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The "out-of-plane" antiferromagnetic resonance frequency (d~ of MnO has been followed as
a function of Co-impurity concentration in the range 0.5-6.0 mole%, Using far-infrared tech-
niques, ~& is observed to shift from 27. 7 cm ' in pure MnO to 38.0 cm ' for 6.0% Co doping.
Line broadening precluded the possibility of following the resonance to higher impurity con-
centrations. Measurements of &~ as a function of temperature confirm the magnetic nature of
the resonance absorption lines, and are consistent with existing data which show that the Neel
temperature of the mixed system is a linear function of impurity concentration. The perpen-
dicular susceptibility, onthe other hand, appears to change very little as Co is added to MnO.
The square of the frequency (d& is found to be proportional to the Co concentration, suggesting
that Co single-ion anisotropy is primarily responsible for the shift, and an anisotropy con-
tribution of 32. 8 cm /ion is deduced from the results. The theory of the magnetostriction
of CoO developed by Kanamori is modified to deal with the present case, and it is shown that
the observed anisotropy can be readily understood in these terms. The relevance of this re-
sult to the properties of CoO is discussed, in particular, the problem of magnetic anisotropy
and the possibility of a dynamic Jahn-Teller effect in the paramagnetic state. Some features
of antiferromagnetic resonance (AFMR) and anisotropy in doped antiferromagnets relevant to
the interpretation of the experimental results are developed in two appendixes

I. INTRODUCTION

The face-centered-cubic oxide antiferromagnets
form an interesting group of materials, since,
although they were among the first antiferromag-
nets to be studied both experimentally and theoret-
ically, many of their properties remain imper-
fectly understood. In this paper we present mea-
surements of antiferromagnetic resonance (AFMR)
in MnQ doped with Co, which demonstrate some
of the resonance properties of doped antiferro-
magnets, and also indicate how the Co ion behaves
magnetically in an octahedral environment.

The magnetic structure of MnO is well known,

and is type-2 ordering for the fcc structure. The
spin magnetic moment of Mn2" (S= —,) lies in the

(111)plane, all spine in a. given (111)plane being
parallel, and antiparallel to the spins on adjacent
(111)planes. The direction of the spine within
each (111)plane has not been definitely established,
but in the analogous NiO structure, the spins have
been shown to lie in directions of the type (112).' '
It is highly probable that the same is true in Mn0, 3

and we shall assume this to be the case. The
AFMR behavior of these materials has been dis-
cussed by Keffer and O' Sullivan. 4 Unlike uniaxial
antiferromagnets such as MnF2, there are two
different anisotropy fields which are important
in the oxides. The spine are confined to the (111)
plane by a relatively strong dipolar anisotropy
energy K, (of order 10' erg/cm'), and the spin
direction within the plane is determined by a
much smaller anisotropy energy4 of about 10'

erg/cm'. Defining the spin direction [112]as
the z axis and the [111]axis as the x axis, the

anisotropy energy for small deviations from equi-
librium can be written

~,/r = [3K,/X, l'",
~,/r = [(18K,—2K,)/y, ]"',

(2)

(3)

where y, is the perpendicular susceptibility.
The particular combination of anisotropy ener-

gies in (2) and (3) can be found by considering the

approach of Kanamori and Tachiki, ' who show
that AFMR frequencies are given by ~/r= (2K/y, )'~~

where K is the anisotropy energy for deviations
which leave the sublattices antiparallel, i. e. ,
~, = —n, = ~, P, = —P, = P. Then

E~ ——2K' n + (9Kp —Kq)P, (4)

from which (2) and (3) follow for the two modes.
Sievers and Tinkham have observed the mode

&, in the far infrared at 2V. 7 cm . Using this
frequency and the experimental value' of p, of
4. 31 x10' emu/cm' gives K, = l. 24 x10' erg/cm',
which is to be compared with K, = 1.54 x 10' erg/
cm calculated for the dipolar anisotropy.
Sievers and Tinkham actually quote better agree-

EA 4 1[ & ( 1+ 2) 1 2]+IK2(11+4) +KBP1P2 ~

(1)

It.z and K3 are "in-plane" anisotropy energies, and

&, P, y are direction cosines. There are then two

resonance frequencies given by
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ment, but their value for y, is somewhat higher
than the presently accepted value given above.
Also relevant are the neutron-scattering studies
of Collins, 9 who obtains a best fit with K, =1.90
x 10' erg/cm'. These experimental values of K„
although not in perfect accord with each other,
do show that the dipolar anisotropy energy is the
principal contributor to K, . The differences arise
because of uncertainty in the appropriate exchange
field (H~=M/li, ) to insert in the expressions (2)
and (3). However, we may conclude that the be-
havior of the mode &, is fairly well understood.

Much less is known about 2. It has been pre-
dicted to be a few cm ', but has escaped detection.
However, static measurements of the spin-flop
field ' and examination of the magnetic-field de-
pendence', of the high-frequency mode &y suggest
that &u2 is less than 2 cm '. This means that (16K&
—2K,)& 2x10' erg/cm'. We shall have little to
add about the mysteries of z.

The magnetic structure of CoO has been the
subject of some controversy. Roth" suggested
that the ordering was again type 2, the actual mag-
netization direction being [117],i. e. , 11 30 to
the [001] axis. This structure at first seemed in-
consistent with the tetragonal distortion of CoO
below the Noel temperature (292 'K), and van
I.aar' proposed an alternative multi-spin-axis
structure in which tetragonal symmetry was re-
tained. This situation was apparently resolved
when Saito et al. ' found that there is a small
rhombohedral distortion superimposed on the main
tetragonal distortion. Their results favor the
single-axis structure proposed by Roth. Kana-
mori"'" has shown how these distortions below
T~ can be understood on the basis of magneto-
striction caused by the residual orbital angular
momentum of the Co2' ion.

Following Kanamori's work, Tachiki' calculated
the AFMR frequencies for CoO, and experimental
searches for these modes have been made in the
far infrared by Milward' and Daniel and Crack-
nell. ' Neutron-scattering data on phonons and
magnons in CoO have also been reported by Sakurai
et al. ' Milward' found a resonance at 142 cm ',
while Daniel and Cracknell" report lines at 216,
221, and 248 cm '. The neutron-scattering data'
show two broad magnon branches at about 160 and
230 cm ', which are almost flat over the whole
Brillouin zone. These could be associated with
the lines seen in the far infrared, but as Daniel
and Cracknell' have shown, there is considerable
difficulty in presenting a unified interpretation.
Certainly, very 1.ittle information about the mag-
netic anisotropy of CoQ can be gained from these
results, and therefore there are very few data
to compare with the theoretical treatment of the
anisotropy as given, for example, by Kanamori. ' '"

Since many of the possible contributions to the

anisotropy of CoO are single-ion effects, we can
expect roughly the same behavior of the Co ' ion
in CoO and in the similar lattice of MnO. Thus,
by measuring the AFMR frequency of MnO doped
with Co, we shall show that it is possible to extract
the single-ion anisotropy of Co~' in an octahedral
environment, and to compare the measured anisot-
ropy energy with the various calculated contribu-
tions. This technique, of course, is closely related
to the measurement of Co single-ion anisotropy in

various ferrimagnets, a subject with a long his-
tory. ~o However, the interpretation of the anisot-
ropy is essentially different in the present case,
and very relevant to the properties of CoO, partic-
ularly the magnetos triction.

The dynamic behavior of doped ferro-, ferri-,
and antiferromagnets has become of considerable
interest in the last few years, ' following a long-
standing activity in the analogous fieM of the vibra-
tions of doped and disordered lattices. ~~ AFMR is
not a very sensitive probe into the details of the
dynamics of doped antiferromagnets, since being
a k= 0 or "uniform" mode, it is usually assumed
to probe only the "average" behavior of the lattice.
We shall examine more carefully the extent to
which this simplification can be applied, and show
that in the present case this average approach is
justified.

II. EXPERIMENTAL DETAILS

A. Samples

Both single-crystal and powder samples of MnO:
Co were used for this work. The single crystals
were kindly supplied by Slack of General Electric.
They comprised parts of boules grown by flame
fusion, and contained up to 10% concentrations of
Co. Some mixed crystals of MnO and CoO in the
mixture ratio 25:75, 50: 50, and 75:25 were pro-
vided by Smakula of MIT. These samples were
remnants from work carried out on the restrahl
spectra of oxide mixtures. Unfortunately, it was
found that the AFMR transition could not be followed
for concentrations of Co in MnO of more than about
6%, due to line broadening, so the MIT crystals
were not useful for this purpose and were not
studied in detail.

