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Electronic spin-lattice relaxation in disordered ferro-and antiferromagnets is discussed
with particular emphasis on the region near the critical point. A general expression for the
relaxation time is derived. The time it takes for the spins to come to thermal equilibrium with
the lattice is directly proportional to the magnetic specific heat, as anticipated from thermo-
dynamic arguments. It is shown that systems whose ordering temperature is at least com-
parable to the peak in the density of states of the acoustic-phonon modes can have very short
relaxation times. This happens because the spins can interact with essentially all the acoustic
modes. Relaxation times are estimated for three systems: RbMnF3, MnF2, and EuO. The
implication of these results for the interpretation of ultrasonic attenuation measurements is
discussed. It is found that the calculated values for the relaxation times agree qualitatively
with the values inferred from ultrasonic data for RbMnF3. The behavior of EuO is analyzed.
We find that our values of T& are compatible with the dominance of the spin-lattice mechanism
in the decay of the energy-density fluctuations with wavelengths comparable to the wavelengths
of the ultrasonic phonons.

I. INTRODUCTION

Studies of ultrasonic attenuation in magnetic sys-
tems in the vicinity of a second-order phase transi-
tion have provided unique insight into the critical
dynamics of the spin system. ' ' Because the cou-
pling to the sound wave involves terms which are
quadratic in the spin operators, ultrasonic mea-
surements are a probe of the dynamics of the four-
spin correlation functions. This is in contrast to
the neutron-scattering experiments which directly
probe the two-spin functions.

According to current interpretations, a variety
of experimental results can be explained by assuming
that the interaction which is responsible for the at-
tenuation can be separated into two parts. ' The
combination of spin operators associated with the
first part has a dynamical behavior which is char-
acteristic of the fluctuations in the energy density.
This is in contrast to the second part where the dy-
namics is governed by the fluctuations in the order
parameter. Ultrasonic attenuation in rare-earth
metals is attributed to the order-parameter term.
On the other hand, the weak or nonexistent diver-
gences in the attenuation in the insulators EuO,
RbMnF„and MnFz have been explained by postula-
ting the dominance of the energy-density term. This
dominance is believed to be connected with range of
the exchange interaction, which in insulators is
limited primarily to nearest neighbors.

In particular, the absence of a divergence in the
attenuation in the ferromagnet EuO has been ex-
plained by assuming that the long-wavelength energy
fluctuations obey a diffusion equation where the dif-
fusion constant is written as the ratio of the thermal
conductivity of the spin system to the magnetic spe-
cific heat. The weak temperature dependence of the

attenuation was interpreted as mirroring a corres-
pondingly weak temperature dependence in the ther-
mal conductivity. Such an interpretation is sup-
ported by theoretical studies which suggest that the
thermal conductivity remains finite as the critical
temperature is approached from above. ' '"

The weak but measurable singularity in the atten-
uation in the antiferromagnets RbMnF, and MnF2 is
believed to have a different origin. It has been
pointed out that the anomalous behavior may reflect
the existence of a nondiffusive decay process for the
energy fluctuations. 7 In particular, Kawasaki has
suggested that the dynamics of the long-wavelength
fluctuations may be governed by the spin-lattice re-
laxation time. If the relaxation time is proportional
to the magnetic specific heat, as predicted by ther-
modynamic arguments, then the attenuation will vary
as the square of the specific heat. Recently, Goro-
detsky et al . have measured the attenuation in RbMnF3
and have found the predicted C~ behavior. ' More-
over, by studying the frequency dependence of the
attenuation they have been able to infer values for
the relaxation time. These turn out to be on the
order of 10 ' sec.

The behavior of MnF~ is somewhat more compli-
cated. The authors of Ref. 7 have interpreted their
results by assuming roughly comparable order-
parameter and energy-fluctuation terms. ' For
T —T~» 2x 10 ~ 'K the order-parameter fluctuations
dominate, while outside this region energy fluctua-
tions are important. By measuring the ratio of the
attenuation to the change in sound velocity they were
also able to estimate the relaxation time. They
found a value on the order of 3x10 sec.

