]/31(r)

=&~st(r) ' Z f(r)s-(r) ~'&. ,

rcpt

(2. 49)
as in (1.5). The inequality can be linearized for
$ = 4, as in the Bose case, by noting that if g, is the
positive root of the corresponding equality, then

If, in addition, we simplify the root $, by
using (1+ g)'t~ & 1+ —,'t, we obtain

where

qP(~, ~) q, (x)st(r) ' (2. 50)

q, (X)=1+q /X, X=sl(r)(~'+~) (2. 51)

which may be compared with the Bose result (I 3.44).
We now show how the above analysis must be

modified if one introduces a corridor surrounding
I' in which u(r) decreases "smoothly" to zero [in
contrast to the choice (2. 3)]. The final result (2. 50)
is again obtained but with somewhat different ex-
pressions for the parameter X and for the constants
qo, q, , and qz. The dependence on Ot(r) of the
bounds on the order is not affectedbythe introduction
of the corridor, but'the change in the definition of
A will lead to an amplitude with a more favorable
temperature dependence, particularly in the d = 1
case; the relative gains are discussed in Sec. V.
We remark once again that the introduction of the
corridor affects only the estimation of the double
commutator in (1.7).

The corridor tI, containing &(&) sites, surrounds
the subdomain F and is defined simply as follows. 7

I et 40 be the set of sites on the boundary of F
(boundary sites are in I" but have neighbors in 0 not
in I'). Let 4, be the set of sites which are nearest
neighbors of the sites in 40 but are not in F. Sim-
ilarly, let 4~ be the set of sites which are nearest
neighbors of sites in 4» but are not in 40 or 4, .
Continue similarly for v "shells" ending with the
set 4„. The case of no corridor corresponds to
v= 1 and has been treated above. Now define the
corridor 4 by

6= A,UE,U4, ~ U'b„» v&1

Furthermore, we make a new choice for the function
u(r) introduced in (2. 2):

which will enable us to bound the double commutator
in (1.7).

Now Eq. (2. 7) is still valid, and it will be evaluated
in a fashion similar to the method used in deriving
(2. 26)-(2. 32). (Nearest-neighbor interactions only
are considered. ) Firstly, the double sum in (2. 7)
is divided into three contributions: (i) an identically
zero contribution from terms with neither r nor r
in I'U &; (ii) a "bulk" contribution from terms with
both r and r '

in I'; and (iii) a "surface" contribution
from terms with either r or r, or both, in &. By
using (2. 52), (2. 53), and (2. 26) we find, for r
=r+ 5,

~g(rg -g(r') ~'= ~u(rg- u(r')e*"' ~'

=
I
u(r) —u(r ') —u(r ')(e"' —1)

~

'

& Ju(r)-u(r')/'+ Ju(r') J'J e'"' —I /'

&Au (r; 5)+ (ka) (2. 54)

The double sum thus yields an "extended" bulk con-
tribution bounded by

V, (k) & S'st(ru&)Z, „,(ka)',
where Jr» is defined by (2. 27) and (2. 28) but with
F replaced by I 04. The appropriate generaliza-
tion of the "surface number" &~ defined in (2. 30)
is (for vol)

(2. 55)
~y (r& 6)&0

st,=g-„Q) 1.
&v(r",'6 )40

(2. 56)

In the no-corridor case v= 1, these definitions
should be replaced by (2. 30) and (2. 31). The origi-
nal treatment of the magnetic field terms in (2. 7)
needs no alteration, so that the double commutator
is finally bounded by

&[[C,X.], C']) & S'Z,„,&(ru ~)a'[k'+ ~], (2. 57)

this is simply the number of nearest-neighbor bonds

along which the function u( r) changes. The generalized
"surface exchange" may then be defined (for vW 1)
by

(i) u(r)=1

=0

for r {-F

for rgru&

where

a X = v up[%~/&(ruk)]+ (1/Jr„~S )H{h~& rub],

=1-(P/v) for r~~ (P=0, 1, . . . , v)

(2. 52)

with

Ps = ~~/Jr» (2. 58)
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y=m(a)/5t(ru&) . (2. 62)

We remark that in order to prove the absence of
ordering, we must have X -0 as %(r)-~. Again,
we will assume that the transverse field h, becomes
uniformly small in I', so that the second term in
(2. 58) does not remain finite. Not'e that y is es-
sentially a surface-to-volume ratio; it will be nec-
essary that v [and hence %(4)] be chosen in such
a way that the first term in (2. 58) vanishes as &(r)
becomes large. This implies that the constants

qo, q„and qz approach limits as %(I') -~. These
are sufficient conditions for the absence of order to
be proven.

The definition (2. 35) for H( j still applies but the
generalized definitions (2. 55) and (2. 56) must be
used for X~ and Z~ in (2. 58). We may note that in
the special case v= 1 (no corridor), the results
(2. 5V) and (2. 58) simply reduce to (2. 33) and (2. 34).
When I' = 0, we set &~ = X(b ) = 0 as before.

Since the structure of the new equations (2. 5V) and

(2. 58) is identical to that for the no-corridor case
(v = 1), it is easy to see that (2. 51) again follows, but

with new definitions for the constants, namely,

q, = (1 —y)(u, r/Z, „,)(a'-'/S'ot, ), (2. »)
q, = (1 —~)(u, r/Z„„,)(2/Sa')[S'+ I„'(r)], (2. 60}

q, = (s/s')[s'+ M„'(r)], (2. 61)

where Ot» and Xr are integers. (No confusion can
arise with the dimensions of A. ) To match the dis-
tinction between kii and k, we also write

r=(r„, r,), with r„=x,

=(», y), d=2. (3.2)

In addition, it is convenient to define the local thick-
ness or cross section of the system, that is, the
number of sites in Q with the same fixed r
plicitly this is given by

X„(r„)=g 1&84 .
jgQ

(3.3)

Then we may define the projected interactions

Z'(r„;R„)=[st,(r„)]-' ZZ ~J{r;R)~ . (3.4)
&g Rg

I, I'+gC Q

It follows from the restriction k, =Q, to be imposed
later in the analysis [see (2. 1V)], that we need con-
cern ourselves only with these projected interactions.
We may note that (a) for a system with only constant
neighbor interactions J, we have J'(r„,R„)= iO'I when

8„ is a, nearest-neighbor vector but J' =-0 otherwise.
In the case (b) of a nonuniform system in which there
is, nonetheless, a uniform bound

Z(r, r+R)=Z(r;R) Z, (~R~) (all r, R), (3. 5)

such that J,(R) is monoto~i~ nonincreasing as It in-
creases, one may use i(R„,R,)l ~ iR„i and (3.3) to
show that

III. LONG-RANGE INTERACTIONS d'(r„;R„) 3I,Z, (iR„i) . (3.6)
In this section we consider spin-spin lnteractlons

which are not restricted to nearest neighbors but,
rather, may be of infinite range. Our aim is to
rederive the basic inequality (2. 50), established in
Sec. II, in essentially the same form but with suit-
able modifications of the definitions of Jr, J~, A. ,
and I(», X), etc The r.eader uninterested in the
technical details may glance at the final result,
(3.34), and then proceed to Sec. 1V, where the basic
inequality is analyzed to yield the desired bounds
on the order parameters and correlation functions.

