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(such as in), we note that application of the theory
of Ref. 1 shows that the shift of T, will depend on

the orientation of the crystal with respect to the
surface of the plate and that a study of the mfp ef-
fect for samples of varying orientation may be used
to unfold the anisotropic-pairing interaction. In

fact, some of the scatter in the data in Fig. 1 seems
to be related to variation in crystal orientation.
Using Ref. 1, the angular dependent part of AT,
would seem to be about 30k of the total. This part
of n.T, should be measurable, to 10% accuracy, if
the scatter in the data can be reduced by a factor
of 3.

Finally, we note that Naugle and Glover' have

recently reported a 1/d-type depression of T„for
thin films of amorphous materials. The total &T„
as well asthe slope (&T,/d ') that they observe, are

in good agreement with the Maskowitz-Kadanoff

theory, leading to the interesting speculation that
they are seeing the mfp effect. However, it is
difficult to see how the amorphous materials they
use could have any of the gap anisotropy required
to observe an mfp effect. Also, they note that the
resistances per square (Rl-, ) of their films are pro-
portional to 1/d and that the films appear to have no

ordered structure beyond tens of angstroms. These
results imply that the mfp is much smaller than
their film thicknesses so that the sample boundary
would not determine l. We must conclude at the
present time that, although similar phenomena,
our data and those of Naugle and Glover are not
necessarily due to the same effect.

The authors wish to thank R. E. Glover for dis-
cussions.
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The dielectric function of the electron gas has been calculated in the self-consistent Hartree-
Fock approximation. Results are presented and compared with that obtained in random-phase-
approximation and Hubbard theories.

In the study of the uniform electron gas, knowl-
edge of the wave number and frequency-dependent
dielectric function e(q, & ) has proved to be extremely
useful. Physical properties of the system, such
as the dynamic form factor S(q, &u) and the ground-
state energy Eo, are expressible in terms of e(q, u:).

The most commonly used expression for the di-
electric function is calculated' by using the self-
consistent Hartree method or the random-phase
approximation (RPA). In the diagrammatic per-
turbation theory, ~ this is equivalent to the summa-
tion of bubble diagrams. It gives a good description
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of plasma oscillations and long-range screening ef-
fects. Otherwise, its validity is restricted to
very dense systems [rz « I, where, in terms of
the density n and Bohr radius oo, rz =( —,

' r n ao) '" ],
since local-field corrections due to the Coulomb
hole and exchange effects are neglected in this ap-proximationn.

Various attempts have been made to improve
upon the RPA. We mention only a few of these.
Hubbard tried to estimate the effects of exchange.
He considered only a subset of exchange diagrams,
and in order to obtain a simple expression, he ap-
proximated the Coulomb interaction in the exchange
term by 5(r)4&e'/(q'+ k~~). His calculation also
violated particle conservation.

Singwiandco-workers proposed a method of ac-
counting for local-field corrections. Their numer-
ical calculation is based on an ansatz, which one
can also make for classical fluids, relating the
two-particle distribution function to the one-particle
distribution and the pair- correlation function. The
connection between their procedure and perturba-
tion theory is unclear, so that one does not know
what corrections have been included. It is probably
worth pointing out that although, unlike the results
from the RPA and the Hubbard method, physically
plausible results for the pair-correlation function
g(r) were obtained by Singwi et a&. ' at metallic
densities; their results for the spin-up-spin-up
pair- cor relation function remained unphysical
throughout the range of metallic densities.

It is of interest to carryout a calculation of the
dielectric function in the self-consistent Hartree-
Fock approximation (SHF). In this, one sums up
all ladder-bubble diagrams self-consistently, using
the Hartree-Fock single-particle energy for the
electrons. Such a calculation should provide a
more accurate description of exchange effects
than that due to Hubbard. It is well defined in that
one knows exactly which terms in the perturbation
series are considered, and it is self-consistent
in that conservation laws are satisfied. The re-
sulting integral equation in this approximation has
recently been considered by Langreth, who has
obtained a variational solution of the problem by
using a very simple trial function. We will dis-
cuss this approximate result later. In this work
we report results of a numerical calculation of
e sar(q~ ~~ ~

We will now briefly sketch the derivation of the
dielectric function at zero temperature in the SHF.
The electron Green's function is defined by

G„.(1, 1') =- f(T (,(I) )',.(I')},
where T is the time-ordering operator, and 4,(1)
and $~(I) destroy and create, respectively, an
electron of spin o at the space-time point 1. In
the absence of an external field, the Green's func-

(3)
( )s V(lk- k

F

where V(k) is the interaction potential. We take
V(k) to be the statically screened Coulomb inter-
action, i. e. ,

V(I) =4~e'/(f'+q', ), (4)

where qz~ is the screening length. Following Lang-
reth, ' we take q ~' to be the Fermi- Thomas screen-
ing length.