The purpose of this paper is to examine the spin-
lattice relaxation process in magnetic insulators in
the immediate vicinity of the critical point. In par-
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ticular, we will attempt to account for the fast re-
laxation times in RbMnF, and MnF, which are in
distinct contrast to the slow relaxation time which
must be invoked to explain the attenuation in EuO.

The remainder of the paper is divided into three
parts. In the first part we develop the formalism
necessary to calculate the relaxation time near the
critical point, while in the second part we consider
in detail the three magnetic insulators mentioned
above. The significance of our findings is dis-
cussed in Sec. IV.

II. FORMAL CALCULATION

Our understanding of spin-lattice relaxation in
dilute paramagnetic salts is quite thorough. "'" The
coupling of the spin system to the crystal lattice is
primarily through the orbit-lattice interaction which
arises from the strain dependence of the crystalline
field. At low temperatures the relaxation involves
the absorption and emission of phonons whose en-
ergies match the separations between the levels of
the spin system. At higher temperatures multi-
phonon or Raman processes become important.

To our knowledge, relaxation processes near the
critical point have not been studied in detail either
experimentally or theoretically. The calculation of
the relaxation time in the critical region differs in
two important ways from the corresponding calcu-
lation for magnetically dilute systems. First, we
are dealing with a spin system whose level struc-
ture and dynamics are not known in detail. Second,
besides the orbit-lattice interaction the phonons can
couple to the spins through the strain dependence of
the exchange interaction. This latter coupling is
especially important when the magnetic ions are in
orbital s state, where the orbit-lattice interaction
is especially weak. "

In the paragraphs to follow, we will outline a for-
mal calculation of the spin-lattice relaxation time.
The expression for the relaxation time will be eval-
uated in several limiting cases. In the course of
the analysis we will make a number of simplifying
approximations. Some of these pertain to the lat-
tice and can be readily improved upon; others,
which are more crucial, pertain to the dynamics
of the spin system. These we will discuss in de-
tail.

In the present context, we identify the spin-lat-
tice relaxation time T, with the decay rate of the
energy fluctuations in the spin system. A formal
expression for this decay rate cao. be obtained from
an extension of the damping-constant formalism
developed by Mori and Kawasaki. ' If 8„"denotes
the spatial Fourier transform of the energy-density
operator for the magnetic system exclusive of the
spin-phonon coupling, then the decay rate I'„- of the
relaxation function ( Sg(t), $~&) can be written

I'"=(1/2kT) 1 dt((gg(t), g„-].&(g„-, b't)-~ (1)

Here A= (i/k)[&, A], where K is the total Hamil-
tonian of the coupled systems, the dagger denotes
adjoint, k is Boltzmann's constant, and the curly
brackets imply a symmetrized product. The func-
tion (8-„, Sf~) is given by

(Sf, h„-')= J, d&(e'hfe 'h„-& -P(8f&(8„'-&, (2)

where P = (kT) ' and the angular brackets indicate
an ensemble average over the coupled systems.

In order to separate the effects of diffusion from
those associated with spin-lattice relaxation, we
pass to the k = 0 limit of (1) in which case So is
equal to X„ the Hamiltonian of the spin systems,
and I'0 is equal to 1/T, . If the Hamiltonian of the
coupled systems is written

+&++i t

where &~ is the phonon part and K,„, is the spin-
phonon coupling, then Eq. (1) reduces to

r, =l/T, =(1/2k') J

I/T~=$ (E —E)e ~R' kT CpZ e.
where 5' „, the transition rate from m to n, is
given by

W „=&,'Z e " (2m/k)~(mp, l&„,~vn&~'
tt, V

xg(E +E E E)
in which Z~ denotes the partition function for the
phonons.