%e remark at the outset that one of our main in-
terests is in the rate of decay of J'(r, r ) as Ir —r I-~, needed to ensure the absence of long-range
order. Accordingly, we will be content in a number
of places with less stringent estimates than obtained
in the corresponding formulas for nearest-neighbor
interactions. In particular, no corridor will be
introduced. Furthermore, fox convenience, we will
consider only slice subdomains I' that are bounded
by planes parallel to the primitive lattice axes;
specif icaQyy we suppose

d= 1: r=Pr; rCQ, 0&»&X»aj. ,
(3.1)

d=2: r=fr;r'CQ, 0&»&&»a, 0&y&9traj,

Now, as in Sec. II, we split the double sum in
(2. V) into three pieces: (i) the vanishing contribution
from terms with neither r nor r' in I'; (ii) the
''bulk" contribution U, (k) from terms with both r
and r' in I'; and (iii) the "surface" contribution U~

from terms with only one of r or r in I'. To bound
U, (k) we extend the sum on r in {2.V) to the whole
lattice in 0 and use the second part of (2. 26), which
yields

U, (k) &S'g Z Z(r;R}[1-cos(k R)] . (3.
PcF
I+BC0

If we restrict ourselves to k (ki~ 0)~ we may use
the definition (3.4), and thence obtain

U, (k„, 0) & S'&(r) gtt J'r(R„)[l —cos(k„~ R„)],
(3.8)

where the mean projected colp/ing energy is defined
by

Z, (R„)= [nt(r)]-' Z &,(r„)8'(r„;R„)

(3.8)



914 M. E. FISHE R AND D. JASNOW

The notation r, CI' used in the first line of this re-
lation and in various places below indicates that
r„=x or (x, y) (for d= 1 or 2) runs over all values
lying in the projection of 1 onto the x axis or onto
the (x, y) plane, respectively [see (3. 1) and (3. 2)j.
From the previous remarks we see that for (a) con-
stant nearest-neighbor interactions, we have Jr(R„)
equal to I Jl for nearest neighbors (but vanishing
otherwise), while in the case of (b) a nonuniform
lattice with a uniform monotonic bound, we have,
by (3.6),

J,(R„)=sf,J,(f R„f), (3. lo)

J„(k„)=g cos(k, R„)Jz, (R„)
RIIP 0

(3. 11)

so that Jr may be replaced by Ot~ Join (3'. 8) and all
subsequent formulas. [Of course, the average (3. 9)
may be bounded for all I' even if there is no uniform
bound Jo. ]

Finally, it is convenient to introduce the d-dinzen-
siona/ Fourier transform

Turning now to U~, the surface contribution to the
double commutator, it is easy to obtain the bound

V, &S'61, g g J'(r„;R„)
rtF F R

rli+Rll 0-I'
(3. 17)

vr"(«) = l for
f

X
f

= la ~ szxa

=Zx for fXf = la -&xa, (3. 18)

with a similar definition of vr(RI) there are a total
of vr(Rg)szr allowable possibilities. We may then
define an average X surface-interaction by

in terms of the projected interactions (3.4). Quite
generally, U2 vanishes if I'= Q. Now consider first
the two-dimensional situation. For fixed Rp —(X, F)
= (ta, ma) there are lstr different values of rp for
which the vector from r to r+ R "crosses" one or
other of the two bounding X planes x= 2a and

x=(Six+ —,')a. However, at most Btx&„of these cross-
ings are allowable since r, l

must remain in I'
(strictly, in the projection of I'). Thus, if we set

in terms of which the desired bound is

U, (k„, 0) ~ S %(1")[J (0) —J (k„)j (3. 12)

J (R„)= [vr (R„)at„] ' Q J'(r „' R„) (3. 19)

Z„- (f R„f/a)'Jr(R„) = t, Jr(5) (3. 15)

is finite, it is straightforward to show that we may
take

(3. 16)

This may be compared with (2. 29), to which it re-
duces for nearest-neighbor interactions and small
h. We will assume that Jr(5), and hence J„(k„)
exists; this is a weak assumption, not sensibly
stronger than the stability condition needed to en-
sure the existence of a proper thermodynamic limit.
From the result (3. 12) we will be able to prove that
long-range order is absent whenever [Jr(0) —Jr(kI)] '
is not integrable at kii 0.

In order to preserve the analogy with the nearest-
neighbor case as closely as possible we introduce
an effective wave number K(k„) by writing

Zr(O) —Jr(k„)' (2d)-'Jr(0)K'(
f
k„

f
)a', (3. 13)

where we may suppose that K(lk„l) is chosen to be
real, positive, and monotonic nonincreasing as (kil(
decreases. As Ik„l -0, we want K(lk„l) to be the
best possible such bound. It is then clear that

(3. 14)

Furthermore, if the mean interaction Jr(R„), de-
fined in (3. 10), decreases sufficiently rapidly that
the second moment

x+ X &Xxa or x+ X& 0 (3. 2o)

The total contribution to U~ from such surface-in-
teraction pairs is then bounded by summing over all
R, , which gives

ft, '-S'5f, z„gv, (R„)J (R„) . (3. 21)
Rll

If we combine this with the analogous Uz term, we
will actually overcount all those interactions for
which the vector r to r+ R crosses both an X and a
F plane. We can write the final bound as

U, & S'X,J, ,

where, now,

at~ = 26t,(zx+ St r), d = 2

(3. 22)

(3.23)

while the mean surface moment of the interactions
is

~ {-.'Z v', (R„)J'(R„)] .
8=x, F Rll

(3. 24)

In the case of nearest-neighbor interactions these
results reduce effectively to the previous bound

(2. 32); if (a) the nearest-neighbor interaction is
constant at J, we have, as before, J~ =

( J(. For
(b) a nonuniform system with the uniform monotonic
bound (3. 5), we find, using (3.6), that

with an analogous definition for J"(R„), where the

superscript X indicates that the sum is restricted by

This justifies the notation and shows (since only the
small-k„behavior matters) that the nearest-neigh-
bor case is typical of any interaction with a finite
second moment.

a„vr(«)JO(l Rii f)

& —,'St,p„- (f R„f/a) J,(fR„ f) . (3. 25)
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The last expression is just proportional to the first
moment of the bound Jo([R„)). Either of the esti-
mates in (3. 25) may be used in place of J~ in the
subsequent work„ in particular, the first bound may
be useful when the full first moment does not even
exist.