Powder samples of Co-doped MnO were prepared
by the method used by Bacon et al. Carbonates
of appropriate doping level were precipitated out
of solutions of MnSO, H20 and Co(NO, )z 6H20,
and then heat treated in vacuum and argon at 400 'C
to produce monoxides. All samples thus prepared
showed clear powder x-ray lines characteristic of
a single mixed monoxide. The powders were cold
pressed into pellets of about 1-cm diameter and a
few mm thickness, using a roughly 1:1 mixture of
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TABLE I. Analyses of Samples used in AFMR Experi-
ments.

Intended value
Single crystal of Co

Sample or powder concentration x
Measured value

of x

GE6
GE7A
GE7B
GE8

A3
A4
A7
C1
C2
C3
C4
C5

Single crystal
Single crystal
Single crystal
Single crystal

Powder
Powder
Powder
Powder
Powder
Powder
Powder
Powder

0. 03
0. 03
0. 03
0.01

0.050
0. 040
0. 060
0. 005
0.018
0.025
0.030
0.035

0.019-0.021
0.048-0. 066

0, 015
0.010

0, 046
0. 038
0. 058
0, 0055
0. 018
0. 026
0. 030
0. 036

monoxide and KBr to give a firm binding.
The GE single crystals and the powders were

chemically analyzed by Dr. R. Skogerboe of the
Materials Science Center at Cornell. The actual
concentration of Co in the single crystals was found
to be significantly different from that intended during
growth, and in one case a large variation across the
sample was found (GEVA: see Table I). The pow-
ders, on the other hand, were very close to the
intended concentration of Co. A summary of the
samples used is given in Table I. Analysis also
showed that the samples varied in stoichiometry,
all of them having an excess of oxygen to some
degree. This is usual in MnO, and, in fact, all
samples showed some far-infrared lines charac-
teristic of a few percent precipitated MnsO4 ' and
presumably Co-doped Mn304. These lines, which
will not be discussed in detail in this paper, can
be troublesome since for some concentrations of
Co they obscure the true AFMR line.

Single crystals of CoQ for comparative work mere
obtained from the Nakazumi Crystals Corp. , Osaka,
Japan, and a piece of a flame-fused boule was kindly
made available by Sahagian of the Air Force Cam-
bridge Laboratories. Since these samples were
of different origin from those used by Milward'
and Daniel and Cracknell, "some relevant results
will be briefly reported in Sec. III.

B. Far-Infrared Experiments

Absorption spectra in the range 2-120 cm ' were
recorded using a lamellar grating interferometer
coupled to a He3-cooled Ge bolometer. The inter-
ferometer has been fully described by Nolt et al. ,

~6

and the He3 bolometer by Drew and Sievers. 7

Using this instrument, it was possible to obtain a
signal-to-noise ratio of about 100 in the region of
principal interest around the MnO AFMR line at
27. 7 cm '. The absorption coefficient for each

sample was obtained by comparing its transmission
spectrum with that of a "dummy" sample, usually
either a crystal of CoO (which has no lines in the
region of interest) or a pressed-powder pellet of
KBr.

Measurements of the temperature dependence
of the AFMR frequency were made using a rig in
mhich the sample was held in a —,'-in. -diam. stainless-
steel "light pipe" about 6 in. above the level of
liquid He4 in the cryostat (see Ref. 27 for a diagram
of the Hes detector cryostat}. A heater was wound

close to the sample, and the temperature monitored
using a Pt resistor and an Allen Bradley 10 kA
carbon resistor. Stable temperatures of +0. 3 K
were obtainable with this rig in the temperature
range above 20 'K without using any feedback for
temperature control. Below 20 K, good control
mas difficult because the heater input was very
small. This was not a serious drawback since it
is only above about 30 'K that detectable changes
in frequency occur.

Samples were always wedge shaped so as to elim-
inate interference fringes caused by multiple re-
flections at parallel faces. This can be a serious
problem with thin single-crystal samples because
of the relatively high refractive index at frequencies
below the restrahl in these oxides. By detecting
such fringes, the "static" dielectric constant of
MnO was determined to be 17.9+0.7 at 1.2'K, in
reasonable agreement with other estimates at
various "low" frequencies. 28

III. RESULTS

The spectrum of one of the MnO:Co single crys-
tals in the region 5-60 cm is shown in Fig. 1.
The most prominent feature is the AFMR line at
29. 2 cm ', shifted upwards in frequency from its
position in pure MnO. The absorption coefficient
at the peak of the AFMR line is underestimated by
an appreciable factor, because the absorption at
the peak was essentially complete (i.e. , zero
transmission}. Measurements on a thinner sample
showed that the integrated absorption in the AFMR
line was about 26 cm ~, comparable with that in
pure MnO. The meaker lines at 6 and 7 cm ', and
the broad band at 49 cm ' appeared in all the sam-
ples, and have been shown to be due to Mn, 04 pre-
cipitates. ' There was, in fact, a rough correla-
tion between their strength in the single crystals
and the Co concentration, but this is probably only
because the problem of nonstoichiometry is worse
in the growing of doped crystals.

The effect on the AFMR frequency of increasing
Co concentration is shown in Fig. 2. The data
shown refer to a series of powder samples with
mole fraction x of CoO (i.e. , the formula can be
written Mn, „Co„O). The AFMR line shifts to con-
siderably higher frequencies and broadens as x
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FIG. 1. Spectrum of MnO:Co (x=0.01) at 1.2'K in
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26 cm (see text). The resolution of the spectrometer
is indicated by the vertical bars.
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FIG. 2. AFMR absorption in MnO; Coas a function of
Co concentration. Data were taken on various powder
samples at either 1.2 or 4. 2 'K, usually with a resolution
of 0. 4 cm ~.

increases. The linewidths observed in the powder
samples were always somewhat larger than in
the single crystals, but the trend is the same in

both.
In order to confirm the magnetic nature of the

transitions, the temperature dependence of the
frequency was measured for two of the single crys-
tals with x= 0. 01 and 0. 05. The results are shown

in Fig. 3. As expected, the AFMR frequency drops
sharply as the Neel temperature is approached
and the linewidth increases. Measurement of the
powder susceptibility of mixed MnO-CoO samples
by Bacon et al. ~4 showed that the Neel tempera-
ture varies linearly with x between T„=116 K

for MnO and T~=292'K for CoO. The values of

T„, appropriate to our samples using this linear
extrapolation, are shown by arrows in Fig. 3.

The temperature dependence of the AFMR fre-
quency is seen to fit in well with this linear varia-
tion of T&.

The temperature variation of the AFMR is prin-
cipally determined by the temperature dependence
of the anisotropy energy, since ~ is nearly inde-
pendent of temperature [see Eqs. (2) and (3)]. It
is usually assumed that the anisotropy energy X
behaves like some power of the sublattice magne-
tization, ~ the appropriate power law for K, being
2 on the molecular-field theory for dipolar anisot-
ropy, or 3 on the Zener theory for an angular
variation represented by a spherical harmonic of
second order. ' Sievers and Tjnkham have
shown that in pure MnO (and NIO) the Zener theory
gives the best fit, provided the square root of the
ela, stic neutron-scattering intensity is taken to
represent the sublattice magnetization M. This
is because the Brillouin function for S= & does not
give a good representation of M, having too fast a
temperature variation.

Figure 4 shows the corresponding results for
the doped samples, the data being normalized with
respect to frequency and temperature. The lines
represent the variation of (K,)'~~ as given by the
molecular-field theory (Ã,~M ) and the Zener
theory (K,~M'), where M is the sublattice magne-
tization of MnO. The Brillouin function for S= —,

is also drawn for comparison with M. As for pure
Mn0, 6 the data fit the Zener theory best up to
T-0.7T„, after which the experimental points tend
towards the molecular-field curve. Thus, even
though the effective anisotropy energy is roughly
double that of pure MnO for x= 0. 05 (see below),
the temperature dependence is described by the
same variation of M, assuming the latter to be
the same as in pure MnO. Thus, we conclude
that the Co-induced anisotropy has a temperature
variation very similar to that of pure MnO. Cer-
tainly, if the Co contribution varied according to
a high power of M (e. g. , M'o for cubic anisotropys'),
then at least the x= 0. 05 sample might be expected
to show departures from the pure MnO behavior.
It should be remembered, however, that the appro-
priate M for discussing the Co contribution may be
that small part of the magnetization due to the Co
ions themselves, which may have a different tem-
perature dependence from that of the whole sub-
lattice. ' Nevertheless, a large difference in the
appropriate power of the magnetization for the im-
purity and the host would make itself felt. This
result will be discussed further in Sec. IV C.

