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We extend the previous treatment of one-band spin excitations to include an arbitrary band
term and a long-range two-body interaction. The system still consists of N electrons in a
periodic loop lattice with N sites. It is found that the number of bound states depends on the
range of the effective two-body interaction, and that the distribution in energy scale of these
bound states depends on the spatial variation of the two-body interaction strength.

In a previous paper, me considered a system
of N electrons in a pex iodic loop potential which
has E lattice sites. A one-band Hamiltonian con-
taining a nearest-neighbor interaction was consid-
ered, and the one-spin-flip spectra relative to
a saturated ferromagnetic eigenstate mere calcu-
lated exactly.

It mas found that the characteristic terms con-
tributing to the spin-wave spectrum are the band
term, the correlation term (-n, n, ), and the inter-
site exchange term. In the present paper me shall
extend the treatment to arbitrary band structure
and to include more than nearest-neighbor terms
for the tmo-body interaction. The explicit form
of the Hamiltonian is as follows:

&~= K.a+, &ace,.ca,.

The 4'Itannier and Bloch opera, tors are related by
N

The band Hamiltonian can be remritten in terms of
Vfannier operators as

Let lP, ) be the state with all Wannier sites oc-
cupied by down-spin electrons and with no up-spin
electrons, then l&(&0) is an eigenstate ot the Hamil-
tonian H with eigenvalue

x(n,.g, +n;„,),

N 8"1
&ex=' —& —J)(&';,, &;, C,'„,C;„,, +H. c.)

i=.1 /=1

(s)
Since the Hamiltonian commutes with the total

spin of the system, the simplest stable excitation
mill be where N- 1 electrons have down-spin, and

one electron has up-spin. Let us consider the one-
spin- flip states

where C~i „C;„ni„are,respectively, the
creation, anihilation, and number operator of the
ith 7fannier orbital with spin index cr, and C„„
C~, are the Bloch operators with wave vector k,
and mhere

and solve the Schrodinger's equation in the subspaee
spanned by (4'&,J,

where
4'= Q A~

fir
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and where the Af „'sare constants to be determined
which satisfy the periodic boundary conditions

Af, N g=Af

Af geN =Af g . (i2)

where

N-1
—Q J,s~ g(Ay, K i+A~or, gol)

/=1

N-1

Z (Ul + k Jl )(&g F44+ sg g, )Ag g
= E A~, ,

(13)

N-1
z'=-z —z, — lU0+ L oz) .

To solve Eq. (13), let us try solutions of the
following form:

&fK(f+g) gf-s ~

E= —"n, n= 0, 1, 2, . . . , (N ].). -

(14)

Substituting Eq. (15) into Eq. (13) and simplifying,
we have'

N

2 V(l) e' ' (8„,—8„,) —U„B„=E 8„,
/=1

(is)

where

r=f —g, r=1, 2, . . . , N

To solve the eigenvalue problem, we first cal-,
culated H4'f, , and substitute the result into Eq.
(10), then shift indexes under the summation sign
noticing that the 4f, 's are all linearly independent;
we then arrive at

Q [V(f—l)A, —V(l —g)A~, ]- U05~ Ay ~

where
-kk(r-&)

G(r, k) =N
k k

Equation (24) is of the form of an integral equation
of the Fredholm type; for given U, and Sk, there
are standard approximation procedures to find its
solutions. However, for a short-range effective
two-body interaction, i.e. , if U, = 0 for ill & M,
where M is a positive integer representing the
range of interaction, one can obtain a (2M + 1)
x(2M+ 1) determinantal equation by letting r = 0,
+ 1, . . . , tM in Eq. (24).

A special case, the case of M = 1, has been
solved in detail in Ref. 1, where the structure of
the energy eigenstates are explicitly shown. 4 There
are both continuum states and bound states which
lie below the continuum. The structure of the con-
tinuum states is indicated by the energy denominators
in the summations over k, and it was shown how
bound states are formed by dropping out of the
continuum. ' One would expect that this feature of
the formation of continuum and bound states re-
mains unchanged for Hamiltonians involving more
than nearest-neighbor interactions except, of
course, that the number and distribution (in ener-
gy scale) of the possible bound states depend on
the range and spatial variation of the effective two-
body interaction. To see this point more explicitly,
let us look at the if'= 0 case from Eq. (16):

(E + U„)8„=0, r=O, 1, 2, . . . (N 1). -(16 )

The equations no longer couple different 8„'s,
and the solutions are immediate. They fall into
three groups of ascending energies.

(I) One spin-wave state:

N "1

UD
—= UD+ 5 2Z, cos2Kl,

/=1

U„=(U„+—',J„),r~ 1.

We take the Fourier transform of 8„:
N

h, = Z e""8„,
r=1

(is)

(20)

E + UD=O, i. e. , E=E0, and
804 0
B„.-O, r Wo.

(II} 2M exciton states degenerate in pairs:

Z' ~ U, =O, 4. ~. , E =Eq (Ug ~ Z4J, )„—U, ,

(2s)

or

(2i)

If we multiply Eq. (16) by e""and sum over all r,
we then have

where

fkl

k ~E(If} (22)

Ek( } =~k-K ~h4K (23)

B„=X.l G(r, l) U, B, , r=0, 1, 2, . . . (N 1)-(24}

If we multiply Eq. (22) by e ""and sum over k, we

obtain

B„and/or B,e0
and 8„,=0, r ~~, -~, r=~1, ~2, . . . , ~m.