In the one-dimensional situation (d= 1) the cor-
responding analysis is simpler since only a single
pair of surfaces (X planes) arise, and there is no
overcounting. The relations (3.19)-(3.21) then still
apply if, as is natural, we simply set N~=1. The
final bound (3.22) remains valid if we now take

&~= 2%„, d-1 (s. 26)

a X = izz[St~/X(r)]+ [2d/Jr(0)S ]H(h; rj, (3.28)

in which [in place of the definition in (2. 58)] we have

i, =J,/(2d)-'J, (o), (s. 29)

which should also be compared to the ratio J~/Jr
in (2. 34). The symmetry-breaking field term
Hgh„rj is still defined by (2. 35). Again we assume
that as N- ~ this term vanishes as fast as the first
term, i.e. , as fast as Ot~/&(r)-0, unless this ratio
vanishes identically because I' = A.

Gn integrating the right-hand side of Bogoliubov's
inequality (1.7) subject to (2. 17) and dropping a
positive term as before, we find

ft= (a/2v)' J' dk„z(k„, O)

z@& -, [n (fja zz(z, &) —2n(f]8(lz, &)]

(s. so)

In place of (2. 40) we have the integral

&(zz &)= (2&) ~ J 4i/[K (1k~~I)+ "] (s. sl)

whose divergence as v, X-0 will have to be ex-
amined in more detail. For the second integral we
have

al(K X) = (a/2zz) J dk[~n{fe" ')/[K (l k„ l )+ Xj

(3.32)

which, by following the steps used in analyzing
(2. 41) and recalling the monotonicity of K([k„(),

while (S. 24) applies with P= X, and (3. 25) is correct
as it stands. (In all d = 1 cases the sums on R„are,
of course, purely one dimensional. ) When I'= Q,
we may set &~ -=0 for both d=1 and d=2.

We are now in a position to write down a complete
bound for the double commutator to generalize
(2. 33). By combining (2. 7), (3. 12), (3. 13), and

(3. 22) we obtain

([[C,Ko], C ]) & (2d) a S Jr(0)st(r)[K (k„)+x]

(3. 27)

where, to replace (2. 34), we have

is shown to satisfy

g(zz, ~) & st)K'(zz)+ ~]-'[S'+Mg(r)], (s. 33)

where M„'(I") is still defined by (2. 43). Continuing
the previous arguments, we finally obtain

qoS(zz, X) q, (X)ot(r)

where, as before, q, (X) = 1+ q, /X, but now

X=st(r)[K'(~)+ ~],
while

qo=[2dk T/J (5)][a" /R'st, ]

q, = [2dkzzT/Jr(0)](2/a S )[S + M„'(I')],

and

(3.34)

(s. s5)

(S. 36)

(3. 37)

q, = (s/s')[s'+ M„'(r)] . (s. s8)

Note that with the substitutions Jr(0)/2d~ Jr (or
Jz „q with the inclusion of a corridor), K (zz)~ zza,

and S (zz, &)~I(zz, X), these expressions are identical
with (2.46)-(2. 51) [see (2. 59)-(2.61)].

IV. ANALYSIS OF BASIC INEQUALITY

k'(r) = k, (r) + ik„(r) = h,e' (4. 1)

where h, and K are fixed. We could, with no dif-
ficulty, however, consider, for example, randomly
varying fields of given statistics provided their
over-all average magnitude could be bounded by

In this section we derive the results for spin sys-
tems quoted in the Introduction from the basic in-
equality (S.34) [or, for nearest-neighbor interac-
tions, (2. 45)]. We will be interested in the thermo-
dynamic limit in which &(Q) ~. For the existence
of this limit the interaction potentials and the ex-
ternal fields (even if random) must satisfy certain
uniformity and regularity conditions. ' We need not

enter into these in any detail but we will assume,
first, that the domain 0 and the subdomain I' have
regular shapes asst(Q) and St(r) become infinite, in
the sense that their (d-dimensional) "surface" re-
mains of order [St(Q)] ' ~ or [&(r)] ' relative to
their "volume. " Secondly, we suppose that the
basic averages of the potentials Jr(RI) J (R~), and

J (R„) and the transform Jr(k„), defined in Eqs.
(3.9), (3. 19), and (3. 11), approach definite limits
as St(r) -~. Similarly, the magnetization M„'(I')
may be assumed to approach a limit for large 0 and
I'. Then from (S.36)-(3.38) [or from (2. 46)-(2.48),
or (2. 59)-(2.61)] we see that the parameters qo,

q„and qz approach limits. We will not distinguish
these limits by any special symbol since the context
of each formula will make it clear when the limiting
values are required. As regards the transverse
fields we may, for concreteness, assume that
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some amplitude parameter, which might then be
called h, .

Having disposed of these preliminaries, we turn
to the main task: First we treat the case where I'
is chosen to be 0 in order to prove the absence of
total order in the thermodynamic limit and to show
how the long long-range order~ vanishes as R{Q)be-
comes large.

A. I'=Q

In this case 4 is null and there are no corridor
"surface" terms for I', so that 51~ and R(b) are to
be set identically zero [see after Eqs. (2. 35), (2. 62)
and (3. 26)]. Hence (3. 28) represents all cases.
Only the external transverse fields h„= (h„, h, ) con-
tribute to A, so that by (3. 28) [or by (2. 34) or (2. 58)
with Jr~ J„(0)/2d) and (4. 1),

) = [2d/J z (0)S a ]H(hz, ' Q]

~ [4dS/Jr (O)S'a' (4. 2)

where we have used the trivialbounds l(S'(r)) (,
((S'(r)) i

~ S. There are two possibilities we may
consider.

reduced second moment (zz is defined in (3.15) and,
in accordance with our remarks at the start of this
section, approaches a limit as 51(Q) -~. (For
nearest-neighbor interactions, (z2 = l. ) Then as

0 we obtain

(0 }() (}('(z }()-zfa tan-z(»z(zzf2/}} zf2)

=(I/4}z}}z&)in[1+ (» '(z,/}})], d=2. (4. 7)

K(k)=c,k"ink as k 0 (4. 8)

It is not hard to see that the integral (4. 5) defining
&(0, A) will still diverge at its lower limit when X -0.
This means that even for interactions decaying as8- ~ as slowly as"

Jz, (R) =C, In(R/a)/R, d= 1 (4. 9)

[Compare with (I 3. 22). ] Clearly (z(0, }}.) now diverges
as (h, ( -0 and the result (4. 6), expressing the
vanishing of the total long-range order, follows
whenever the dimensionality is restricted to less
than three.

