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where n& is the impurity density. The self-energies are
always of second order in impurity-scattering potentials.
In terms of diagrams, this equation is shown in Fig. 1.
Similar to the self-energy diagrams, vertex corrections
are also associated with corresponding terms of second
order in the impurity-scattering potential (see p. 332 of
AGD). Thus, his arguments in terms of linearity in
Vs(x —RJ and second order in V~s(x —Rg are completely
meaningless. Along with this, Sung makes an incorrect
assertion in footnote 16 of his paper, a rebuttal against
which is published separately [W. S. Chow, Phys. Rev. B
(to be published) ].
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The quasiparticle wave functions and the energy-eigenvalue equations of the intermediate
state in extreme type-I superconductors are calculated for the full range of the excitation
spectrum. A WEBJ method of solving the Bogoliubov equations at any temperature below
T~ is used. The periodicity of the pair potential leads to Bloch-type wave functions and a
band structure of the energy spectrum for fixed momenta parallel to the phase boundaries.
The magnetic field has an effect on the quasiparticle energies only by its influence on the
structural and thermodynamic properties of the system. The width of the normal regions, and
an effective variation length summing up the space dependence of the pair potential, are the
variational parameters of the theory. From the general eigenvalue equations explicit energy
spectra are obtained for simplified models of the pair potential.

I. INTRODUCTION

The excitation spectrum of a sequence of super-
conducting and normal or nearly normal regions
has been discussed in a number of recent investi-
gations.

Bound states with quantized energy levels have
been found (a) in the isolated normal regions of
the intermediate state of type-I superconductors, '
(b) in the core of a single vortex line in the mixed
state of type-II superconductors, ' and (c) in the
normal regions of normal-superconducting con-
tacts. ' The spectrum of these states with ener-
gies less than the maximum value ~ of the pair
potential determines the low-temperature proper-
ties of the respective samples.

For the mixed state of type-II superconductors,
the scattering states with E& 4 have also been
analyzed, and the periodic structure of the inter-
mediate state has been considered by van Gelder,

who, using a Kronig model of a periodic steplike
pairpotential, obtained a band structure of the en-
ergy spectrum in the one-dimensional case. '

Common to all these investigations is the use of
the Bogoliubov equations, the Schr'odinger -like
equations for electrons and holes, coupled by the
pair potential &(r) of the superconductor. Whereas
often it has been found necessary to assume sim-
ple forms such as step functions for the pair po-
tential, or to limit the discussion to rather low
temperatures where only the lowest-lying bound

states are important, we intend to lookintothe peri-
odic intermediate-state structure using the VfKBS
approximation of solving the Bogoliubov equations,
developed in Ref. 3. This allows us to treat the
full energy spectrum at any temperature below T,
without introducing a simplified pair potential.

In Ref. 3 the problem of self-consistency of the
pair potential 6( r) and of the local magnetic field
h(r) of a vortex line has been dealt with by using
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variational forms for 4(r) and Ti(r) and minimizing
the free energy with respect to the variational
parameters. In the present problem of the inter-
mediate state, as in the case of a normal-super-
conducting contact, the approximation in which we

solve the Bogoliubov equations uses the pair po-
tential b,(r) = 4(z) only in a spatially integrated
form so that no knowledge of the details of its
spatial variation is required for the determination
of the energy eigenvalues; we obtain them as func-
tions of the effective spatial variation length of the
pair potential,

d=J (1-~(z)l~)«,
with 2a being the width of a normal region and 2D
being the periodicity of the laminar structure of
the intermediate state. We will assume an extreme
type-I superconductor which practically expels the
magnetic field completely out of the superconduct-
ing regions, and in the normal regions h(z) will be
treated as spatially constant.

In Sec. II we transform the Bogoliubov equations
into two nonlinear first-order differential equations
for the exponents of the WKBJ-type ansatz for the
quasiparticle wave functions. Section III deals
with the asymptotic behavior of the wave functions
and their periodic properties; the energy-eigen-
value equations for the bound and scattering states
result from the matching and periodicity conditions
and include the special case of the Kronig model.
In Sec. IV the quasiparticle wave functions are
calculated as second-order solutions of the trans-
formed Bogoliubov equations written as integral
equations. We finally obtain explicit energy-
eigenvalue equations in terms of the specific sam-
ple parameters so that the problem of the energy
spectrum of the intermediate state is reduced to
one of numerical analysis.