Two comments are appropriate here. First, T,
is proportional to CH, as is anticipated in the ther-
modynamic arguments of Casimir and du Pre.
Because of this, the relaxation time increases as
the critical point is approached and, in principle,
becomes infinite at T, . Second, if we pass to the
high-temperature limit, we recover the familiar
Hebel-Slichter formula

I/Tq ——Z (E —E) W „2Z E

Up to now we have made no mention of the detailed
structure of , „&. Henceforth, we will assume that

x (([K„K„,](t), PC„3C,„,]~ j&(kT2C„) ',
(4)

where C„, the magnetic specific heat, is given by

C„=(S„h)0/T.

In the spirit of perturbation theory we can replace
the Hamiltonian K, which is implicit in Eq. (4), by
, +K~, the Hamiltonian of the uncoupled spin and
phonon systems. If we denote the eigenvalues of
&, by E and E„and those of K~ by E, and E„, then
Eq. (4) reduces to
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the interaction is linear in the atomic displacements.
This assumption, together with the first-order per-
turbation approximation implicit in Eq. (6), re-
stricts our analysis to one-phonon processes. This
is an important restriction. In dilute salts, multi-
phonon processes become the dominant relaxation
mechanism whenever k T» E, where E is a mea-
sure of the typical separation between thermally
populated l.evels of the paramagnetic ion. Ne can
estimate E for the concentrated systems from the
mean-square internal field &II,&. For a system
with an exchange interaction —2J'S& ~ 82 between
nearest neighbors we find

where c (k, P) is the polarization and ~g ~ the fre-
quency of the mode designated by k, p, with which

are associated annihilation and creation operators
ak, p and aft, p. Also, m is the mass of the magnetic
ion, r; denotes the position of the jth unit cell, and

N is the number of unit cells.
The calculation of the relaxation time which fol-

lows from Eq. (12) is straightforward. If we as-
sume an exchange interaction between nearest
neighbors which depends only on the distance be-
tween them, we find that T, can be written

1 Wy s IncT A kT 1 ( gr gag.
IP 2$ g2Q 8 ln~ ~ gf g2

where z is the number of nearest neighbors. If we
use the molecular-field expression for the critical
t(.'. rnperatur e,

I,T, =;zZS(S+ I),

F. = 3I T, /j2zS(S+ I) I,"'.
Thus, for 'I' near T„E is roughly comparable to
I'&. As a consequence, we expect that near the
critical point the dominant relaxation processes
will involve only one phonon. For T» T„multi-
phonon processes will probably be important.

At this point it is convenient to consider separate-
ly two limiting cases. In the first of these, E (or
IT,) is assumed to be larger than, or comparable
to, the energy associated with the peak in the den-

sity of states of the acoustic-phonon modes. If this
happens, then all the acoustic modes are "on speak-
ing terms" with the spin system. As a consequence
the relaxation can take place very quickly. The
second case pertains to the opposite limit. If E is
much smaller than the peak energy, only a small
fraction of the acoustic modes can interact with the
spin system in a one-phonon process. The relaxa-
tion then takes place slowly.

In anticipation of the discussion in Sec. III we
consider as an example of rapid relaxation a system
where the dominant coupling comes from the strain
dependence of the exchange interaction. In this case
&&;„, can be written

&&(t=Z ='~ (U —U)8'8 (12
t, 3 r

where U; denotes the displacement of the ~th mag-
netic ion from its equilibrium position, 4;; is the
exchange integral, and S is the spin. The U; can
be expanded in the normal coordinates of the
phonons:

xe(k, p)(c'„-, -a I,)e'" ",

e&& r~g (I elk (r~-rJ)) s

with the sum over j being restricted to the z nearest
neighbors of the site j which are located a distance
x away. The double bracket (( ~ ~ )) indicates a sec-
ond average over the Brillouin zone of the phonons.
In obtaining (14) we have neglected the contribution

from the optical modes and have approximated the

spectrum of acoustic modes by an Einstein oscil-
lator with frequency W„/h. We identify W„with
the energy of the peak in the phonon density of

states.
The relaxation time is seen to depend on four fac-

tors; (I) a dimensionless thermodynamic factor
W„/kT, CH, (ii) a dimensionless coupling constant
s In''/sins; (iii) (h kT,/mW~r'), the ratio of mean-

square displacement to (nearest-neighbordistance)~;
(iv) and finally the Fourier transform of the cor-
relation of the fluctuations of the operator J,," aver-
age over the surface of the Brillouin zone. Of these
four, the last is the most important.