In using Eq. (4) for the exchange-interaction po-
tential, we have gone somewhat beyond the Hartree-
Fock approximation. We note that if no screening
were introduced in Eq. (4), the self-energy would

have a singularity at the Fermi surface. Further-
more, the correct exchange potential shouldbe the
self-consistent potential, that is Vc,„„b(q)/e(q, &u).

Our method is perhaps the simplest way of approx-
imating this screening effect.

The dielectric function ~(q, ~) is obtained by
considering the response of the system to an ex-
ternal field of wave number q and frequency ~. In
order to satisfy particle conservation, it is nec-
essary to sum the bubble-ladder diagrams shown
in Fig. 1. In the figure, the electron Green's
function is denoted by solid lines, the screeened
Coulomb interaction by wavy lines, and the un-
screened Coulomb interaction by dotted lines. If
we call the shaded bubble 1.(q, &u), we see the ef-

v&&(q,~) =
q,4' q,au q,

t---@~—Cg+-—t ~ ~

L(q,ru)

k+q
+ (f-kt ~

kzzz
K

FIG. 1. Diagrammatic representation of the SHF
approximation. The solid lines are renormalized elec-
tron propagators. The dotted line is the bare Coulomb
interaction. The wavy line is the statically screened
interaction.

tion depends only on the difference 1-1, is diagonal
in the spin index, and is independent of spin.
Henceforth, we suppress the spin index. In the
wave vector and frequency space, the Dyson equa-
tion for G(k~) is

G(ken) = G'(k(u) —G'(k(u) Z(R(u) G(f~),

where G'0'(k~) is the Green's function for the non-

interacting particles. In the Hartree-Fock approxi-
mation, the self-energy Z is frequency independent,
and is given by

3 I f I

Z(k) =~-, G(k', ~') V(f- k')
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FIG. 2. Real part {e,) and the imaginary part {e2) of
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fective interaction is given by

4ee 4me~/q~

q &(q, ~) l —(4&e'/q')L, (q, u)

Thus, the dielectric function is given by

e(q, &u) = 1 —(4&e2/q2) L(q, ~).

1 —
3 V E-k I. k, q co}

(6b)

l (k, q, ~) =
)
—G (k, ~') G (k+ q, u +(u').

From Fig. 1, we also find Equations (2)—(6) form a closed set of equations from

"d k
L(q, (u) =2 ), L(k, q, ~),

4

L (k, q, (o) =l(k, q, (u)

50 rs=3
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FIG. 3. Real part of the dielectric function for
rg =3, q =kg. FIG. 5. Dielectric function for rq =3, q=0. 25k~.
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which «(q, ~) may be determined.
Because the system is homogeneous, I. is a func-

tion of k, q, a, and k q only. By fixing the direc-

tion of q, one of the angular integrations in Eq. (6b)
can be done immediately. Thus, we have to solve
the integral equation

with

L(k, 4, q, &) = I(k, P, q, ~)[1-fdk'fdic'k ".V(k, p. , k', p. ') L(k', p.
'

q ~)]

I I e'/n
[(k2 ~ k 2 2kk '+ 2

)
8 4k2kl z(I ~2) (I '2)]1/2 )

f((E (k'+ q'+ 2kq p.) "')-f (E(k})
E((k'+q'+ 2kq W)

'") E(k) ——n~ —f5

where &(k) .= k k /2m+ Z(k) is the single-particle
Hartree-Fock energy, f(E}is the zero-temperature
Fermi function, and

p, =f q/kq, p =k q/kq.

The dielectric function is then obtained by using
Eqs. (5) and (6a).

It should be pointed out that the above procedure
is equivalent to calculating the dielectric response
of a system for which the Hamiltonian is essentially
the Hartr ee- Fock Hamiltonian of the free-electron
gas. The only difference is that in the exchange
part we have used the Yukawa rather than the bare
Coulomb potential.

The integral equation (7) has been solved by iter-
ation. 5 function and principal-value integrals are
involved. The iterative process was carried out
until two successive values of «(q, u&} agreed to
better than 1%. The results for the dielectric func-
tion are presented in Figs. 2-5. The values of
& —1 are expected to be accurate to ~ 2%%uo. For
comparison, we have also plotted the real and imag-
inal y parts of &R pp and e«»,~ . The Hubbard di-
electric function is calculated by using Eq. (4)
rather than the bare Coulomb potential in estimating
the exchange terms. We point out that our calcu-
lation shows that the static dielectric constant is
larger than the corresponding value for the RPA
but smaller than that for the Hubbard dielectric
functions.