We have already mentioned the relation between
the AFMR frequency and the anisotropy energy. In
order to make this identification for the doped sys-
tem it is necessary to assume that we can use the
average model for the uniform AFMR mode, in
other words that we can write
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The angle between [117]and [001] is 11' 3l',
whereas the direction of the Mn ' spins in MnO

[112]makes an angle of 35' 18' with [001]. With-

out knowing in advance the relevant anisotropy
energies of Co~' in MnO we cannot proceed any

further, but it is shown in Appendix B that the
assumption that the moments are in the same di-
rection is a good representation of the situation.

Having temporarily sidestepped this problem,
we can now write the anisotropy energy of the Co '
ion for small deviations of the magnetic moment
from equilibrium in the form

EA(Co) = k, &2+ k, p (one ion), (8)

FIG. 6. The square of the AFMH, frequency plotted as
a function of x. The triangles and the scale on the right-
hand ordinate refer to the half-width of the absorption
line.

purities in the powder samples. These are proba-
bly the precipitates of Mn, 04 mentioned before.
Figure 5 shows that yr„(and, therefore, presum-
ably y,) varies very little with x, and thus we can
regard &dI(x) as measuring the anisotropy energy
Z(x).

Equation (5) suggests that the meaningful quantity
to plot is , vs x. This is shown in Fig. 6 for both
single-crystal and powder samples. The half-width
of the AFMR line is also plotted, although no attempt
has been made to fit this to any specific model. The
linearity of the &@21-vs-x plot demonstrates that Co
single-ion anisotropy is involved, as expected for
reasons outlined in Sec. I. It is a little disturbing
that the data depart from the least-squares-fit
straight line by more than the limits of error. The
probable explanation lies in the determination of x,
since the accurate chemical analysis (as represented
by the error bars) may not correspond exactly to
the number of impurities in solution in the sample
measured spectroscopically. Thus, we may accept
the straight lines in Fig. 6 with some confidence
and proceed to evaluate the contribution of each Co
ion to the anisotropy energy.

To calculate the Co single-ion anisotropy, it is
necessary to consider more carefully the form of
K(x). The form of the anisotropy energy for small
spin deviations has been given in Eqs. (1) and (4)
for pure MnO. Let us now assume that in the
equilibrium situation the magnetic moment of the
Co ' ion is parallel to the spins of the Mn~' ions
on the same (111)plane. This is by no means ob-
vious, since in CoO the predominant anisotropy
energy is thought to be a magnetostrictive contri-
bution of cubic symmetry, ' which favors the
[001]direction for the magnetic moment. In CoO
the moment actually points in the [117]direction"
tilted towards the (ill) plane by the trigonal compo-
nent of the anisotropy (e. g. , the dipolar terms).

where k„k~ represent the single-ion "out-of-
plane" and "in-plane" anisotropy energies, re-
spectively. For small concentrations of Co, we

can neglect the change in the dipolar anisotropy
K„since the moment of Co ' in CoO (3.8pe) is
not too different from that of Mn2' in MnO (5i12).
In any case, the dipolar anisotropy contributes
at most a few cm '/ion to the anisotropy which

will be shown to be negligible compared with the
Co single-ion anisotropy. If there are N cation
sites per cm and a fraction x of Co, then there
will be xN/2 Co ' ions on ea.ch of the "up" and
"down" sublattices. Thus, the total contribution
of the Co ions to the anisotropy energy per cm3

can be written

E„(co)= xi', [-,' (n', + o.
2,)]+xf~,[-,'(p', + p', )], (7)

EA (4+1+x+a)[2 ( 1+ 2}] 4+1 1 2

+ (9%2+ x%3}[-, (p, + p2)]+ If'3pII82. (8)

The resonance frequencies are then

~1(x)/1 = [(2/X.) (-'&, + x&.)]'",
~,(x)/r= [(2/X,)(9', Z, + xA, )]—I"

The plot of &u, (x) vs x thus gives A„. Taking ~
=80x10 emu/g(cf. for MnO y, =79x10'
emu/g, Fig. 5) yields I1,= (3.00+0. 10) x 10' erg/
cm . Finally, since N=4. 5'7x1p, we find

(9)

(10}

k, =32 8+1 3 cm per Co~' ion

Equation (10) predicts that the in-plane mode &o2

should also rise in frequency as x increases, and

putting k, = k, predicts Id2(x) = 110x'~ cm ' if K2 and

K, are neglected. In this case, we would have &2
= 24. 5 cm ' for x= 0. 05 (e. g. , sample GE7A).
There is certainly no trace of a line in this region
in GEVA, or indeed in any of the other samples of
similar Co concentration. There is, however,
some very complicated behavior in the 6-11-cm '

where K, = Nk„etc.
From Eqs. (1) and (7), the total effective anisot-

ropy energy becomes



ANTIFERROMAGNETIC RESONANCE IN MnO: Co: A 883

E
20

I-
Z
LLJ

l5-
LL.
LL
LLJ0
O

Mno: co

z0
I-
Q.

0
Cl

IO

7 8 9

FREQUENCY(ciL )

IO I I
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region in samples with x & 0.015, which is difficult
to sort out because the Mn, O, lines at 6 and 7 cm '
are involved. The spectrum of GEVA in this re-
gion is shown in Fig. 7. It could be that some-
where among the chaos the in-plane mode &2 is
playing its role. If this is the case, then we would

have k~-0. 1k„which would be a little surprising
if k, is predominantly magnetostrictive in origin
(see Sec. IVB). The lines in Fig. 7 all disappear
above about 40 'K (the Curie temperature of Mn~04

is 42'K ~4). This does not necessarily rule out
the possibility that one of them is due to &uL, since
the in-plane anisotropy energy might be expected
to have a rapid temperature dependence in view
of the sixfold in-plane symmetry. ' The Zener
theory predicts an M ' variation for the anisotropy
constant in this case. 3' Nevertheless, we must
admit that there is no real evidence for the obser-
vation of the in-plane mode in the doped samples.

In summary, the experimental results demon-
strate the large effect on the anisotropy energy
of doping MnO with Co. Provided we accept the
simplifications made in interpreting the AFMR
results on the basis of an average model, we de-
rive a value of 32. 8+1.3 cm ' for the Co single-
ion anisotropy relevant to the out-of-plane mode

No definite results have emerged for the be-
havior of the in-plane mode. The interpretation
of our results in terms of the magnetism of the
Co ' ion will be discussed in Sec. IVB.

Before concluding this section, we report briefly
some measurements on CoO in the range 0-200
cm '. The data were obtained using a Michelson
interferometer ' with samples from two different
sources, and the only absorption lines seen are
shown in Fig. 8. Unfortunately, the higher-fre-
quency range where Daniel and Cracknell" observed
their lines could not be covered at the time of the
experiment. The structure near 150 cm ' is simi-

lar, but by no means identical, to the lines observed
by Milward. '~ The total integrated absorption co-
efficient is small compared with that in the higher-
frequency lines, ' and Kramers-Kronig analysis
shows that it only accounts for a contribution of
2x 10 emu/g to ~, compared with the measured
value of 72x 10 emu/g. Either these transitions
are intrinsic and relatively forbidden, or they are
activated by impurities. The differences between
the two samples measured here and the results of
Milward argue in favor of an impurity effect; on
the other hand, Sakurai et al. ' do report a transi-
tion in this region in their neutron-scattering re-
sults which would fit in nicely with the observed
lines. Obviously, more work is required on the
far-infrared spectrum of CoO.
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FIG. 8. Absorption lines near 150 cm ~ in two samples
of CoO. Data were taken with a Michelson interferometer
at 1.2 'K, with a resolution of 0. 8 cm ~. AFCL refers to
a sample made available by Dr. Charles Sahagian of the
Air Force Cambridge Laboratories, Bedford, Mass. ,
and the other sample was supplied by the Nakazumi Crys-
tals Corp. , Osaka, Japan.

IV. DISCUSSION

A. Average Model for AFMR

The first points to consider are the validity of
the simplifications in the interpretation introduced
in Sec. III. Is the average model justified for
AFMR in a mixed crystal, and to what extent are
the results confused by the possibility that the
local direction of the sublattice magnetization at
and near a Co~' ion is different from that in pure
MnO'P These two questions are considered in de-
tail in the appendixes, and at this point we shall
only state the conclusions reached there. Using
a simple molecular-field model, it can be shown
that the average model for AFMR works in the case
where ~ is independent of x. This is appropriate
to the present case. Furthermore, it is possible
to extend the molecular-field model to include
crudely the effects of the orbital moment of an ion
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such as Coa'. Provided that &u/y for the AFMR
is low compared with the exchange fields and the
effective field due to the spin-orbit coupling ener-
gy, the spin and orbital moments of the Co2' ions
precess together with an effective gyromagnetic
ratio y„, where

mg/y, + m, /y,
y~ mr+ ms

(12)

Here nz„rn, are the orbital and spin components
of the magnetic moment of the ground state. In a
situation where g is independent of x the AFMB
frequency is then given by

&Iy,«=(2&/X ) ~,

where K is the mean anisotropy energy [e.g. , Eg.
(9)j. y„, is given by

[001j axis and the [112]axis, the angles involved
are always fairly small (&35' =0.6 rad), and we

may expect the representation of the anisotropy
energies by effective fields, as done for the linear
chain model, to be a reasonably good approxima-
tion.