In discussing this function it is convenient to write
it in the form

«(~;(f), ~;)&&.,= («;~;&).g(f), (16)

II(f) = &( I~;(f), ~; j&&.„(&&~;~ ;&).,) .
The function «ZIP „-&)„, which involves the equal-
time short-wavelength fluctuations of an operator
similar to the energy density, we believe to be
adequately approximated by its value calculated in

the high-temperature limit where all spin states
are equally populated. Thermal averages taken in

this limit are denoted by (' )o. We approximate
A(t) by a Gaussian exp(- &~t~) whose width 6 ' is
equal to 5/gp~&H~z&'~ . The justification for such
an approximation mill be discussed later. At the
moment, me only say that it amounts to assuming
that the power spectrum of J~ for k on the zone
boundary has appreciable weight out to frequencies
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kT, « We (20)

where p is the mass density. Apart from the average
strain model, the only approximation we have made
in obtaining Eq. (20) is to evaluate the correlation
function of [X„K&„]in the high-temperature long-
wavelength limit. Since we do not expect g &f, to
show critical behavior, such an approximation is
suitable for order-of-magnitude estimates.

The relaxation time given by Eq. (20) is seen
to involve the fourth moment of g,f,. Were g,f, to
commute with K„ the fourth moment would vanish
identically. Such is the case when f, is proportional
to the energy density e,. When this happens, it is
necessary to retain the factor exp(»k ~ r;) in the sum
over i in (19). In detail, if the coupling is through
the energy density, we have

8 lnJ e;. (21)

The relaxation time that results can be written

T, 2kT, C„2gpv~A 8 ~

Here A. 6 denotes the coefficient of k in the sixth
moinent of the temporal Fourier transform of the
energy-density correlation function

&g ( )gt) Tr(&:,.e'"'~e, (t)g, e '"' e,)
(k . ~

0 Trl

on the order of the precession frequency in the root-
mean-square internal field. With these approxima-
tions we obtain the expression

1 W„sinl k kT, v'a

T, 2kT'C„Sin~ mW'r'

x &H,')'"e~[ —W„'/4g'p, ', &e,')], kT, & W„.
(18)

The calculation of the relaxation time in the limit
kT, «W~ is similar to the calculation of the field-
dependent relaxation time in dilute salts. 22'3 We
employ the average strain approximation' in which

X~„t is written
1 /2

X&,»=ZZ (a~+a 9,) e'"'&f, . (19)
2Mvk

Here M is the mass of the crystal, v is the velocity
of sound, and f, denotes a combination of spin op-
erators appropriate to the ith site. Concommitant
with this approximation is the use of a Debye spec-
trum for the phonons where g~=vk.

At this point, it is necessary to distinguish be-
tween the cases where Lf, commutes with K, and
the cases where it does not. If g& f, does not com-
mute with 3C„as in the case of the orbit-lattice in-
teraction, then the relaxation time can be written

1 1 3kT, .„(E„—8„) l&nlg, f, lm) I

Tq 2kT, C„2wpv~k 5' (1)

in which the symbol Tr denotes trace, and

g Q e'It 8je

The dependence of T& on the longitudinal sound ve-
locity v, is a consequence of the assumption that
the exchange interaction depends only on the dis-
tance between neighboring spins.

As indicated in Eq. (23), we have anticipated that
the sixth moment of the energy-density correlation
function can be satisfactorily approximated by its
high-temperature limit. An argument justifying
this approximation can be developed along the lines
of the argument for the slow variation of the thermal
conductivity. ' We will not go into detail here ex-
cept to state that an analysis similar to that in Ref.
10 indicates that the major contribution to the mo-
ments of the energy-density correlation function
comes from wave vectors q which exceed the in-
verse of the correlation length. For this reason
we do not expect any anomalous behavior when the
correlation length becomes very large, as long as
there is only a mild increase in the specific heat
over its value away from the critical region.