Finally, we compare our results with that of
I.angreth. Equation (6b) for L/l is equivalent to
minimizing the following functional:

~)) = —Z 2 A(k, q, (d) l(k, q, m)
k k~

x V(ik —k i) f(k', q, &u)A(k', q, (u)

—Z, A'(k, q, (~) l(k, q, c )

+25 A(k, q, u&)l(k, q, u&), (10)

where

A(k, q, &u)
= L,(k, q, &u) /f(k, q, ~), I c0.

Our exact calculation showed that A varies signif-
icantly between k = 0 and k = 2k„(e.g. , for q = 0. 5k~
and h~ = 0. 25E~, where E~ is the Fermi energy,
ReA decreases from 1.27 at 0=0 to 1. 12 at %=2k~,
while ImA varies between 0. 16 and 0. 068). How-

ever, it is very significant to point out that the
evaluation of the variational expression for «(q, ~}
gave values within 1% of our exact numerical cal-
culation, for all values of q and ~ calculated. Thus,
we find that the simple variational solution is very
good indeed.

It is a pleasure to thank Dr. P. C. Kwok for his
advice and critical comments.

As a trial solution, Langreth chose A to be constant
in k. This gives

A(q, (u) = ) l(k, q, (u) f(k, q, a) + 5 P. f(k, q, (u}
k k k k'

v(~a-a x~)r(t
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Superconductivity and Spin Fluctuations in the Ir-Ni, Ir Co, a-nd Ir Fe -Alloy Systems
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The superconducting transition temperatures of Ir-Ni, Ir-Co, and Ir-Fe alloys have been
measured in the temperature interval 0. 10-0.040'K. It is shown that the rates of change of
1nT, with impurity concentration for these systems provide quantitative evidence that local-
ized spin fluctuations are responsible for the suppression of superconductivity when these
rates are compared with the rates of increase of the specific-heat coefficient y and the sus-
ceptibility y .

I. INTRODUCTION

Spin fluctuations are believed to be responsible
for suppressing superconductivity in numerous
alloy systems on the right end of the 4d and 5d
transition-metal series. ' However, solid evi-
dence that this is the case is difficult to come by.
We have found that very small concentrations of
Ni, Co, and Fe in Ir rapidly destroy the latter's
superconductivity. Because the suppression of
superconductivity is strictly an impurity effect,
certain theoretical simplifications can arise which
permit a quantitative comparison between theory
and experiment.

II. EXPERIMENTAL

Temperatures as low as 0. 035 'K were obtained
by adiabatic demagnetization, using a cryostat
similar in construction to several reported else-
where. ' Superconductivity was detected by the
low-frequency mutual inductance method. The
temperature was measured with a 100-Q —,'-W
Speer carbon resistor which was calibrated to
within a few millidegrees Kelvin with the aid of
the known transition temperatures of certain high-
purity superconductors and also with cerium mag-
nesium nitrate (CMN).

One of the principal experimental difficulties
was sample preparation. Samples were about
200 mg and were prepared by arc -melting 99. 999%-
pure starting material in an argon arc furnace.
The melting point of iridium is close to the boiling
points of iron, cobalt, and nickel. Consequently,
the weight loss of the volatile impurity during arc
melting can be considerable. This makes it diffi-
cult to determine the sample composition for such
small samples and small impurity concentrations.

The Ir-Fe samples were prepared after first pre-
paring a master alloy containing 2. 1-at. /o Fe. The
master was then broken up and further diluted
with iridium to obtain the final samples. Fortu-
nately, the master can be prepared with less
than a few percent iron weight loss by careful arc
melting. It is reasonable to assume that there
is negligible iron weight loss upon further dilution
and that the composition can be determined from
the weights of the starting materials. However,
there was a 30% cobalt weight loss in the prepara-
tion of a 3. 9/(; cobalt master. The starting mate-
rial for the Ir-Co alloys prepared from this mas-
ter was weighed on a Mettler balance with a lim-
iting accuracy of 0. 01 mg before and after arc
melting, and the composition determined by at-
tributing any further weight loss to the volatile
cobalt impurity. For these alloys, a 10% error
in composition is still possible. For the Ir-Ni
alloys as well, the composition was determined
by assigning any weight loss to the nickel impurity.
The problem of determining the composition is
less severe because the nickel concentration in
alloys of interest is higher.

III. RESU LTS

The experimental results are given in Table I
and Figs. 1 and 2. The iridium used was obtained
from the United Mineral Corp. It was quoted to
be 99.999% pure with calcium (1 ppm), silicon
(5 ppm), and sodium (2 ppm) as the principal im-
purities. Its transition temperature T, was
0. 105'K and the transition width &T, for 90% of
the transition was 0. 004 K. Surprisingly, adding
iron to iridium reduces the transition width, so
that the width of the 0. 033%-Fe alloy was only
about half a millidegree. The error in the compo-