(27)
(III) N- 2M —1 degenerate continuum states:

N

E + U„=0, i. e. , E = E + Z 4 & + UD,
i=1

1

8, =0, 3=0, +1, . . . +M
and

1 the rest arbitrary
r = + (M + 1), + (M + 2), ~ ~ ~, + (N - 1)/2.

1 (2s)

If M =-,'(N- 1) (for N odd), then the interaction
ranges over the whole loop, in which case there is
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FIG. 2o

Ep
I.OQ5

sin K

, E

x=0, +1, . . . , +M.

(2S)
For bound states, the summation over k can be
replaced by an integral using the correspondence
N g, -(2&) ' f' dk. Using only the nearest-neigh-
bor terms in H„i. e. , 8, = V, + 2V cosh, the solu-
tions of Eq. (2S) are found to be

E'"-Eo = Uo+ -4~) — U„'+&6~'»n'
l=1

FIG. 2b

Ep

0.5 I.O

sin K

r=o, +1, . . . , +m. (30)

A schematic diagram of the continuum states and
the bound states are shown in Fig. 1 (using 8,
= Vo+2Vcosk). lt is, of course, understood that

FIG. 2. Effect of the semihopping term on the structure
of the continuum. The continua in (a) and (b) are obtained
by letting S= 4~V and —4 V, respectively.

the bound states will eventually merge into the
continuum when their spectra are "caught up" by
the lower edge of the band.

As an example of showing possible long-range
effects, let us consider another extreme case, for
which U, = U„=const, / = 1, 2, . . . , (N 1), and J, = 0-
except for l= a l. Under these conditions, Eq. (22)
becomes

4V

(Uo —U ) Bo+ i(e"8, + e ' 8,) + U„b,
Z,(g -Z' (22 )

(Uo —U ) Bo+el' (e"8,+ e "8 &)

E,(z) —E"

Eg
or

FIG. I

I.O
sin K

E= Ep 05 where
N" I

Eg= Up + g 23~
l =I

E =E +U„. (32)

Equation (31) has the form as if there were only
nearest-neighbor exchange interaction and on-site
correlation [compare with Eq. (22)]. The solutions
to Eq. (31) were given in detail in Ref. 1, and it
was shown that there are at most three boundstates.
The effect of a constant, long-range correlation is
just to reduce the gap between all the continuum

FIG. 1. Schemetic diagram showing continuum and
bound states. The concave-upward curve that hits the
E= Ep level at K= 0 is the spin-wave spectrum. The
concave-downward dotted lines are the exciton spectra,
and the shaded region represents the continuum. The
energies of X= 0 are known explicitly: E~ = Ep+ E& —U1,
E2=Ep++~ —U2, etc. [see Eq. (27)].

no well-defined continuum. Notice the physical
significance of the B„'sof the continuum states.
The fact that B„=0 for ~~ M means that the elec-
tron and hole are "out of range" of their mutual
effective interaction. (This is analogous to the
continuum states of, say, a hydrogen atom. )

By the same token, notice the physical significance
of the 8„'sfor the exciton states. The fact that
8,„40, and all the other B,'s =0, means that the
electron-hole distance is fixed at x atom distances.
For the spin-wave state, the electron is fixed to be
over the hole f

To look at the behavior of the bound states in the
neighborhood of K= 0, a first approximation is to
let G(r, l) =0 for lor; under this approximation,
Eq. (24) becomes
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+ C(, C( ..(n( +n, , )

+ g( C(,t (n(, +n;,(,,)

+C(' C, , (n, ,+n. ..)). (ss)

Solving the energy eigenvalue equation as before,

states and the ferromagnetic eigenstate E~ by an
amount U„,but the continuum remains a continuumt

To remove the degeneracy of the continuum at K= 0,
we need a potential U, which differentiates between
various electron-hole distances. As we have seen
before, this degeneracy was only partially removed
when the interaction is short ranged; short-range
interaction means that U, does not differentiate be-
tween various electron-hole distances when these
distances go beyond a certain limit.

Let us finally discuss some of the effects on con-
tinuum and bound states when the semihopping'
term H, is introduced. For simplicity, we shall
consider only the nearest-neighbor terms for both
the band and semihopping terms:

N

a, =SP [C,', C,.„„(n(,+n(, t, )
g=a

the equation corresponding to Eq. (22) would then
be of the form

p((k, K) B(
, $ sin(k+q) —E' (s4)

where

$ -=4[(V+S)a sinaK+ S cosaK]t",

sing =- S cosK/$,

(s5)

(s6)

and where p, (k, K)'s are functions of S, U, , etc. ,
which can be easily found.

Since the energy denominators indicate the con-
tinuum states, we see that the semihopping term
actually alters the structure of the continuum states.
It should be noted that, at K=0, $ = 4S((0. This
means that the band width at the K= 0 point is non-

zero, and that the formerly degenerate continuum
states at K= 0 are dispersed into a band of width

8S. The shape of the band actually depends on the
magnitudes and signs of V and S. Two different
types of continuum are illustrated in Fig. 2. The
bound-state spectra are also perturbed when H,
is introduced, and they exist only below the con-
tinuum. '
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The justification of this approximation lies in the fact
that for bound states near K=-O, )

E' (» ( E„(E)I; the

G(~, l) function for r &l is then a sum over 0 of e+~" '&

divided by a slowly varying denominator. For nearest-
neighbor hopping, G(r, l) - [n —(n —1)~ ]'" "„where
& =

) E'/(4 Vsin K) ( . Thus Gb, l) decreases exponentially
as I x-l l increases.

~S is usually positive, but there is no reason why V

should have the same sign.