Equations (18), (20), and (22) are the principal
results of this section. We discuss their application
in Sec. III.

III. APPLICATIONS

In this section we consider in sequence spin-
lattice relaxation in RbMnF3, MnF2, and EuQ. The
first step in such an analysis is to determine the
dominant spin-phonon coupling. %formation on
this matter can be obtained from a comparison of
the attenuation of the longitudinal and shear waves.
In all three systems it is found that the strongest
coupling for phonons with frequencies on the order
of 100 MHz is through the strain dependence of the
exchange integral (volume magnetostriction). '» We

suppose this is the case for thermal phonons as
well. As a consequence, we expect that the relaxa-
tion time will be given by either Eq. (18) or Eq.
(22).

In the case of RbMnF„optical studies of phonon
sidebands indicate that the first peak in the phonon
density of states is found in the vicinity of 76 cm '
(104 'K). 'M Since the Neel temperature for the
system is 83 'K, it appears that RbMnF3 comes
close to being in the category kT, &5„', where Eq.
(18) is applicable. In this equation, the calculation
of «J'p J „))0 is straightforward. The magnetic lat-
tice is simple cubic with dominant nearest-neighbor
interactions. We have

&JIJ.„-)o =+3 [S(S+1)] J
x(sin ak„a+sin k„a+sin k, a) . (24)

Since the Brillouin zones for the magnetic and
crystal lattices are the same, we find
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((J'2 J 2»2 ——
2 [S(S+1)] JN

= —,
' kT2C„*, (25)

where C~~ is the high-temperature approximation
to the magnetic specific heat:

2 2[S(S+I)]'J2e-
3 ~~2 (26)

With the values J= 3.4'K, S = —', and z = 6, g p~
(H, )'/ is equal to 35 K. We estimate S InJ/s Inr
= —10, whichiswhatonewould expect if RbMnF,
followed the "~3" law for the volume derivative of
the Neel temperature. With x=4. 2 A and m=0. 92
x10 g, we obtain the result

I/T& ——5x 10M(C~///C//) sec ~ . (27)

For 11 —T///T I
= 10, C$/C„= 0. 3, 2 so that T,

=0. 7&&10 ' sec. This estimate is in qualitative
agreement with the value Tj = 3X 10 ' sec reported
in Ref. 13.

Optical studies of sidebands in MnF2, where T„
= 67 'K suggest a peak in the phonon density of
states in the vicinity of 100cm ' (136'K). Con-
sequently, this system falls somewhere between
our two limits. With this in mind, we can still
obtain a crude estimate for T, from (18). With

genus &H/)'/ = 21 K we obtain the result

1/T, =10 (C*„/C„) sec ', (28)

I/Ty (D (+/vs) ( Qp (29)

where v is the sound velocity.
A reasonable estimate of D~ is provided by the

high-temperature limit of the spin-diffusion con-
stant D~. We estimate the latter from the Inoments
of the normalized spin-correlation function ':

2 3/2
(C„/Cg)Ds=Ds(~)= (v/2)' 2 & 1/2~ 42)s

(30)

which is at least a factor of 30 longer than the re-
laxation time inferred by Kawasaki and Ikushima. 7

Since W///4g tLs(H/& [the argument of the exponen-
tial in Eq. (18)]=10. 5 for this system, the analysis
is particularly sensitive to the approximation used
for the high-frequency tail of the power spectrum
of J„-(t). As a consequence, we do not believe the
discrepancy between the two values of T& is par-
ticularly significant.