In summary, the results of Appendixes A and B
show that in the molecular-field scheme the sim-
plifications that were made in interpreting the re-
sults of Sec. III are justified. There may well be
departures from this simple model for MnO:Co,
where orbital angular momentum and complicated
angular dependence of the anisotropy energies are
involved, but by and large the value derived for the
Co~' single-ion anisotropy energy can be taken as
reliable. This allows us to go ahead and examine
the interpretation of the results in terms of the
electronic structure of the Co ' ion. '

2 =
q +—g+x1 —x (14) B. Co2' Anisofropy Energy

where y, is the gyromagnetic ratio of the Mn2' ions
and yt, is given by Eq. (12). In the present case,
the g factor involved in y,«changes from 2. 0 for
x=0 to about 1.9 for x=0. 05, so there is no large
error involved in using the value 2. 0 in calculating
the Co anisotropy, as we did in Sec. III.

The problem of local differences in the direction
of sublattice magnetization is somewhat trickier.
In Appendix B we pr'esent a simple linear chain
model which suggests that a compromise is reached
between the anisotropy energies and the exchange
energies (as in a Bloch wall). The minority sub-
lattices (Co in our case) point in some intermediate
direction between their preferred equilibrium
orientation and that of the majority sublattice. As
one goes away from an impurity spin the host
spins gradually tilt back towards their own pre-
ferred orientations. The small angle between
neighboring spins thus costs some exchange ener-
gy, which is compensated by the reduction in
anisotropy energy associated with having most of
the spins fairly close to their preferred directions.
The effective anisotropy energy of the whole system
is then of the form K(58)a where (58) represents a
deviation of the whole system through an angle 68.
In the simple model considered in Appendix B,
K is given by the average of the anisotropy energies
of each sublattice referred to its own preferred
direction. Thus, even though canting does occur,
the anisotropy energy due to an impurity refers
to the preferred axis of the impurity magnetic
moment. It is unfortunately possible that this
conclusion does not strictly apply to Co in MnO,
where the angular dependence of the anisotropy
energies" is rather more complicated than those
considered in the linear chain model. However,
since the spins are always somewhere between the

The ground state of Co3' in an octahedral crystal
field is T,. The threefold degenerate orbital state
can be represented by an effective angular momen-
tum 1= 1, where 1 is related to the real angular-
momentum operator L by L= —&1. The constant
n depends on the detailed structure of the 4T, state.
In the weak-field case 'Tj is wholly derived from
4I' of the free ion and a=1. 5. However, the octa-
hedral crystal field mixes the I" and P states
of the Co ' ion, which reduces + towards 1.Q. In
CoO, n is reduced to about 1.4, ' so for all practi-
cal cases the mixing with 4P can be neglected in
discussing the anisotropy energies. The spin-
orbit coupling energy can be written XL ~ S, X in the
free Co ' ion being equal to -180 cm '. Sakurai
et al. ' have suggested that in the paramagnetic
state of CoQ, X is reduced to -71 cm ', possibly by
the dynamic Jahn-Teller effect. " Most of the
theoretical work on the ordered state of CoO has
been done assuming X=-180 cm ', and in Sec. IVD
we will comment on the relevance of the anisotropy
measurements to the problem of a Jahn-Teller
effect in the paramagnetic state.

The first-order effect of the spin- orbit coupling
gives no contribution to the anisotropy energy in
octahedral symmetry. " This is to be contrasted
with the usual situation in ferrites, 20 where Co~'

occupies a site of trigonal symmetry, which lifts
the degeneracy of the T, orbital state into a lower
doublet and a singlet about 100Q cm ' higher. With-
in the doublet the spin-orbit coupling energy is
anisotropic and it is this effect which is predomi-
nantly responsible for Co~' single™ion anisotropy
in spinels and garnets. ' It could be argued that
below the Heel temperature in MnQ there is also
a small trigonal distortion which might produce a
similar source of anisotropy for a substituted Co~'

ion. However, the distortion corresponds to a
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TABLE II. Sources of magnetic anisotropy other than
magnetostriction in CoO [after Kanamori (Ref. 15)].

Contribution to anisotropy
(cm ~/ion)

Mechanism

Interionic dipole-dipole
Intraionic spin-spin
Anisotropic spin-orbit

interactions
Interionic orbital multipole

interactions (Coulomb) —11.1
Spin-independent direct

exchange

0.78

2. 00

Spin-independent direct
exchange

J KJ, [ Tl &4, signs
probably negative

f TJ &3, sign
uncertain

Indirect exchange -1-2

shear strain of about 10~, which would not be ex-
pected to split the T, orbital state by more than a
few cm '. Thus, clearly in this case the effects
of the spin-orbit coupling must be considered within
the whole 4T& manifold.

The most complete analysis of the anisotropy
energy of Co ' in CoO is that due to Kanamori "'
and we shall draw heavily on his work to discuss
the similarities between CoO and Co~' in MnO.
With the exception of magnetoelastic contributions,
which will be described in detail shortly, the vari-
ous anisotropy contributions as calculated by
Kanamori for CoO are given in Table II. The
anisotropy energy is written in two parts, deter-
mined by symmetry considerations

z„=If(~'p'+ p'r'+r'~')+ 7(~p+ Pr+ ro) (15).
Here &, P, y are direction cosines of the magneti-
zation relative to the cube axes. The K term is a
cubic anisotropy term consistent with the octahedral
symmetry of the Co site, and the T term has trig-
onal symmetry which reflects the trigonal sym-
metry of the spin arrangement in CoO (and MnO). "
In general, single-ion effects contribute to the K
term, and multiple-ion effects can contribute to
both K and T. Competition between K and T is
responsible for the [117]orientation of the mag-
netization in CoO, since for positive K and T = 0
the cube axes are preferred, whereas for positive
T and K= 0 the moment prefers the (111)plane.
None of the sources of anisotropy in Table II are
nearly as large as the value of 33 cm '/ion derived
from the AFMR results in MnO:Co. In fact, the
largest figure, that due to orbital multipole Cou-
lomb interactions, cannot be nearly as large for
Co in MnO as for CoO, since Mn~'has an S ground
state and therefore no multipole moments. Thus,
although this contribution may be important in CoO
(although it has the wrong sign to be the dominant

effect"), it is irrelevant for Co as an impurity in
MnO. The contributions listed in Table II can
provide at most about 4 cm-' per ion to both K and

T in MnO: Co. It is worth noting that the dipole-
dipole contribution to T is the one which in pure
MnO is the major source of anisotropy.

Magnetoelastic effects provide the key to under-
standing the large anisotropy of Co in octahedral
surroundings. The physical principle behind this
effect is illustrated by Fig. 9. In a magnetic
material the effective Hamiltonian for the ion can
be written' '

~=gp, ~S H~+XL' S.

If Hs (the exchange field) is large, then the spin is
forced to point along the direction of HE, and the
spin-orbit coupling forces L to be parallel or anti-
parallel to S, depending on the sign of X. The or-
bital wave function is such that the electron density
is nonspherical, and an asymmetric distortion of
the lattice results. The energy involved in this
distortion depends on the orientation of L, and
hence gives rise to magnetic anisotropy. The
distortion is, of course, due to exactly the same
forces which are responsible for Jahn- Teller ef-
fects in ions with orbital degeneracy, namely,
interaction between lattice distortions and the
orbital states. 37 The distinction between magneto-
striction and the Jahn-Teller effect as usually dis-
cussed is simply a question of the order in which
various effects are considered. In the example

FIG. 9. Schematic representation of the mechanism
of magnetostriction for an ion such as Co '. The ex-
change field II& holds the spin in a particular direction,
so that the spin-orbit coupling XL'S forces the orbital
angular momentum L parallel (or antiparallel, depending
on the sign of X) to the spin. The asymmetric charge
density then results in a distortion of the lattice.
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IZ&=el2, -»+hl2, 0&+cl 2 +1&. (17)

The states are all quantized along the direction of
II~. Kanamori' finds that a=0. 90, b= —0.4, and
c= Q. 17. Thus, the ground state is composed
mostly of the state of maximum spin, but the spin-
orbit coupling mixes in states of reduced spin in
the direction of H~. Note that 1 is predominantly
antiparallel to S, so that L and S are parallel,
as one would expect since A. is negative. Any dis-
tortion energy is now averaged over Ig& rather
than over I

—,', —1), otherwise the picture of the
magnetostriction as given by Fig. 9 is the same.
Magnetostriction is the source of the mainly te-
tragonal distortion observed in CoO below the Neel
temperature, and the size of this distortion can be
used to estimate the magnetostrictive coupling co-
efficients.