At this point the present paper terminates. The
author will try to work out the remaining numeri-
cal part as soon as access to computing facilities
will be easier than at the present time. What
should be done after the computation of the energy
eigenvalues is the following.

One can calculate the free energy G, of the super-
conductor in the external magnetic field H at tem-
perature T from

1,= —kk TZ ln(2 cosh—1E
n 8

effective variation length d of the pair potential.
They correspond to the parameters s and d of Ref.
3 and likewise they can be determined by minimiz-
ing the free energy (1.1) with respect to them.
The periodicity interval 2D is related to 2a by the
condition of flux conservation.

h(z) = e,H, B(~ a~ —z), mod 2D

where
1 for x&0

Bx =
0 for x&0.

(2 1)

The vector potential A related to the magnetic
field by

is
h= rot A

II. WKBJ APPROACH TO BOGOLIUBOV EQUATIONS

Let us consider a superconductor with alternat-
ing normal and superconducting layers. This
structure is produced by an external magnetic field
H of magnitude (1 —D*) H, &H&H„where W is
the geometry- and orientation-dependent demag-
netizing factor of the sample and H, is the critical
field at which superconductivity is completely de-
stroyed. The magnetic field in the normal regions
is equal to H, . This state is called the intermedi-
ate state. It occurs in superconductors of type I,
characterized by a positive surface energy between
the normal and the superconducting phases which
results in a Ginzburg-Landau parameter ~ & 2 '
For detailed discussions on the intermediate state
and information on the previous work done on it
see Refs. 8, 10, and 11.

One obtains a simple laminar structure of the
intermediate state as shown in Fig. 1 by applying
a magnetic field 0 & H & H, in direction y perpen-
dicular to the plane of a thin superconducting slab
with D* = 1. (A laminar structure may also be ob-
tained in a disk specimen by applying a slanting
field. ' '3) We assume that the plate is sufficiently
thick so that broadening of the normal layers at
the surface" may be neglected.

A material with x«1 will confine the magnetic
field h(z) = e,h(z) to the normal regions so that

+—[h(z) -H] d r,Ib(z) I 1 z 3

V Sn

where V is the attractive BCS-interaction constant,
Ti(z) is the locally varying magnetic field, and the
E„are the solutions of the energy-eigenvalue equa-
tions. The variational parameters of the theory
are the spacing 2a of the normal regions and the

I
-D 0 +4 +D

:Z

FIG. 1. Spatial variation of the pair potential A(z) and
the local magnetic field in the laminar intermediate state.



REINE R KUMME L

A=e„/zH(~a~ —z), mod 2D (2 2)

apart from a gauge function grad» (r). The su-
perconducting pair potential is constant along the
x and y axes and varies periodically in z direction.

The width 2a of the normal layers will have to
be determined by minimization of the free energy.
The periodicity 2D of the laminar structure is re-
lated to 2a by the condition of conservation of mag-
netic flux which yields

D/a = H./H. (2. 3)

(2. 4b)

where the Hartree-Fock potential already has been
included in the Fermi energy &&, we use units so
that h = 1. By a suitable gauge of A the pair poten-
tial can be made real. We assume that A of Eq.
(2. 2) is compatible with a real pair potential of an
extreme type-I superconductor.

In the directions x and y parallel to the phase
boundaries, the quasiparticle wave functions u and
v are plane waves, and in spinor notation we may
write them as

=e"» 'g (z), (2. 5a)

where

(2. 5b)

k„=e„k„+e,k„p= e„x+e, y. (2. 5c)

Inserting the wave functions of Eqs. (2. 5) in Eq.
(2. 4) and defining

k,/2m= zz —k„/2m, (2. 6)

The Bogoliubov equations for the electron —and
hole —wave functions u(r) and v(r) in the inter-
mediate state are

1 V
Eu(r) = ——. ——A —~ z u(r) + a(z) v(r),

,
2' 2 c

(2. 4a)
21 V' e

Zv( r) = — ——. + —A —e &; v( r) + &*(z)u( r),
2@2 2 C

e -it)(Z) /2

g (z) = ', , = const, ~„«&qz e""e'"*' . (2. 8)
g-L~J e

This leads from Eq. (2. 7) to

2E = (1/2m) [—i,V~r&+ 2V~q ~ V,$ + 2k, V,q

—(4e/c)k„A]+ 2S(z) cos&),

.0 = (1/2m)[2V, ) —2(p V,&)) —2(V,)) —4k, V,)]

+ f2'(z) sing .