The behavior of EuO is somewhat puzzling. Ac-
cording to the interpretation given in Ref. 9, the
decay of the energy fluctuations whose wave vectors
are commensurate with the phonon wave vector is
dominated by diffusion. If this is the case, the
spin-lattice relaxation time, the energy-diffusion
constant (Ds), and the acoustic frequency co must
obey the inequality

given by Collins and Marshall ' we obtain the result

(C„/C~z) Ds = 0. 5(Ja /)2) [S(S+1)]', (31)

for the fcc EuO lattice.
Thus with a=5. 1A, J=0.8 K, and S=+2 we have

(C„/C"„)Ds=10 cm sec '. (32)

&~2&s/(~2&s = »

(~2&E/&~2&S= 2,

(34)

(35)

where S and E refer to the spin and energy functions,

respectively.
Recent studies of the sixth moment of the spin-

correlation function indicate that

«~2&s = 4 (&~2) s (&~2& s/&~2&s)' (36)

for small k. Using formulas given in Ref. 31 we
estimate A6 for the EuO lattice:

Xs = 3. 7x 10'[S(S+I)]2/a'&h, S,&„ (3'/)

where a is the lattice parameter.
For a InJ/s Inc, we take the value 5. 3 reported

by Argyle et al. Thus with v, = 5x10' cm sec ',
T, = 77 'K, p = 8 g cm, and the values given pre-
viously for J and a, we obtain the result

In the experiments reported in Ref. 9 the frequency
ranged from 50 to 170 MHz. With v = 5x10 cm
sec ', the inequality Ds(v/v) &+ was always sat-
isfied. If 1/T, is less than Ds(&o/v) for w/2v = 50
MHz, then T,(C*„/Cs) must be greater than 10 '-
10 sec. As we will see, this is about 2 orders of
magnitude longer than the time we estimate.

We have been unable to determine the positions
of the peaks in the phonon density of states in EuO.
However, the long relaxation times needed to ex-
plain the ultrasonic data suggest that this system is
in the category kT, «W„, in which case Eq. (22) is
applicable.

In order to obtain an estimate of Ao we make the
following argument. We define a normalized cor-
relation function S (t) by

(Sf(t) 8„-&, = (84 f &,S(t) . (33)

The quantity &0 can be written as the product of

(Sobs&o with the quadratic term in the sixth moment
of the Fourier transform of S(t). Since the calcula-
tion of the sixth moment of the energy-density cor-
relation function is prohibitively complex, we ap-
proximate it by the sixth moment of the Fourier
transform of the normalized spin-correlation func-
tion (S22(t) S22~&2/(Sf 3'g )2. Justification for such an
approximation comes from a comparison of the
second and fourth moments of the spin- and energy-
density correlation functions of a Heisenberg chain
with nearest-neighbor interactions. For small k
and S»1, we find ' '

Using expression for the second and fourth moments 1/T, =2. 5x10'(C~s/C„) sec ', (38)
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which is to be compared with the value 10'-10
(CH/Cs) sec ' inferred by postulating diffusive de-
cay. We postpone discussion of the significance of
this difference until Sec. IV.

IV. DISCUSSION

The calculated values for the relaxation time in
RbMnF3 and, to alesser extent, MnF2are in rather
good agreement with the values inf erred from ultra-
sonic data. We believe this supports the interpretation
that the attenuation is dominated by the dynamics of the
energy fluctuations. In the case of EuO the agreement
is not as good. The relaxation time of 10 —10
sec, which follows from our estimate of the energy-
diffusion constant, is about a hundred times longer
than the time we calculate.

Because of this discrepancy, we are led to con-
sider an alternative explanation for the absence of

the divergence. ' ' This explanation follows from the
observation the that attenuation would be non-
singular if the decay of the energy fluctuations were
governed by the spin-lattice mechanism, provided
wT&» 1. This condition is satisfied for our values
of Tj for the frequencies employed in the experi-
ment. We note, also, that if there is no divergence
and energy diffusion is more important than spin-
lattice relaxation, then the attenuation is predicted
to be proportional to &, whereas if spin-lattice ef-
fects were dominant, the attenuation is independent
of frequency. However, because of background
problems, it is not possible to establish the fre-
quency dependence of that part of the attenuation
associated with the coupling to the energy density.