We shall now outline Kanamori's calculation of
the magnetostriction of the Co ion. It is best to
approach this initially from the point of view of
CoO and then extend it to the case of Co as an im-
purity in MnO. Since the magnetostrictive coupling
constants are predominantly between the Co~' ion
and its nearest neighbors, we expect them to be
similar in the two cases. The only difference
arises from the elastic forces resisting the defor-
mation. In CoO the deformation is a bulk effect
and therefore expressible in terms of the elastic
constants of the crystal, whereas for Co in MnO

the deformation is presumably local and it will be
predominantly nearest-neighbor forces that are
involved. We neglect for the moment the exchange
striction which is responsible for the small rhom-
bohedral distortions in CoO and MnO (this will be
discussed later in this section), and consider only
the energies resulting from coupling between the
orbital components of the molecular-field ground
state and the distortion of the lattice.

For a cubic crystal the magnetostrictive coupling
energy can be written to lowest order in the di-
rection cosines of the magnetization as&5, as

of magnetostriction represented by Fig. 9 the order
of the energies is

Magnetic field (HE) & spin orbit & distortion,

whereas in the usual treatment of the Jahn-Teller
effect the order is precisely the opposite.

For Co ' the situation is not quite as simple as
in Fig. 9 because the two terms in X [Eq. (16)]
are comparable (in CoO, '4gI1EBE- 270 cm, X = —160
cm '). The lowest eigenstate of X is then a linear
combination of states from the T, manifold, which
in terms of states IS, 1 &can be written (remem-
bering that L= —1.51)

I / 2 2 2+ 2c44(e„,+e„+e„), (19)

and minimizing EME+E )ggtf with respect to e&&, the
equilibrium values of the strain-tensor components
are found to be"

B1 ( + )/(c11 c12)

8~ = —B242p/c44, etc.

(20)

Substituting these values for the strains in the ex-
pression for the total energy EME+E, gggt/0, we find
that the distortion energy as a function of n, P, y
becomes

KME (&'P'+P'V'+r'~') —Bl/2(c11 c12) (22)

where

KME = B1/(c11—c12) —B2/2c44 ~ (23)

For small deviations from the preferred [001]axis
of E«, E„may be written

Eg = EME sin 8 (24)

where 8 is the deviation of the magnetic moment.
Equation (24) has the same form as Eq. (6) and we
can therefore identify X«with k, in our discussion
of MnO: Co.

The calculation of the anisotropy due to magneto-
striction involves a calculation of B, and Ba. B, and

B~ can be estimated from the observed distortion
in CoO below T„, or they can be calculated using
a model of the crystal field and averaging the crys-
tal-field energies over the molecular-field ground
state of Co '. Kanamori has performed this kind
of calculation using a point-ion model with both
Slater" and Hartree ' wave functions for the d
orbitals of Co". In comparing his calculations with
experiment, he was forced to use the elastic con-
stants of MgO since those of CoO were unavailable
at the time. However, Sakurai et al. have quoted
the elastic constants of CoO, so we can use these
in deriving experimental values of B, and B~.

The tetragonal distortion in CoO extrapolated to
0 K is estimated as e„=—1.Qx1Q . ' Inserting
this value in Eq. (20) 2.nd using the elastic constants
of CoO given by Sakurai et al. ' (quoted accuracy
5-10'):

c» —3. 1x10', c» —1.8x10',

c44 = 0. 9 && 10' dyn/cm,

Since the equilibrium strains will be a function of
the direction cosines, E«represents an anisotropy
energy. Writing the elastic energy of the crystal
in the form

1 ( 2 2 2
@elastic 2 11(eee+ 8&&+ 8ee) + c12(e„e8&&+ ee& ee + 8eeee„)

EME = B1[(a! —2)e + (p ——',)e„+(y ——,')e„]
+ B2(aPe„, + Pye„ye+!8,„) (16)

we find B1=1.95 &:10' erg/cm', or 1900 cm '/ion.
This can be compared with Kanamori's point-ion
crystal-field values of 4. 07X10' erg/cm' (Slater
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wave functions} and 2. 5x 10~o erg/cm~ (Hartree
wave functions}. The small additional rhombohedral
distortion is described by e„,= e„=e,„=3 ~10
and probably results predominantly from exchange
striction rather than m gnetostriction. ' Kana-
mori's calculated value of 8, is only 0.2~10'
erg/cm~, which would predict e„,- —0. 2 x10 ~ and

e„,= e,„=1.4 x 10 4. On the other hand, he has cal-
culated e„,=e„=e,„=-3~10 for the exchange
striction, "which is at least the right size even if
the sign is wrong. The origin of the rhombohedral
distortion is still uncertain, "but it is clear that

82 must be much smaller than 8,. This merely
means that the T& orbital wave functions interact
more strongly with tetragonal than with trigonal
distortions.

Combination of the magnetostrictive coefficient
Ba and the exchange striction (measured by a pa-
rameter B,) produces a small trigonal anisotropy.
The value of T is given by —BzB,/c44. " Using
Kanamori's value of B~ and a value for 8, consistent
with the rhombohedral distortion (e„,= —Bs/c44) we

find T= 6x 105 erg/cm~ or 0. 07 cm '/ion. Thus, the
effects of 8, and 8, can be safely ignored, and we

may concentrate on the tetragonal parameter 8,.
As a first step towards calculating the magneto-

strictive anisotropy of Co in MnO, let us see what

the value of K„E is expected to be in CoO. Using

B,= 1.95x 10 erg/cm' and ignoring B2, we find

KME = 2. 9x 10s erg/cm~, or 28 cm '/ion, This
represents surprising agreement with the exper-
imental measurement for Co in MnO, which was
32. 8 cm /ion (Sec. III). This is encouraging in
view of our suggestion that the single-ion anisotropy
of Co in MnO would be very similar to that of Co in
CoO, and hence would throw some light on the mag-
netoelastic properties of the concentrated oxide.
Let us now consider in more detail the case where
Co ' is an impurity.

The principal difference between Co in MnO and
CoO is that presumably in the dilute case any mag-
netoelastic distortions are predominantly local.
This means that the problem must be slightly re-
formulated to take account of this feature. It is
possible that at high concentrations of Co in MnO

some cooperative bulk distortion occurs (this hap-
pens in Co ferrites, for example), 2~'~ but here we
assume that the deformation around each ion is
strongly localized, involving mainly the nearest
neighbor s.

Returning to Eq. (18) we now interpret the strains
e&& as local strains which represent the distortion
of the octahedron of O~ ions around the impurity.
Since the lattice sums involved in calculating 8& in
Kanamori's point-ion theory fall off as R and R ',
it turns out that there is little error in confining
the sums to the nearest neighbors. " Thus, we may
take the value of 8, for Co in CoO as also being

representative for Co in MnO. Having determined
the form of Eq. (18), an expression is now required
which is analogous to Eq. (19) and represents the
elastic forces opposing a distortion. This is a
familiar problem in the analysis of the Jahn- Teller
effect, '~ and we take a similar approach here.
Since we are only considering terms in 8„ the rel-
evant elastic energy is that for tetragonal distor-
tions. Thus, we write

The combinations of strain components have been
symmetry adapted to E;type modes. The force
constant k~ remains to be determined.

Minimizing the total energy then gives e =8&
x(-', -a2)/3k~, etc. [cf. Eq. (20)] and therefore

KMs ——Bi/3k g (26)

where R is the distance between the impurity and
its nearest neighbors. It then follows that -Sk~

=2pco R . The frequency e may at first sight seem
as elusive as the force constant k~, but, in fact,
~ can in principle be determined from optical spec-
tra of the impurity, since it is this frequency which
broadens the optical absorption bands and can some-
times be observed as a definite phonon-assisted
progression in the absorption spectrum. There is
very limited information on the optical spectrum of
Co ' in CoO or MnO, 4' but in Mg042the transition
from the ground 4T, state to the first excited state
(4T2 derived from 4E in the free ion) at 8500 cm '
shows a progression involving a frequency of about
200 cm '. In any case, experience suggests thag
the effective co is somewhere between the top of the
acoustic band and the optical band of phonons, i. e. ,
200-400 cm-i in both CoO and MnO.