We suppose that &)(z) and $(z) vary slowly over
atomic distances so that their second derivatives
and products of their first derivatives may be ne-
glected. Thus we are left with

V,q = [E —b, (z) cosy]+ —z A(z),
2m 2ek
k C kz

(2. 9a)

The ratio of the quadratic term in the vector po-
tential to the linear one is

[(e/c)A„]' (e/c)A„zA„(z)
2(e/c) k„A„2k„24&pk„'

where Pp= w (e/c) is the magnetic flux quantum in
units where h= 1. The flux quantum can be ex-
pressed by the critical magnetic field at zero tem-
peratureH, (0) =[4wN(0)& ], the London penetra-
tion depth X~ = (mc /4»ne )'~z, and the coherence
length t = v„/z& as

4&p= (p) z t'XgH, (0) .
With that and Eq. (2. 2) the ratio of the quadratic
to the linear field term is less than

( pP z ) H, a/H~(0)gkgkz, ~

For the vast majority of states k„ is comparable
to k&, so that k„~L, » 1; in not too strong external
magnetic fields, where a and $ do not differ by
more than two orders of magnitude, the quadratic
term in the magnetic field is considerably smaller
than the linear term and may be neglected.

An approximate WKBJ-type solution of Eq. (2. 7)
may be obtained by writing the z-dependent part
of the wave function in the form

we obtain, with the Pauli matrices
V,t = f(m/k, )n(z) sinq . (2. 9b)

1 2 2eEg=a ——V' -0 —kA + —A —k gz2m z z ~ x x ~ x

+a(z)a„g. (2 7)

the Bogoliubov equations in spinor notation as

These equations have the same structure as Eqs.
(4.17) and (4.18) for an isolated vortex line in Ref. 3.

III. QUASIPARTICLE WAVE FUNCTIONS

Knowing the quasiparticle wave functions in one
periodicity interval —D & z &+ D around the origin
one obtains them in the whole specimen by the
Bloch periodicity condition (3. 12).
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))(z) = (2m/ke)[Ez + (eH, /2mc)k„z ],
~(z) = 0.

With the definitions

(3. 1)

q=—(m/k, )E, p = (m/k, )&d2k„, &4&,
= eH, /2mc,

(3.2)

A. Asymptotic Behavior

NormaL region. In the normal region —a & z &+ a,
the pair potential is zero and the vector potential
is A(z) =H,z. We can integrate Eqs. (2. 9) directly
and obtain

we obtain from Eqs. (2. 9) the following set of
equations:

V,))„=(2m/k, )[E—&(z) cos&7„cosh&7&],

Ver/( = (2m/ke)4(z) sin&)„sinh)), ,

V,(„=(m/k, )n(z) cos))„sinh)), ,

V,(( = —(m/k, )&(z) sin))„cosh))(.

(3.8a)

(3. Sb)

(3.8c)

(3. 8d)

There are two linearly independent solutions of
Eqs. (3.8) which differ in the sign of ))(, with $„
changing its sign when g, does. The symmetry
relations are

we may write the z-dependent part of the quasi-
particle wave functions in the normal region as

g(z) e ei(qetPe &+ k e-1(qetPe ) e&2 e1 2 O 2

0 1

(3.3)

))„;(z)= -))„,(- z), („,(z) = (, 1( z) .-
The asymptotic conditions for constant &,

))„(z-D) = 0, )),(z- D) = arccosh(E/A),

t', (z-D) = 0, &„(z-D)= (m/k, ) (E' —n')'"z,

(3.9)

(3. 10)

SuPerconducting region, ' bound states E«. We
assume that the superconducting region is so large
that the pair potential &(z) assumes its constant
asymptotic value & at some distance from D. Ac-
cording to the two degenerate solutions with posi-
tive momentum for zero magnetic field and spa-
tian. y constant pair potential, '"'

follow from the wave functions (3.4) for E & 4.
B. Periodic Properties

According to Bloch's (Floquet's) Theorem which
holds for any set of equations with periodic coef-
ficients, ' we may write the wave functions for the
intermediate state with periodic pair potential in
the form of Bloch waves

(Z D) ~ ( ) e)&2 eo(m/&)e)z)e(~1+ n~~/2
g 1,2 1,2 (1 p n)l/2

Q=—i ~-1 ) (3.4)

g (z) = )(2(z) e'"',

where

X,(z) = )(„(z+2D)

(3.11)

(3.12)

there are two independent solutions ))1 2 and $1 2.
One has the asymptotic behavior.