More generally, (b) suppose that Jz, (R„) does not
have a finite second moment but that, for example,

1. h~ Fixed, sz (Q) -~ = C,/R' (4. 10)

(4. 3)

with an obvious extension of the previous notation
[see (I 2. 16)].If, in the basic inequality (3. 34) [or
(2. 50)], we now choose »=0 and keep K constant
as 51{Q)- ~, we obtain

[q,(f}(h,)]"1/q(} z((0, }()

where, in (3.35), we have X-~, and where, by
(S. 31),

(4. 4)

(4. 5)

This is the situation which may be analyzed in
closest analogy to the original treatment of Mermin
and Wagner. '0 By (4. 3) and (2. 35) it is clear that

0 as )A~I -0, but that X will not vanish unless
A,, does. In the thermodynamic limit the order pa-
rameter approaches a limiting value, i.e. ,

the vanishing of the total long-range order +,~f]
can be proven. Neither of these functions has a
finite second moment [in the appropriate sense,
(S. 15)], and the function (4. 9) for d = 1 does not even
have a finite first moment. Other, even more
slowly decaying examples can be found; the main
point is that the absence of long-range order can be
established whenever (z(0, }()diverges as }(-0or,
equivalently, whenever [Jr(5) —Jr(k„)] ' is not in-
tegrable at k„=0. The same conclusion will hold
for all the forms of order we will investigate. '~

We may, to answer the fundamental question
raised in the Introduction, avoid altogether the case
of a symmetry breaking field; thus we consider
the second possibility.

2. h~=-0

In this case }(—= 0 and the basic inequality (3. 34)
becomes, with X=K SI(Q),

Thus, if e(0, }})diverges to infinity as ~-0 (as
lh&[ 0), the inequality (4. 4) implies the vanishing
to the "total" long-range order, that is, "

q, (((», 0) K'm(Q), q, (X)st(Q)
' (4. 11)

(f} lim @,(f}{h'z)= 0
l&xl 0

(4. 6)

Evidently, the divergence or convergence of the in-
tegral (4. 5) is determined by the behavior of K(k)
for small k.

If (a) the mean projected interaction Jz (R„)= Jo(R„)
has a uniformly bounded second moment as &(Q) - ~
[see (3.15)], as is certainly so for nearest-neighbor
interactions, we have K(k) =}}z3 k [see (3 16)l.

Suppose again in the first place (a) that Jr(R„)
J(z (RI) has a uniformly bounded second moment

(3. 15). Then from (4. 5) and (3. 14) we find'3 as
z-0

(»qe0) =(I/}((z2)(K —K ), d= 1

= (I/2}((z,) ln(K'/K), d = 2 (4. 12)

[Compare with (IS.22). ] We are now free to choose
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the lower cutoff s as a function of &(Q) in such a
way as to yield the best inequality. Consider first
the case d= 1 and, tentatively, ignore the second
term in the inequality (4. 11). By minimizing with
respect to s at fixed &(Q) we find the optimal choice
is

s' = q, /&(Q)

up to a correction factor (I+ O[1/s~X'~2(Q)]). For
fixed z~ this correction term can be neglected for
large &(Q). Thus, &(s, 0) may be maximized by
choosing s in (4. 12) as large as consistent with
(2. 17), namely, s = w/a. Use of (4. 13) now yields

q, (X)=2,
and thence, from (4. 11) and (4. 12), '

S/2

[e„(f~Q)] ~
[ ( ))gta+ (Q), d=l . (4. 15)

Asymptotically as 31(Q)- ~ the second term is neg-
ligible and 4„(fIQ) must decrease at least as fast
as [X(Q)) '~4, which indicates how the long long-
range order9 falls to zero. If the thermodynamic
limit is taken with f(r) -=1, we find directly from
(4. 15) that 4', -=0, where

so that 4, is the limiting mean-square total mag-
netization per spin. [Compare with (I2. 16).] Of
course, (4. 15) is more general in that, for example,
if we set

f(r) = e'0' with ak, = (v, s, m),

then 4,~&] represents the mean square sublattice
magnetization for simple antiferromagnetic order-
ing which must also vanish in the thermodynamic
limit. Other forms of ordering are ruled out by
appropriate choice of f(r) [subject only to the origi-
nal condition if(r) I

= 1].
The same choice (4. 13) is quite satisfactory for

d = 2, where it leads to'3

j.

q, ln[sn~s~t(Q)/q ) &(Q) '

(4. 18)

Again the first term dominates asymptotically as
X(Q) —~, and we conclude that ql„must fall to zero
but, possibly, only as slowly as (nest(Q)]'I . However
this is still sufficient to prove that +, and its gen-
eralization 4'„(f )Qj vanish in the thermodynamic
limit. A numerically better bound results by choos-
ing s = w/a and s ~[in&(Q)]/Ot(Q) in place of (4. 13).
This choice reduces the factor am in the first term
of (4. 18) to 4m; this detail, however, is immaterial
for the present purpose.

When (b) the second moment as measured by ps,
is not finite, we may still establish the vanishing

of @,provided e(~, 0) diverges to ~ as s -0. As
before, this will be so whenever [Jr(0) —J'r(k„)] '
is not integrable at k„= 0. In particular, interac-
tions decaying as (4. 10) or faster are still covered.
However, the rate at which the long long-range
order can be shown to decay to zero will now depend
on the rate of divergence of &(s, 0) and will neces-
sarily be slower than when p,a & ~.

Lastly, it should be noticed that if transverse
magnetic fields like (4. 1) are present in Q but are
reduced uniformly to zero as X(Q) ~, the results
4, -=0, etc. , remain valid. Proofs similar to the
above go through in this (particular) thermodynamic
limit. All the arguments are quite independent of
the magnitude of any longitudinal field h, (r).

We turn next to the case where I' is a proper,
slice subdomain of Q (i. e. , I'AQ).

p, = J~/Jr for v= 1 (no corridor)

= J~/Jr„~ for v&1 (corridor b), (4 19)

where the appropriate exchange constants are de-
fined by (2. 27), (2. 28), (I"~ I'U tI, for a corridor)
and by (2. 30}, (2. 31), or (2. 55), (2. 56). The sur-
face term allows for the propagation of order into
the subdomain I' from the rest of the system.
Nevertheless, as I' becomes large [st(I')-~], wewill
have K~/%(I") -0 in accordance with our assumptions
on the shape of I' [see (2. 30), (2. 55) for fixed v,
and (3. 22) and (3.26)]. Thus, provided the moment

p, remains bounded [see (3.29), (3.24), and (4. 19)],
or does not increase too rapidly, and provided the
transverse fields vanish in I', we will still have
X-0 as X(1)-~. If the transverse fields in I' are
not zero, we will assume that Ih, I is reduced to
zero sufficiently rapidly that the first (surface) term
in (2. 34), (2. 58), and (3.28) dominates as %(I') be-
comes large. We stress, however, that transverse
(symmetry-breaking) fields outside I' (for example,
in the corridor, should there be one) are allo&@ed

and will not effect the proof that the order inside I'
must decay to zero.

Since X does not vanish for finite Bt(I'), we may,
with no loss of generality, choose s = 0. The upper-
cutoff s and the corridor width v (in the case of
nearest-neighbor interactions) are still disposable
parameters.