A major source of error may be the calculation
of T& itself. The most suspect approximation in-
volves the estimate of A6. Although we do not ex-
pect the correlation function for the energy-density
fluctuations to vary much from its high-temperature
limit as long as C~H/CH~0. 1, even a mild change
can have a pronounced effect on the sixth moment.
Unfortunately we have no way of estimating the
magnitude of such an effect. It may also be the case
that the relaxation near T, is dominated by multi-
phonon processes. In his measurement of the re-
laxation time of Eu" in CaF2, Huang obtained a
value for T& which extrapolates to 10 sec at
T = 77'K.

In the light of all these factors, it is our opinion
that the question of the relaxation time (and the at-
tenuation) in EuO can only be resolved by a direct
measurement of T,.

Finally, we would like to comment briefly on the
approximation for (((Jp(t), JP))~, and also on the
question of the divergence of the thermal conduc-
tivity in antiferromagnets. As pointed out in Sec.
II, we write (((J~(t), J~f)))„as the product of
((J„-J „-))„and the normalized function R(t). We ap-
proximate R(t) by a Gaussian whose width is de-

termined by the precession frequency in the root-
mean-square internal field. As we will see, such
an approximation appears to be satisfactory in the
high-temperature limit. Since the wave vectors of
interest are on the zone boundary, whereas the
critical energy fluctuations involve wave vectors
near the center of the zone, we argue that it is sat-
isfactory near T, as well.

Information on the behavior of R(t) in the high-
temperature limit can be obtained from an analysis
of the moments of its Fourier transform. In order
to avoid the algebraic complications arising from
the factor 1 —exp[zk ~ (r, —r&)], we will consider in-
stead the dynamically similar normalized energy-
density correlation function (8f(t) 8j)p/(6 (6
The second moment of the Fourier transform of this
correlation function in a simple cubic lattice can be
written in the form

+-,' cosk, a) ' . (39)

An estimate of the breadth of the power spectrum
of Jp can be obtained by averaging the numerator
and denominator of (&u~)s over the surface of the
zone. We find

(((g„) )=~ S(S+1)J,
=1 Gg' p'(H') (40)

which we interpret as supporting our approximation
for R(t).

Our final point concerns the possibility of a di-
vergence in the thermal conductivity of an antifer-
romagnet in the region above the Noel point. Al-
though there is theoretical evidence that the con-
ductivity remains finite as T- T„+,"recent mea-
surements of the frequency-dependent longitudinal
staggered susceptibility in MnF2 below@ T& have been
interpreted as indicating that the thermal conduc-
tivity diverges as (T„-T) P' P when T- T~ . ' The-
question then arises as to whether there is a simi-
lar divergence above T„which could account for
the weak divergence in the attenuation in RbMnF3
and MnF2. We argue against this.

Our argument against the thermal-conductivity
interpretation rests on the magnitude of the decay
rates for the energy fluctuations. If the thermal
conductivity were symmetric about T„, then we
would expect that at a temperature T~+&T, D&
would be approximately equal to D~ at TN —&T.
According to Ref. 41 for T„—T=0.02'K, D~~3. 6
&&10 cm sec '. For ultrasonic frequencies on the
order of 100 MHz and sound velocities of 5~10,
the decay rates of the energy fluctuations would be

(vq)s =fS(S+ 1) (2J) (15 —cos2k„a —cos2k„a

—cos2k, a —4 cosk„a cosk„a —4 cosk„a cosk, a

—4 cosk„a cosk, a) (1+-', cosk„a+-', cosk„a
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on the order of 6& 10' sec ' which is 5 to 6 orders
of magnitude smaller than the decay rates inferred
from the ultrasonic data for both RbMnF3 and MnF2.

Note added in Proof M. easurement of the param-
eter S in'/S lnr for RbMnF~ were reported by B.
Golding, J. Appl. Phys. (to be published). He ob-

tained the value —9. 4+0. 9 which is within experi-
mental error of our estimate —10.
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