)),(z -D) = +

are

co�s�(E//)

)-=+ &)/&,

~, ( ZD) =+ i(m/k, )(n'-E')"' z
(3.8a)

and represents an exponentially decreasing wave;
the other has the asymptotic behavior

))2(z - D) = —arccos(E/n) = -)))&,

)2(z-D)=-i(m/k, )(n2-E2)'/2Z= -$,(Z-D)
and represents an exponentially increasing wave;
hereby is 0&arccos(E/n) & z. Note that e"")&

[(1+n)/(1+ n)] /

Since n(z) is an even function of z it follows
from Eqs. (2. 9) that in the superconducting regions,
where 2=0,

and k is the propagation vector of a plane wave
modulated by the periodic function X~.

Adding and subtracting ikz in the exponent of g
of [Eq. (2. 8)] and defining

K—= kg -k,
we obtain the following: In the normal regions
-a&z&a, mod 2D,

)( (g) — g e(&qeee ) b -(&qeqe ) lee.1 2 O 2-
+

1
e

(3.13)

in the superconducting regions s a ~ z ~ x D, mod
2D,

for E&4,
(e(i /2 )q(

xe(z)= A&
I -((/2& e"1
&e

))=)) -i))(, )= (, i$(- (3.7)

))1I2(z) = —7)1~2(—z) alld )i~2(z) = (1~2(—z) . (3.8)

Supercondlcting region; scattering states E & 4.
The asymptotic solutions (3.4) demonstrate that 2&

must be complex for E» and $, in general, too.
For the real and imaginary parts of

e( f /2)82
+ & -(&/2)q

ffC g

e

for E& 4,
e«/2)Z

x,(g) = c ((/2&„e
(

e

(3.14)
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+ D&
(~/3)f)ge
-(g/ay+e (3.15)

where, according to Eq. (3.7), r) =q„—iq, and
i-$, , and the asterisk marks the complex

conjugate.
These quasiparticle wave functions are linear

combinations of the two degenerate solutions of
Egs. (2. 9) and (3. 8) with z momentum in direction
of the positive z axis. They represent an electron
travelling in+z direction and a hole moving in -z
direction. There is another set of solutions of
equal energy representing quasiparticles of nega-
tive z momentum.

There are six undetermined integration constants
in each quasiparticle wave function: two in the
normal regions I z I & a, mod 2D, two in the super-
conducting regions a&z &D, mod 2D, marked by
the sign &, and two in the superconducting regions
-a&z&-D, mod 2D, marked by the sign &.

Matching the solutions at z= a gives two equa-
tions, one for g, and one for g, and so does
matching at z= —a. (Neglecting the second de-

rivatives and quadratic terms of g and $ corre-
sponds to approximating the Bogoluibov equations
by first-order differential equations for g or p .
Therefore, one only has to match the wave func-
tions and not also their derivatives. ) The re-
maining two equations are provided by the periodi-
city condition (3. 12) which, for z= —D, becomes

e(~/2)n2(c) -=et qg &
—efPa 2

p —ef ft2D
t

(3. 1V)

we find the determinant to be

(3. 16)

Putting the determinant of the coefficients of the
six integration constants equal to zero yields the
energy-eigenvalue equations.

C. Eigenvalue Equation for the Bound States, F(6
With the help of Eqs. (3. 5) and (3. 6) and using

the abbreviations

e(&/3)q~(a) ~ e(&/a)n~ y e~g, (D) ~ e g, a)

5/a r/(o o -1/Vo

0 0. 5/a r/(o -o/u o

0 0

Pr~ ~/Py

, ~/0 P~/y

-s/y o

1/W O

The expansion of D«yields

v'y & p,
+ ~ — z — 5 t'

p,

The condition D«=0 is satisfied, if (a) p'=—e' "& =1,
l. e. ]

g~-=arccos(E/&) = nv or E= & for n= 0;