1. d=1
For simplicity let us start with (a) the situation

The analysis must be modified slightly now since
A does not vanish even in zero transverse field,
h, = 0. Rather, as can be verified from (2.34),
(2. 58), and (3.28), X contains a surface term
p, ,(l —y)v [Jt~/9t I')], where v = 1, y=0 in the case
of long-range interactions, and p, , is given by (3.29).
In the nearest-neighbor case we have
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in which the (projected) interactions have a uniform
monotonic bound Jo(lR„~) which has a finite second
moment. ' By (3. 10) and (3. 15) this implies that

gs is uniformly bounded and by (3. 25) and (3. 29) the
same holds for the "surface moment" p, &. Using
(4. 7) the inequality becomes'~

q, [(2/ v)tan '(s ps~ /X'~ s)] q, (X)St(r)
'

(4. 2o)

This inequality is optimized with respect to s~ by
choosing s as large as possible, i. e. , v = s/a.
(This contrasts with the more complex s optimiza-
tion in the Bose case; see Sec. IV of I. ) Suppose,
first, that in the nearest-neighbor case we fix the
corridor width v. Now, since p, , is uniformly
bounded, we find from (3. 26) and (3. 28) [or (2. 55)
and (2. 58)] tha, t

d, (fR„f)=C,/fR„f'"
as

f Rg f
with 2 & o & 1

(4. 25)

where Co is a constant. With the range of cr speci-
fied, Jr(IR„I) will always have a first moment, but

it need not have a second moment. From (4. 25)
we can conclude that"

Note that t approaches unity for large St(r) and that
we have set p~ -=1 for nearest-neighbor interactions.
Recall that qo, q„and q~ are given for this case in

(2. 59)-(2.61). The numerical consequences and

the temperature dependence of the optimized in-

equality (4. 23) will be explored in Sec. V.
We consider now the more general case of long-

range interactions (b) in which we suppose that only

the surface moment y, , is finite as K(r) - ~, as is
the case when there is a monotonic bound, satisfy-
ing

a = p, , (1 —y)(va) '[St~/3t(r)] -[St(r)]-'

as sf(r)-~ (4. 21)

E (k) ~o k' as k-o,
and hence that

(4. 26)

(which is valid for v —= 1 and y=o in the long-range
case); as explained before, the h;dependent terms
have been neglected in (4. 21). Then as X-0 we have

/A'~s - ~, so that the denominator of the first
term in (4. 20) approaches qo. Similarly, on re-
calling that v = 0, the definition (3. 35) shows that
X p, K~(1 —y)(va), which remains bounded (as
before, we set y=o, v= 1 for general interactions).
It is then clear from (4. 20) and (4. 21) that the short-
range order @o(f(r) must decrease asymptotically
at least as fast as [St(r)]-'~'. This confirms the con-
clusion stated in the Introduction.

In the case of nearest-neighbor interactions the
inequality (4. 20) can be optimized with respect to
the corridor width v [see Sec. IV of I]. The inequal-

ity depends on the integer v mainly through ). and

hence through X, but there is also a dependence in

q& and qo via the parameter y. Strictly, the in-

equality should be optimized numerically (see Sec.
V), but in order to perform an approximate opti-
mization analytically we consider vtobe a continuous
variable. On neglecting the second term in (4. 20)
we then find that the optimum value v= v~ is not far
from the solution of

s(o, z)&f,x-'-'"' as x-o, (4. 27)

where 40 is constant. Thus the short-range order
must still decrease, but it may do so more slowly

than when p, ~ & ~.
Lastly, we may consider the case in which (c) the

surface moment p, = p, (r) is not bounded as St(r)
In order that l(0, X) ~ as A -0 we must still

require that [Zr(0) —Zr(lk„l)] ' is not integrable at
the origin, which, as illustrated in the discussion
of (4. 8)- (4. 10), does not allow much la,titude beyond

(4. 25). All we need to worry about, beyond this,
is the behavior of X as St(r) -~. To check that X

still vanishes in the limit let us suppose the bound

(4. 25) holds but with 1 & o & 0. If we use the first
inequality of (3.25), we find without difficulty that

t, (r) 'le, st'-'-[st(r)]'-', (4. 29)

where M, is a constant. It follows that (4. 21) must
be replaced by

where co and Io are constants. Since p, , is uniformly
bounded, this in turn implies the result

e„(ff r] &4,[st(r)]-'-""' as x(r)-
(4. 28)

[X"]-'-=(u'a)'/V st '(1 —y') = q ', (4. 22)
y=v, st /st(r)a'-[st(r)] ' . (4. 3o)

4 1/2g

[ o(fl rH"- [~(r)]u2+ 2~'(r) (4. 23)

where the asterisk notation indicates that %~ and y
depend on v. When there is an acceptable solution
to (4. 22), we have q, (X) = 2, and the inequality
(4. 20) becomes"

Thus X-0 as St(r) -~ and the proof that the short-
range order decays to zero goes through under the
original condition that [Zr(5) —Jr(lk„j)] ' is not in-
tegrable at k„=0. '

The last case to analyze is d=2.

2. d=2
where

t ' = (2/s) tan-'{v[SI(r)]''s/qI "a] . (4. 24)
If (a) the (projected) interactions have a uniform

monotonic bound with a finite second moment (as
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=q, (1- )( )-'[,/&(r)]-[3I(1')]-'"

as &(I')-~. (4. 32)

On using the simplified geometry (3. 1) and its con-
sequence (3. 23), this becomes

& =2p, ~&~(&»+&r)/&(I')a -[&(I')] '~ (no corridor)

(4. 33)

as &(I') ~. If follows from (3.35) that X now di-
verges as [K(I')], so that q, (X)-1. The second
term in (4. 31) is asymptotically negligible, so that
we have established that 0'„(fl I'} decays to zero at
least as fast as [1nSt(I')] '~3 as stated in the Introduc-
tion.

In the nearest-neighbor case we can, as for d=1,
optimize the inequality (4. 31) by proper choice of
the corridor width v (compare with Sec. IV of I).
This will be performed numerically in Sec. V be-
low, but may usefully be performed approximately
by treating v as a continuous variable. The terms
in (4. 31) depend strongly on v through X and X and

more weakly through q, and qo. Under the assump-
tion y«1 (i. e. , a corridor of volume small rela-
tive to that of I") this latter dependence may be
ignored. On recalling that X~ depends on v and that

p&= 1 for nearest-neighbor interactions we find that
the optimum value of v not far from the solution
v* of

X*=-(v~a) p, , (1 —y*)St~= q,[2-in'],
where

(4. 34)

2 = Z(I') = in[a &(I')/q&ea ]»1 . (4. 35)

Substituting into (4. 31) with this value of v* (strictly
we should take v to be the nearest integer) yields

- Z-inc (1+ Z-')St(1) '

which is valid for large enough &(I'), and T not too
high (see Sec. V). The detailed implications of this
result will be discussed in Sec. V.

Again (b) the condition requiring Jr (0„)
to have a second moment, may be relaxed some-
what. Thus, if we had only Jo(!R„I) =Co/R' [com-
pare with (4. 8) and (4. 10)], we would conclude that

assumed when d= 1),"the basic inequality becomes"

Uz ( 417ppq&(X) qp

q, in[i+(»" p, /&)] q, (X)&(1')

(4. 31)

where we have used (3. 16) and (4. 7). The inequality
is optimized with respect to»~ with the choice»t = v/a.
Suppose first that in the nearest-neighbor case
we fix the corridor width v. The surface mo-
ment p, , is uniformly bounded and from (3.28) we
have (with y = 0 and v = 1 in the long-range case)

4„ff I I'] decreases no more slowly than
[ln inSI(1')] '~ . Other examples with a still slower
decay can be constructed without trouble.