Assuming (d = 200 cm ' and using the value of 8,
found for CoO (1900 cm '/ion} we calculate K«
= 20 cm '/ion. This again is in reasonable agree-
ment with the measured value of 32. 8 cm '/ion,
although not as good as the previous estimate ob-
tained by assuming that MME was the same for Co

All that remains is to identify k~ with some mea-
surable quantity. Ne shall take the approach nor-
mally used in Jahn- Teller theory in which we ex-
press k~ in terms of a vibrational frequency ~ for
the octahedral cluster of 0' ions. The elastic en-
ergy [Eq. (25)] can just as well be written in terms
of the E,-type normal modes of an octahedron, Qe
and Q„where Qe transforms like 2@2 —x~- y2,

etc. In this case
1 2 P 2

&eiasua=2 P~ (Qe+Qs}~

and Qe, Q, can be normalized so that p is the mass
of O . %'ith this choice, Ham has shown that Qe
is related to the local strain [e„-—,

' (e„„+e»)] by



888 A. E. HUGHES

in both CoG and MnO. Bearing in mind the fact
that there may be nonmagnetoelastic contributions
to both K and T of several cm ', we can neverthe-
less be satisfied that the physical origin of the large
Co~' single-ion anisotropy has been established.
The value of K« is, of course, quite sensitive to
the values of 8, and e. It can be raised to 30 cm '
either by reducing v to 165 cm, or raising 8, to
2370 cm '. Either of these adjustments is within
the bounds of possibility. Accumulated errors
(from the estimate of e„and the elastic constants)
amount to at least a 30Vo since KMs depends on the
square of B~.

The AFMH, data on Co-doped MnO thus confirm
that the dominant source of the anisotropy energy
of Co in an octahedral site is magnetostrictive,
and show that Kanamori's calculations provide a
consistent model for the deformation and anisotropy
of CoG. Previously, only the deformation could
be used as a check on the theory, but we have now
shown that the anisotropy energy of Co ' is also
largely accounted for with this mechanism. One
point remaining, however, is the explanation of
why the magnetic moment of CoO points in the [11V]
direction rather than [001]. This requires T/K in

Eq (15) .to be roughly —,', ~9 and having shown that
EME is about 30 cm ', it would seem that we are
left with the problem of finding something to con-
tribute 10 cm ' to T. In CoO, however, the total
cubic anisotropy X may be reduced by as much as
12 cm ' by the multipole interactions (Table II),
and the required value of T may only be 6 cm '.
The contributions listed in Table II may be sufficient
to account for such a value. The multipole inter-
actions are absent in MnG: Co, and therefore this
system can be expected to provide a better mea-
surement of the magnetostrictive anisotropy than
CoG itself. It is possible, of course, that some
contributions to T have been included in our mea-
sured value of E,. For T«E, the effective anisot-
ropy for small displacements 58 from the direction
which makes Eq. (15) a minimum is given by
(K+ T/2)(58), so values of T of several cm ' would
not be out of line with our measurements.

C. Temperature Dependence

In Sec„ III we discussed briefly the temperature
dependence of the Co anisotropy, and suggested
that K, could not vary as a very high power of the
sublattice magnetization. This is interesting be-
cause taken at face value the magnetostrictive an-
isotropy [Eq. (22)] involves fourth-order spherical
harmonics, and hence on the Zener theory' "
might be expected to show an M' variation with
temperature, which seems too fast to be consistent
with the data shown in Figs. 3 and 4. One way of
getting around this problem is suggested by the
situation in the rare-earth metals. Turov and

Shavrov suggested that in these materials the
magnetoelastic anisotropy should be treated in the
"frozen-lattice" configuration when discussing mag-
netic resonance. The idea here is that during reso-
nance the lattice distortion cannot follow the pre-
cessing spins, so that the effective anisotropy en-
ergy is found by "freezing" the strains at their val-
ues corresponding to the equilibrium spin configu-
ration, rather than letting the strains follow the
motion of the spine. In deriving Eq. (22) by sub-
stituting Eqs. (20) and (21) in Eqs. (18) and (19)
we have implicitly followed the latter course. In
the frozen-lattice approach we should substitute
the values of the strains at equilibrium in Eqs. (18)
and (19), in other words

Bf(3 +0)/(egg c12)
2

rather than Eq. (20). If this is done, then the
anisotropy energy becomes (ignoring B2)

(29)

D. Jahn-Te11er Effect in Paramagnetic State

We are now in a position to comment on the sug-
gestion by Sakurai et al. ' that in paramagnetic
CoG the spin-orbit coupling constant X is quenched
from —180 to —71 cm '

by a dynamic Jahn-Teller
effect. Since the Jahn- Teller effect and magneto-
striction are caused by the same type of coupling
terms, it should be possible to make contact be-
tween them. To do this, it is most convenient to
work for the most part in terms of local normal
modes Q6, Q„and from now on we shall do this
assuming that this kind of "cluster model" is ap-
plicable to CoG as well as Co as an impurity in
another host.

In Kanamori's theory of ma, gnetostriction, the
coupling between the orbital states of Co ' (de-
scribed by the effective angular momentum 1) and
the strains can be written

&,—b,[e,„f„+e»l,+e„f,——', (e„„+e»+e„)] (31)

[see Eq. (41) in Ref. 15], where we have not in-
cluded e„„etc., since the 82 term has been shown

2

Eg — [(3 &') (-', —uo) + ~ ~ ~ ]+const, (30)
C&~ —C~2

which only involves second-order spherical har-
monics and should behave like M' in the Zener
theory. This is the same variation as found in pure
MnG and may explain why the Co-induced anisot-
ropy shows the same behavior, despite being at-
tributed to an anisotropy energy of cubic symmetry.
Note that E„ is still of the form in Eq. (24) for
deviations from the [001]axis (yo= 1). In the rare-
earth metals Dy and Tb, the frozen-lattice model
also gives the best fit to the temperature depen-
dence of the anisotropy energies measured by
ferromagnetic resonance. '
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to be negligible. The relation between b, and the
magnetostrictive coefficient B, is

8, = —,
' (a +c —2b ) b, , (32)

where a, b, c are given by Eq. (17) and the factor
a +c —2b is about 2 for CoO. Using the relation
between Q~ and [e„-—,'(e„„+e»)]given in Eq. (28),
and an analogous one for Q, , K, can be transformed
into

X,= [f,/(W3) R]([f,'- —.'(I'„+I,')]Q,

using tables of coupling coefficients for the cubic
group, "and the perturbation calculation for the
four n = 0 levels carried through. The results are

~(d 9 @(d

8 1 he 63 hu&

25 20 3$ —K&@ 100 5$+h&u

+(v 3/2) (I„-l„)Q, ] . (33)
Z(r, ) =8~ -z„~ ————

I10 10 58 —@co

This is now in the same form as the Jahn-Teller
coupling Hamiltonian'~ conventionally used for a
T, orbital state coupled to an E~ mode Q&, Q„
and serves to identify the Jahn-Teller energy EJp
as b, /6p~'R' E» .does not in this case neces-
sarily represent any particular energy shift, but is
a useful parameter to measure the strength of the
coupling represented by 3C, .Finally, using Eq. (32},
we can quote the relation between EJ p and KM@.

EJ~ = 3 -FAME = 180 cm~1 "1

At first sight this is very encouraging, since the
quenching factor for X given by the theory of the
dynamic Jahn-Teller effect" will now be e '~»
which is approximately 3 with S(d = 200 cm '. This
is not far off the factor suggested by Sakurai et al. ,
71/180. '9 However, the use of this quenching factor
will only apply if 2E»»

~
X

~
(X = —o.X = —1.5X,

see Sec. IV B),which clearly does not hold in this
case. In fact, if anything we should proceed from
the opposite direction, and calculate the perturbing
effects of X, on the spin-orbit levels characterized
by j =1+S. This approach has been found useful by
Ham et al. '6 in discussing the case of Fe ' in MgO,
and we can do the same kind of calculation for Co ' .
The principle behind the perturbation calculation is
shown in Fig. 10(a). The spin-orbit coupling X 1 ~ S
splits the 'T, state into three levels in first order
(we neglect any higher-order spin-orbit effects),
the states being described by j = 2 (I 8) p (rs)
—', (r, + r, ). The symbols in parentheses are group-
theoretical labels for 0„. The energy separations
are as shown for X = —180 cm '. For each electronic
level there are, in zero order, a series of vibra-
tional levels nkvd above the electronic energy, where
n is integral. The Hamiltonian SC, then couples the
vibrational and electronic levels together, and since
X, is linear in g, to order E» only states withn =1
are coupled to the purely electronic levels (n =0).
The symmetry of an n=1 level is found by taking
the product F&& E, where I' is the irreducible rep-
resentation of the electronic state corresponding to
n =0. These levels are also shown in Fig. 10(a).
The wave functions for each state can be constructed

37 9 8&@ 9 hto

100 20 8$ —hw 50 5$ -Iu&

where ) = X' /2=135 cm '. The limits of validity of

this approach are strictly E~ &N(d, X', although
Ham et al. have shown that for Fe ' the perturba-
tion approach remains fairly accurate close to these
limits. The present results for Co ' are shown

graphically in Fig. 10(b) for two values of 5&v.