Before presenting the actual numerical conse-
quences of the inequalities it is worth commenting
on the differences between the above treatment of
spin systems and the previous treatment of Bose
systems (I, Sec. IV). There are a number of sim-
plifications: The first is that, since we are dealing
with a lattice, there is no risk of "ultraviolet" di-
vergences. In particular, although it proved to be
convenient, we did not need to introduce a "corridor"
4 surrounding I' as was essential in the continuum
case to avoid unbounded gradients. Furthermore,
the localized spin operators are all bounded oper-
ators in contrast to the Bose density operator for
a continuum. Hence in the spin case no analysis
was necessary to bound the local density fluctua-
tions; specifically we had no analog of the integral
Q(fj of (I 3. 29), which was analyzed in the Appendix
of I. In this respect the spin system resembles
a hard-core Bose system and, indeed, can be re-
garded as representing a quantum lattice gas. '~ A
further simplification arises since the spin com-
mutation rules generate no singular terms, so that
integration of the left-hand side of the Bogoliubov
inequality can be extended immediately to all k.
This avoids extra terms containing the upper cutoff

appearing in (4. 20) and (4. 31), which greatly
simplifies the optimization of the inequalities.

On the other hand, in a Bose system the kinetic
energy is 81ways a translationally invariant local
operator corresponding to a constant short-range
interaction with a finite second moment. No analog
of K(k) was needed in the Bose case, nor were there
complications in estimating the long-range surface
or bulk interactions or in allowing for randomness
and non-uniformity. We will see in the next section
that the lack of "locality" prevents the inequalities
for the spin systems from becoming progressively
stronger as the temperature approaches infinity,
as is, in fact, the case for Bose systems.

V. NUMERICAL CONSEQUENCES

It is instructive to analyze our results somewhat
further in order to obtain concrete numerical bounds

on the summed correlation function

o(r, r ') = (S'(r ')S-(r))

We shall assume the transverse fields h, (r) vanish
identically in I'U h. " The longitudinal fields k, (r)
play only a small role in the analysis [they enter via
the magnetization M„'(I'); see (3.37) and (3.38)],
but on heuristic grounds it is clear that a field in
the z direction will tend to reduce the transverse
correlations. Hence we expect our bounds to have

most force when k, (r) -=0; we shall assume this, and

also, as a corollary, M„'(1') -=0. Similarly, the
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magnitude of J,(r, r) relative to J„(r,r') = J,(r, r )
does not enter the analysis at all. Nevertheless,
it is again clear physically that large values of J,
will oppose the transverse coupling, so that the
bounds will be most informative when i J,(r, r ) I

J„(r,r'), in which case the transverse correlations
should be dominant [in the case of equality, when

h(r) = 0, the transverse and longitudinal correlations
are equal, i. e. , (S'(r )S'(r)) =(S"(r')S"(r))].We will
consider only the case of nearest-neighbor interac-
tions and will use the formulas derived with a cor-
ridor 6, since these yield the best bounds. (Our
conclusions will be compared to those following
without the corridor to point out the relative gains. )
The basic equations, then, are (2. 50) and the sets
of coefficients (2. 58)-(2.62) [or (2.46)-(2. 48)].

In order to simplify the geometry we shall suppose
that 0 fills the box A so that the bounding surfaces
of 0 are plane. Similarly, we take I" to be a rec-
tangular parallelepiped of dimensions &x &&, &X,
= &x%„for d = 1 and Xx &R~ && &,= &~&~W„ for d = 2

[see (3. 1)], which implies

4pf(I y )
1 2 (cx cg / )l/2 (S/S2)/2cg cg col/3

d=1, v=v (5. 7)

for &L, » 1. Here we have introduced the reduced
temperature variable

y=k/3T/Jr UaS (5. 8)

in terms of which the bulk critical temperature
corresponds to v.c =4 or 5. From (4. 22) and (5. 5)

we note that the optimization condition ceases to
have a meaningful solution for

which is impossible; in fa,ct, the inequality should
then be used simply in the "no-corridor" form v=1.
[Note that formulas (5. 1)-(5.4) reduce correctly for
this case. ] For v & 1 the optimized inequality (4. 23)
can be written in the simple form

[+.(&IF)/Sl"-[~./~. ]'", d = I (5. 6)

where the scale length (number of sites) Sto is given

by

5I(b.) = 251,OI, (v —1)
~ - ~s&y&s= ~o~ (5.9)

= 2st, (sI»+sI„+ v- 2)(v- 1),

5I(r) = X,~,5I„

d=2

(5. I)

for a corridor of width v. Also, with this geometry
we find from the definition (2. 55) that

yXgv q

= 2st, [5I»+R„+2(v —1)]v, d= 2 (5. 2)

Furthermore, it is convenient to define the charac-
teristic linear dimension of I' in units of lattice
spacings by

=(X X,)"', d=2 .
We consider first the following case.

(5. 3)

A. d=1

From (2. 58) and (5. 1)-(5.3) we have

0 X = 2@g/v(%/ + 2v —2) (5.4)

where we recall that we are discussing only the case
of zero external field. On setting ~ = 0, we may
combine (2. 51) and (5. 4) to give

X= 2P~K~st, /a v[1+ 2(v —I)/5I/] (5. 5)

Now the optimization condition (4. 22) with the defini-
tion (2. 60) of q, implies that X*~T. By (5. 5) this
means that as T is reduced the optimal corridor
width v* increases as 1/T [compare with (I 4. 13)].
Conversely, at high enough temperatures the op-
timization equation (4. 22) would require v*& 1,

so that for reduced temperatures greater than To,

optimum results are obtained with no corridor.
It is clear from (5.6) [and the definition (2.6),

which shows that 4 cannot exceed S] that the in-
equality only has force when Xz & sto For .v «To
(where the optimization analysis is valid), SIo will
be large so that f = 1 and the second term of (5.7)
may be neglected. Furthermore, from the opti-
mization equation (4.22), the definitions (2. 59)-
(2.62), and (5.9) we have y*=2ro/est/. For large
SI» we may neglect Z* in (5.7). With these approxi-
mations we finally obtain [see (1.8)]

5I, = 32 st, ot, /v, (5. 10)

me= v/-,'st»= 2m/5I~, (5. 11)

so that at lower temperatures progressively larger
subvolumes 5I(I") must be considered to see the

decay of order. For a linear chain of spins, ~
= st, = 1, with constant exchange (pq = 1), we have

vo =1, and for v= —,
' find ~= 128. As the cross

section %, = %,R, increases, the bound becomes
weaker rapidly unless the temperature is in-
creased proportionately. This behavior and the
form of + can be understood heuristically as
follows. Consider (as in the Bose case) a fluc-
tuation which "disorders" the subdomain I' by in-
verting the directions of a group of ordered spins
near the center of I' relative to the direction of
ordering outside I'. Such a fluctuation will require
an energy (or, more properly, free energy) cor-
responding at least to the formation of two Bloch
wa11.s each of thickness&-, %~ =-, M„. and area, &„.
The mean angle of twist between spins in successive
lattice layers in these walls must be
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and the corresponding total Bloch wall energy is
estimated simply by

AE=2%s(s'st»)
l
J'l S (1 —cosine)

=~a &s &»
I

O'
I
~'(~e)'. (5.12)

The ratio of this disordering energy to the mean
thermal energy is just

hE/k T 2v X—„%,l
8

l
& /ksT&s

= (2vs st, m,/r)/~, . (5.13)

This is of preciesly the same form as the ratio
&s/Xz, entering (5.6)[with use of (5.10)]. Even
the coefficient 2m2= 20 is the correct order of mag-
nitude; the argument thus tends to discourage fur-
ther efforts to reduce this numerical constant.

When 7'~ &s, we cannot use the result (5.6) with
(5.7), which was based on the optimized inequality
(4.23). Rather, we must set v=1 in (5.1)-(5.5)
(for no corridor), and study the general inequality
(4.20) (which is valid even for long range forces
with ps& 1). The final result may be written in
the same form (5.6), but now with

8t'st(7+ p, St„ol, ) Vt(~/~ )
0 1/2 +

7' Stt/2(&+ ~ st

(5.14)

B. d=2

From (2.58), (5. 1), and (5.2) we find

a X=
2p, tv '[St»+ 51„+2(v —1)]

+» +r + 2(v —1)(X» + Sly+ v —2)
(5 18)

It is clear from the basic inequality (4.31) or from
its optimized form (4. 36) that the inequality only
takes effect when &~ » 1. In the circumstances the
second term in the inequalities is quite negligible
and the optimized result can be written

[e.blr]/s]' «~./. (I-~)(~-h ~), (5.»)
where now from (4. 35), (2.60), and (5.3) we have

logto (R /o)

bounds (for p, t= p, s= 1) by

[e„Q'~ r)/8]' & 4H (K,&,/v& )"', d= 1. (5. IV)

Lastly, in Fig. 2 we have plotted the bounds on the
reduced order [0/8] versus the length &s on a
logarithmic scale for various values of the reduced
temperature v [see (5. 8)). These bounds have been
calculated from the full inequality (4. 20) with
optimal choice of the integer v.

Finally, we turn to systems of finite thickness.

where now

t-' = (2/v) tan-' [v(g, ot, /2 pt)"'] (5.15)

0

in place of (4. 24}. For interesting values of Sts
(» 1), we have t close to unity, and the second term
in (5.14) can be dropped as before. With these ap-
proximations we obtain the general result

&o=8(~/p. ,)[1+p, (ot„stg/7')]', d=1, v=1 (5. 16)

2'4
$2

0.8—

Bounds

, 1.0
where we recall that p, 2= p, &

= 1 for nearest-neighbor
interactions on a homogeneous lattice. The bound
following from (5.6) with (5. 16) is valid for ail
temperatures. Evidently at very high temperatures
Sls aPProaches a finite limit, namely, Ko = 8 (for
its= p, t=1). This result is a reflection of the dis-
crete lattice structure and contrasts with the cor-
responding result for a Bose fluid where the thermal
de Broglie wavelength A~ vanishes as T- ~, so
that the corresponding bounds on the amplitude of
the off-diagonal order become increasingly strong.
In the vicinity of the bulk transition temperature
r ~ 4 the formula (5.16) givessts =12 for a linear
chain (%„=&,= 1). As T becomes small, however,
(5.16) leads to values of &s increasing like I/Ts,
whereas the optimal values from (5.10) (v = v")
diverge only as 1/T. As an explicit example, when
v =-,' and&, = 'X, = 1, we find Ks = 200 from (5.16},
whereas (5.7) gives the better resultants=128. We
may summarize the optimal low-temperature

0.4—

0.2-

d

Jlfy=Jfg = 1

S -—I
2

0.5

0 & i i i l

0 1 2 5
logio +i

04

FIG. Z. Bounds on the order [@o(fI
1")/ S jt versus

~ I, for a linea~ chain of spins (&„=%,=1, S=&) inter-
acting with nearest-neighbor exchange. The curves have
been obtained from the fu11 inequality (4. 20) optimized
numerically with respect to v for several values of the
reduced temperature 7', The upper horizontal axis is a
distance scale for interpreting the curves as bounds on
0 (R)/S using (6.3) and (6.4). The right-hand vertical
scale must then be used.
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~ —~ (&) = ln [(vp/2e~) st stp q

L3 ~ (5.20)

in which the y dependence f
However since y* ll wn

o q& has been ne glected.
y l wn to be proportionaly wil be shown

e y* dependence exhibited in (5.19' c
b. ig--. . "-.h he optimizationsee xs notice that t

can be written with the aid of (5.1)

V+ /~DE~ V+

r(2 —ln 2) OtXL (5.21)

where the "shape factor"

u=u(r)=-,'[(mx/m„)"'+(St /st )""
Y Y X ] (5. 22)

is unity for a square domain (st = r= . r
the definition of y (2.5 ) eo

Fr

(

in . 2 and the eo
ions . and (5. 2) it follows that

1-y*=1 -c'/(a -in@), (5.23)

with

c'= c'(v) = 4up pi%,/r.
Allowowing for this dependence (5.19~

written
e, . 9& can be re-

(5. 24)

[e„[/~ Z']/S]'& 2pm, /~ln[sl, /xp(1')], d=2

(5. aS)

has precisely the form of (5. 25), exce t f'
i pac&en is 2m in l

e optimized scale length p(1') -ln 5t rat
than being fixed [as ' (5. 28 . T

in opposite directions but the firsti gt
u z y ar more than the second ak

N
' all y even the optimized bound (5. 25 i

rather weak. The most favor
ls

mos avorable case is clearly
a o a single layer, %,=1. If 7 =3

a ypic two-dimensional
e ound begins to take effect when

and 5. 29 only comes into play when st ~3

y, —,S, o ttak
&& . More generally, the best bound t

8) are lot/ p ted xn Fig. 3 versus stz, (= Ot = st
for various values of r (f th ' or
neif hbo 't

or e unifor
r si uaxon where p, =

' orm nearest-
, = ~ = 1). Evidently,

w en v'=, one must o to tg o the macroscopic" len th
=10 in order to show that 4'2 ' 83

improve as T 'increases but weaken
a —T6 8 . The bounds

as the th'e ickness increases.
aken correspondingly

The heuristic Bloch-wall argument present d
'

e d = 1 case is easily extended to the tw-
sional situation.

o e two-dimen-
ion. ne sees that the ratio~

appearing in (5. 25 andand elsewhere is essentially

where the scale length

sf (r)'= (2 '"& = ' e 7/v st ) in[(p'sf /2 '"
s e 'r) +z]~ 1.0

I

log„(R/a)
5

d=2q v=v (5.ae)

depends weakly onKL.
Comparing with (5.19), we see th at whenever the

ai y as effect, we have &,/r(Z —Int —c'
&1/4v«1, so that [assumini g p, q, u=0(1)) we have

~ ~ ~&~/in&~. &o v* will be much
greater than unity, and the o tiop q

i an accurate in all cases of rx an a o practical interest.