Roughly the same kind of behavior is observed as
for Fe ', 6 in that the two lowest levels approach
each other, but for no reasonable value of E» does
the level structure approach that required by
Sakurai et al. '

(E3~2 —E,~2= 160 cm ', E,gs
—Z, ~3

= 260 cm ).
Thus, we have the situation that there is a good

explanation for the reduction in spin-orbit splitting
if we blind ourselves to the fact that the inequality
2E»» & does not hold, but a poor result if we use
the perturbation approach as above. Note that even
arbitrarily making E~ ») does not help, because
then the quenching will be too extreme unless h~ is
made unreasonably large. Undoubtedly, the reason
for this dilemma lies in the fact that the effects of
3C, and the spin-orbit coupling are comparabl, and
one should solve both problems together. We con-
jecture that if this couM be done, then some effect
similar to that required by Sakurai et al. ' wiD
result. The same argument can also be applied to
the magnetostrictive calculation: In principle the
exchange field, the spin-orbit coupling, and the
magnetoelastic terms should be treated on the same
footing, since they are all of similar size. In this
case, however, treating the magnetoelastic terms
as a first-order perturbation may be more trust-
worthy. The largest contributor to the ground state
in Eq. (17}is the wave function ~-,', —1), and the
next state above (at energy =).'= 270 cm ') is mostly

0) . However, K, does not couple these two
states together, and therefore higher-order effects
of 'R, may not be important provided the coefficients
bg and By are not too large. The values implied by
the measured anisotropy satisfy this criterion.

For Co ' in MgO, Es/2 Ef/2 is found to be 305
cm ', and the reduction from the value 405 cm '
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FIG. 10. (a) Group-theoretical
labels for the symmetries of Co~'

levels in the coupling scheme for a
perturbation calculation of the Jahn-
Teller effect. The I"s refer to the
double-valued representations of Oz
in the Bethe notation. (b) Variation
of the j= ~, 2, and 2 levels of (a) with
Jahn-Teller energy, as calculated by
perturbation theory. X has been
taken as —180 cm (Ref. 14) and re-
sults are given for two values of the
vibrational quantum I co.
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calculated using X = —180 cm ' can be explained in
terms of covalent bonding. ' The Jahn- Teller
energy can be estimated from Tucker's ' measured
strain coupling coefficients, and is found to be
-110 cm '. Thus, it would appear that the Jahn-
Teller coupling may be rather larger in CoO than
in MgO.

V. SUMMARY

The AFMR frequency of MnO doped with Co has
been shown to give a reliable measurement of the
single-ion magnetic anisotropy of the Co ' ion in
octahedral coordination. Although there may be
some open questions regarding the dynamics of
AFMR in a mixed crystal, the models presented
in the appendixes demonstrate that an interpretation
in terms of average anisotropy energies is accept-
able. Taking as a hypothesis the idea that Co ' in
MnO behaves rather similarly to Co ' in CoO, the
anisotropy has been interpreted as predominantly
magnetostrictive in origin. Kanamori's calculations
for the magnetostriction of CoO "' ' have been
adapted and shown to provide a good quantitative solu-
tion of the problem. The magnetostrictive coeffi-
cient B„which represents coupling to tetragonal
distortions, dominates the anisotropy, and a value
of I3, consistent with the tetragonal deformation ob-
served in CoO below the Neel temperature predicts
closely the observed anisotropy energy of Co in MnO.
In view of the temperature dependence of the AFMR
frequencies, it is speculated that a frozen-lattice
model '" may be appropriate in describing the
dynamical effects of magnetostriction.

The measurement of the magnetostrictive anisot-
ropy leads naturally to an evaluation of the Jahn-
Teller coupling of the T& state of Co ' in the para-

magnetic state of CoO. This predicts a Jahn- Teller
energy of about 180 cm ', which while showing
clearly that Jahn-Teller interactions are important
in the paramagnetic state, nevertheless does not
allow interpretation of the spin-orbit quenching ob-
served by Sakurai et el. ' in terms of simple Jahn-
Teller models. The reason for this seems to be
that Co ' in CoO falls into the uncomfortable category
of ions where Jahn-Teller and spin-orbit effects are
comparable in magnitude, and should be treated to-
gether rather than dealing with one as a perturbation
on the other. This type of Jahn-Teller problem is
still basically unsolved in the dynamic regime,
and it remains to be shown whether or not such an

approach can quantitatively explain the situation in
CoO.

It was hoped at the outset that the results de-
scribed in this paper would help to clear up the
confusing situation of AFMR and spin waves in
CoO. To some extent, this has been realized, since
the analysis confirms quantitatively that the origins
of magnetic anisotropy of Co in CoO must be pre-
dominantly magnetoelastic. Thus, the basis of
calculations such as those of Ref. 16 for AFMR in
CoO seems essentially correct, although the fact
that the moment in Coo is inthe [117]direction rather
than [001] may need to be taken into account. The
conflicts of the experimental work on CoO by Mil-
ward, ' Daniel and Cracknell, "and Sakurai et &l. ,

'
together with the limited work on CoO reported in
this paper, nevertheless show that CoO is far from
being satisfactorily understood. Much remains to
be done in fully understanding this material, both
in the ordered and paramagnetic phases, but per-
haps the work reported here will be of use in pro-
viding quantitative data for further calculations. On



ANTIFERROMAGNETIC RESONANCE IN MnO: Co: A 891

the other hand, we may be fairly satisfied that a
happier state of affairs obtains for the AFMR and

anisotropy properties of Co ' as an impurity in MnO¹teadded in Proof S.ome further workon the
far-infrared spectrum of CoO has been reported by
I. G. Austin and E. S. Garbett, [J. Phys. C 3,
1605 (1970)]. They observe a new resonance at
296 cm in addition to lines similar to those ob-
served previously. '7' Their results have some
general features in common with the calculations
of Alben, ' but do not reproduce in detail the cal-
culated intensities and temperature dependence.
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APPENDIX A: ANTIFERROMAGNETIC RESONANCE

IN MIXED SYSTEMS

Consider a simple two-sublattice antiferromag-
net, where each sublattice has two typesof magnet-
ic ion a and b randomly dispersed in proportions
1 —x and x. The sublattice magnetization of com-
ponent a is written M, and that of component b Mb,
where these refer to unit volume. Thus, if the
magnetization of a crystal composed wholly of
species a is M, we have M, = (1 —x)M, etc. We

now adopt a molecular-field model similar to that
used by Bacon et al, and write the effective fields
acting on each sublattice as

Hla Ha +a M2a ab M2b s

+ab +a +b We find

T„=(1—x) T„,+x T„t, , (A2)

aMa M2a +abMaM2b t

(1/iy, ) Mis = —(H~+ n~M~+ naaM, ) M'f
Q

bMb~2b abMb~2a y

(AS)

with similar equations for M2, and M». Taking
the usual step of writing d/dt =iur, the resonance
frequencies are then found as the roots of a 4&&4

determinant. After some manipulation, in the
simplest case &,= &b = &„=+, y, = yb = y, the fre-
quencies are found to be

H
tH H )

HyH, +M, H

) (A4)

in an obvious notation. Bacon et al. show that the
relation , b= &, &b might be expected on the theory
of superexchange, and their measurements on the
MnO: CoO system confirm Eq. (A2).

The susceptibility at 0 'K, X~, may be worked
out by finding the equilibrium orientation of each
sublattice subjected to the molecular fields in Eq.
(Al) and an external field. The general result is
quite complicated, but only if n, = nb = &„=n does
y, become independent of x, and then )(, = 1/n. This
further restriction on the &'s still satisfies &„

Since for MnO: CoO, X, is measured to
be more or less independent of x, we take the ap-
proximation of putting all the exchange constants
equal as being representative of this system as
far as our simplified model is concerned. This
conclusion will have to be modified when we con-
sider orbital effects later in this section. If all
the &'s are equal, then it is also straightforward
to show that g(T ~) = Xi = 1/ n.

Let us now consider antiferromagnetic resonance
in the mixed system. Using the effective fields in

Eq. (Al), the equations of motion for each sublat-
tice are (with M'=M„+i+):

(1/iy, ) M q
———(H, + n M, + n b M q) Mq

Hlb Hb —+ab M2a &b M2b y

Hpa Hg +a M1a ab M1b &

ab Hb +ab Mig +b M1

(A1)
and

—= [2n(M, H, +M~Hq)] ~ (A5)

H„Hb are anisotropy fields, &„&b, &,b are ex-
change constants, and 1 and 2 refer to an "up" and
"down" sublattice, respectively.