2 3
ver, or small % onL one may have to set v= 1

, etc. , in the original unog', unoptxmized inequality
or complete accuracy. ]

It is instructive to see how the result 5. 25
(5.26) compares with that bt

From (4.31), (4. 32), and (5. 3' we f'1Qd, as
, we have

Bounds

on
0.8—

2
+n
$2

0.6—

0.4—

0.2-

[+opi I'j/8] @/1n(st /st ), d= 2

where, now

(5. 27) 0 I I I I

0 1 4 6
gia i

~p=4+/17 pg, d=2, v=1 (5. 28)

4 ' = 4v p, st, r ' [1+(&/2~ & N )] .s L 3 ~ (5. 29)

When thee bound zs of practical inter
square b krac ets is close to unit .

xn crest, the term in

t-"'i hb-using or case (~ = 1) the inequality (5. 27)

FIG. 3.. Bounds on the order [+~ )I' S 2/ ]
n ~ a ice of spins (%~=1, S=— i

'th hb hor exchange. The cur
e u inequality (4.31) o t'

ll ith t to f
temperature T. The u

c v or several valuees of the reduced
e upper horizontal axis is a

scale fo interp et'ng th s ae curves s bounds on 0„(R)/S'
6.5), and (6.6). The ver '

th b lt' 1' dxp xe by 16.
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the ratio of the incremental (wall) free energy
needed to invert Xx&&X, spins to the mean thermal
energy. The argument does not, however, yield
the logarithmic dependence of the bound and will
not be presented in detail.

& Aa/ln(2U'2R/r~), d = 2 (6. 3)

as 8 ~. For the uniform nearest-neighbor chain
(%„=st, = 1) one finds from the results of Sec. V
that

VI. POINT-TO-POINT CORRELATIONS A =6&3/w'~' d=1 (6. 4)

Z o„(R„)& @R'~'
I ff)) I &B

d=1

& B,R'/1 (Rn/r ), 0d = 2 . (6. 2)

The amplitudes B, and B, depend on the temperature,
etc. , and, as explained in Sec. V above in connec-
tion with the scale number, we have ra = xo(R) ct-'lnR.

More specifically, if it is also known that c„(R„)
decreases monotonically with I R~( I for sufficiently
large arguments, one can prove (see Sec. V of I)
that

o „(R)/S & A, /(R/a)' 2, d = 1

The bounds discussed above refer to average (or
sums) of the correlation function o(r, r') over a
domain F. If this correlation function is known to
be non-negative, then more detailed results can be
obtained. In fact, the positivity of the spin-spin
correlation functions ( S'(r')S (r)) has been estab-
lished' 'I when all the interactions J (r, r') are
non-negative. Then by following the line of argu-
ment given in Sec. V of I we can quite easily prove
that the "projected" correlation function2'

rr„(R„)=st,' Q,Zp;(S'(r„+R„,7 )S (r„, r,))

(6. 1)

"decreases on the average" at least as fast as
1/ ) R g }

' 3 for d = 1, and as 1/in( ) R„ I /Fo) for d = 2

in the sense that

in the regime where the analytic optimization pro-
vides a good approximation. Similarly, for the
single-layer lattice (Ott, =1) one finds

and

A, =32~/~ (6. 5)

xo/a =f(2e~" r/v2) in[(m /2ev')(2v 2 R) ]]'~~ (6. 6)

also in the region where the optimization is valid.
More general expressions for A„A2, and ro follow
from the general inequalities (4. 20) and (4. 31).
Notice that the curves of Fig. 2 (for 2 =1) are
bounds on ' o„(R)/S if the abscissa is interpreted
as log, o(R/a) and [from (6. 4) and (5. 10)] the (4'o/8)
scale is multiplied by 1.837. It should be recalled
that Fig. 2 is drawn for~„=~=1, S= —,'. The cor-
relation function o„(R)/8', is bounded when d = 2

(K, =1, S = —,') by curves of similar shape to those
shown in Fig. 3 [with reinterpretation of the ab-
scissa as log, o(2&2R) and multiplication of the
vertical scale by 16]. Finally, it should be noted
that although the monotonic decay of o„(R„)[or of
o(r, r')] is quite plausible, it has not been estab-
lished nor does it seem easy to do so).
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Using an ac calorimetric method, the specific heat C&(T) of pure single-crystalline ¹ihas
been measured over a temperature range of 100 K centered at the Curie point (- 631 K). The
experimental method permits continuous observation of C& vs T with a temperature resolu-
tion of -0.01 K using very small specimens (-7.8 mg). Special attention has been devoted
to the determination of the analytical form of the magnetic contribution to C&(T). The effect
of applied fields up to 240 Oe has also been studied. At zero field, the data fit a standard
power-law expression over the range —3.2~log)p ) (T-T, )/T, l ~-1.6, with exponentsm = a'
=-0.10+0.03. The data obtained with applied field follow the scaling relations calculated
by Griffiths from the magnetic equation of state. The observed rounding of the specific-
heat curve at its maximum is discussed and some experimental factors which influence the
degree Of the observed rounding are described.

I. INTRODUCTION

This paper reports an experimental study of the
temperature dependence of the specific heat Cz, (T)
for Ni near its Curie point (Tc = 631 K). The mea-
surements are made using an ac calorimetric tech-
nique which permits direct observation of C~(T) as
a continuous function of T (with a temperature res-
olution of about 10 K) on small specimens of mass
about 10 mg. These experimental advantages per-
mit unusually precise examination of C,(T) near the
singularity at T~ using very small specimens of
relatively high crystalline perfection.

The ac calorimetric method used here is an elab-
oration of a basic technique originally developed
and described independently by Kraftmakher' and

by Sullivan and Seidel. A previous account out-
lining the essential details of the present method
and giving some preliminary data for Ni was pub-
lished earlier. ' The results reported here are be-

lieved to give a more detailed picture of the form
of the singularity in C&(T) for Ni than any of the
previously reported investigations. Preliminary
results on the effect of an applied magnetic field
and some of the physical factors which affect the
shape of the singularity are also described.

II. EXPERIMENTAL METHOD

A. Technique

The same technical principles described earlier'
are used here, but several refinements have been
made. The principal changes are intended to (a)
increase the sensitivity and precision of the tem-
perature measurements and (b) improve the quality
of the measured Ni specimens.

The Ni specimens are single-crystal chips (3
&& 3&&0. 1 mm) lightly supported in the center of a
massive copper assembly which occupies the center
of a furnace. The dominant thermal contact be-
tween the specimen and the copper surroundings is