Before discussing AFMR, let us consider the
static properties of this model, and we temporarily
neglect the anisotropy fields. First of all, by
writing Mz, ——C, H, J2T, etc. , where C, is a Curie
constant, the NOel temperature T„may be found
in the conventional way. In the special case

—= n(M +M )+H + (A6)

To obtain the results in this form it is necessary to
make the usual assumption that H„H, «n(M, +M~).

The second frequency (A5) is seen tobe in the usual
AFMRform, especiallyif wewrite H, =K',/M„etc. ,
and X~= 1/n to get &u/y= [(2/X~) (K', + K,')]'~3.

The physical significance of the first frequency
is best seen by rewriting Eq. (A4) as
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Thus, as x-0, ~/y- nM, +H„which is the mo-
lecular-field frequency for a local mode involving
single b-type ions in an a-type host.

This simple molecular-field model based on Eq.
(Al) thus confirms the average model for AFMR
in the case where X~= I/o.'is independent of x. We
have not explored in detail the more formidable
general problem that occurs when the exchange
constants are not all equal.

It is of interest to see how the inclusion of an
orbital moment as for Co affects the equations
of motion. Let us assume that the b component is
Co ', and represent the spin magnetic moment of
one ion by m, and the orbital moment by m, . The
spin-orbit coupling can be thought of as producing
a term of the form g m& ~ m„so that the effective
fields for the b sPin sublattice become, in analogy
to Eq. (Al),

(s) (s)
H1b =Hb —&abM2a- ~bM2b-~m» ~

H2b = —Hb —o'ab Mla —+b M1b 'g m2~ .(s) (s)
(A7)

(&)
H1b = H ) - ~ m1s ~ (A9)

Thus, the equation of motion for m» is

(e/y&) m» = —m»(H &

—7) m ) —r) m, m ~, , (A10)

so that

Q~ f~is
r)m, -H, —(~/y, )

' (A11)

For an ion such as Co with a large spin-orbit
coupling, we expect the AFMR frequency & and the
anisotropy field H, to satisfy the inequality &/y, ,
H, «g ms. This is true in our case where &- 30
cm, &= —180 cm, and %ME-30 cm, see Sec.
IV. It is thus legitimate to linearize Eq. (All) to
obtain

1s r+ + ~ — . (A12

This may be substituted in Eq. (A8) to give (re-
membering that mtJm, = M»/M&)

Mb now refers only to the spin component of the b

sublattice magnetization, and m„, m» refer to an

ion on sublattice 1, etc. We assume implicitly
that g is negative, so that m, and m, tend to be
parallel. The equation of motion for M» is then

((d/y ) Mgy
——(Hy + Q $M, + ot/M/ —7/ m$) My/

n bMbM2 —nbMbM2b —gMbm

(A8)

The effective field acting on m» can now be written,
assuming an "anisotropy field" H& for the orbital
moment,

(s) +
Hb +H, + bM + bMb M1b~S J

+ah MbM2a +bMbM2b ~ (A18)

Hn=Ht~ ~
(+tm/m, )H, ,

m, /y, + m, /y,
yb m )+ms

(A15)

(A16)

The reason the equations of motion reduce to those
for the spin-only case is simply that the approxi-
mation of large spin-orbit coupling between equa-
tions (All) and (A12) is tantamount to assuming
that m, and m, are held parallel by a large (nega-
tive) value of q. Then the total magnetic moment
precesses with an effective gyromagnetic ratio yb

given by Eq. (A16), and an anisotropy field H„
given by Eq (A15). . In the case of Co, or course,
the orbital "anisotropy field" H, is the major con-
tributor to the total anisotropy energy, since it is
the orbital component which produces magneto-
striction.

The AFMH fr equency in the case y, 4yb can be
shown to be given by

where

(A17)

2
yef f

(1 —x) x 1 1
+ ~ +x(1 —x) ——— . (A18)

ya ya

Thus, provided the spin-orbit coupling is large
enough, the only effects of the orbital moment are
in K'b and y,«.

In the molecular-field ground-state equation (17)
for Co ', we find m, =2. 6@~ and m, =1.2p, ~. With
these values, yb corresponds to a g value of 1.52,
and y,«departs from the spin-only value by less
than 5'%%uq over the range of Co concentration used in

Since the orbital moment will contribute to y„
the condition that X~ be independent of x is nolonger
equivalent to all the n's being equal. Including the
orbital moment m, and the coupling q m, ~ m, in the
calculation of X„ it is straightforward to show that

X, is independent of x and equal to I/o! if

+a +y +6 +(Mb/Mb) I +ah +(Mb/Mb) I (A14)

where M~ = [1+(m, /m, )]M~. M[ is, in fact, just
the total magnetic moment of a b sublattice, spin-
plus orbital. Substituting these values of the ex-
change constants into the equations of motion, we
reproduce the situation considered before, namely,
Eqs. (AS) with all o."s equal, provided we replace
Mb by Mb wherever it occurs. The anisotropyfield
for the b system, H„ is given by
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the experiments.

APPENDIX B: CANTING OF SPINS WHEN HOST AND
IMPURITY ANISOTROPY FIELDS ARE NOT COLLINEAR

an= nO+ n (Bl}

where a„/2„= 8. Thus, the total host anisotropy
energy is

N/P.

n=- N/3
(B2)

Consider a linear chain of (N+ 1) "host" spine S
with an impurity at each end, Fig. 11. For sim-
plicity, we assume all nearest-neighbor exchange
interactions are the same, and that the impurity also
has spin S. Let the anisotropy energy of a host spin
be k,a', where n is the deviation from an easy axis,
and that of an impurity be k, (P-8 )'. P is the angle
made by the preferred direction z of the impurity
spin with that of a host spin, z. We assume that in
any canting that occurs the angle between adjacent
spine is a constant Q. Then for the host spins we
have

Taking BE/88 =BE/8 $ =0, where E=E,+Ez+Ez,
we find

Q/8 =3Nk~/(124S +N k,), (B6)

Nk, 3N k' = ~ ("a,
'

4a, (mrs' +z'a, )r

For N very large N k, » 12JS', and we have the sim-
plification

Q/8 =3/N, 8= P(1+Nk, /4k') '. (Bs)

K=Nk)+kq, (BS)

This result can only be very approximate since it
predicts n, & 0, but (B8) shows roughly what can be
expected to happen. The impurity spin tilts to some
finite value of 8 to approach its preferred direction
e = P, while the host spins successively point closer
and closer to their preferred direction n =0 as one
goes further away from the impurity. The actual
value of 6 depends on k, and k~.

The effective anisotropy energy of the whole chain
is given by K=-, (8 E/88 ) „. From Eqs. (B3)-(B5),
we clearly have

Since no=8 —(N/2+1} P, we find for N»1:

Et=k, (N8 +~qN g —,'N 8$). —

The impurity anisotropy is given by

E2 ——k2(p- 8),

(B3)

(B4)

so the anisotropy energy is the same as if the spins
all pointed in their preferred directions.

It is instructive to put some numbers into Eqs.
(B6) and (B7) to see what the angles are likely to
be for a system like MnO: Co. Writing

ks =SHgs, k2=SH„2, J' =Hs/S,
where we assume one impurity is effective for each
chain, since we imagine the chains continued through
a "lattice". The total exchange energy is (for N» 1)

where H», H~, and HE are anisotropy and exchange
fields, we have the following representative values
for MnO:Co:

Eg NJS g —2NJ——S~. (B5) 0»= 3&10' Oe, 0»= 208»=6&&10' Oe,

H~™10 Oe, (B10)

HOST IMPURITY
SP I N SPI N

I'IG. 11. Linear chain of host spins with impurities
at both ends. z is the preferred direction for the host
spins and z' that for the impurity spins. 0. () is the devia-
tion for the host spin in the middle of the chain.

and we take N = 20 to represent O'Vo of Co impurity.
Then we find P/8- 0. 075, and 8 = 0. 7P. Thus, the
Co moment is about three-fourths of the way towards
its preferred direction, and the Mn spin at the
center of the chain is tilted away from its preferred
direction by o.o= 0.2P.

These calculations must be regarded as crude,
since in the fcc structure the anisotropy energies
are more complex angular. functions than we have
assumed here [e.g. , see Eg. (15) in the text].
This will have the effect of making K in Eq. (BS)
no longer simply linear in N, i. e. , K will no
longer simply be an average of the individual aniso-
tropy energies. Nevertheless, the angles of devia-
tion from preferred axes in the MnO: Co system are
fairly small (30 ' at the most), and the small-angle
approximation of making anisotropy energies qua-
dratic in the angle of deviation is not too bad. Then
we can expect (BS}to be a reasonably good guide
to the situation.
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