(b) the term in curly brackets vanishes, i. e. ,

2 cos[(k —k,)2D] sin-,' [qz(a) —q, (a)]

= expi[gz(a) —4(a)+ 24(D)] sin[qz(a) —2q&]

—exp(- i [$&(a) —$&(a) + 24(D)]] sin[g&(a) —2qa] .
(3.2o)

It is interesting to note that the term

I

Pa = m~ k„n /k, describing the direct influence of the
magnetic field completely drops out of the eigen-
value equation. Formally one might interpret
k„a&z, = k„apI3H, as the magnetic energy of an elec-
tron of angular momentum k„a with respect to
z = 0. This would be an electron localized at z = a
moving with momentum k„ in the x direction. How-
ever, the actual quasiparticle wave function given
by Egs. (2. 5) and (3.3) represents an electron and
a hole forming a standing wave spread across the
normal region —a &z &+ a, with plane-wave char-
acter parallel to the phase boundaries. The na-
ture of such an excitation is discussed in Refs. 1.,
14, and 16andthepapers onthe Tomascheffect. ' '"
The angular momentum of such a quasiparticle
wave with respect to z= 0 is zero. Thus, contrary
to a vortex lin~; ' there is no magnetic moment
associated with quasiparticle motion parallel to
the phase boundaries, so that in the framework
of our approximation the magnetic field has no di-
rect influence on the energy eigenvalues. The
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q, (a) = (2m/k, )Ea —nv, (3.21)

where n is any integer. This equation is exactly
the same one as for a normal-superconducting
contact with a being the thickness of the normal
layer. Thus, for E&&, the energy spectrum of
the intermediate state in a weak magnetic field is
the same as the one calculated in Ref. 6.

For a steplike pair potential with qq(a)
=arccos(E/5), the solutions of Eq. (3.21) are
readily obtained (see Fig. 2), and include And-
reev's results for E «4. '

In the general case of the intermediate state
with nonisolated normal regions we must solve
Eq. (3.20) after having computed the values of q
and $ at the phase boundary a. Only such energies
will be allowed for which the right-hand side of
Eq. (3.20) does not exceed 2. Therefore, in gen-
eral, one will find intervals of allowed and for-
bidden energies for fixed values of k, . The dis-
crete bound-state levels corresponding to Eq.
(3. 21) split up into energy bands, when the normal
regions come so close to each other that the wave
functions overlap. within an allowed band the en-
ergy varies as a function of k.

Let us illustrate this by the example of the step-

situation is similar to a normal square-well po-
tential with a magnetic field, on one hand, and the
Zeeman effect in atoms, on the other hand.

Equation (3.20) simplifies considerably if one
assumes that the superconducting region is so
large that one may treat the normal regions as
being completely isolated from each other. This
is true if the applied magnetic field is very weak.
Then one may put the coefficients 8& of the ex-
ponentially increasing solutions in Eq. (3.14) equal
to zero, and one obtains the eigenvalue equation

like pair potential, where

rl, (a) =qn =arccos(E/&) = -gz(a),

i[$3(a) —t', (a) + 2$, (D)] = —(2m/k, )[4~ —Ea]'1~(D —a).

Equation (3.20) becomes

cos(k —k, )2D = cos[(2m/k, )Ea]

x cosh{(2m/k, )[n —E ]' (D —a)]

- E[n -E ]
' sin[(2m/k, )Ea]

x sinh((2m/k, ) [n 2 —E2]'~2(D —a) ).
(3.22)

This equation is very similar to that of the Kronig
model for the periodic lattice potential. '9 Van
Gelder~ has numerically solved this and the cor-
responding equation for E&b (see below) for two

values of the parameters a, D, and k,. Figure 3
shows some energy bands obtained from Eqs.
(3. 22) and (S.25).

The energy bands for different k„ i. e. , dif-
ferent k„and k„, will overlap because of the tiny
energy gaps smaller than 4 in each band sequence.
Therefore, only experiments like tunneling into
the intermediate state preferring electrons moving
with Fermi momentum normal to the phase bound-
aries may be able to detect the band structure.

D. Eigenvalue Equation for the Scattering States, E&h

Matching the wave functions (3. 13) and (3. 15) at
s =+ a and using the periodicity condition (3. 16)
leads to a set of six equations, the determinant of
which is formally identical with the determinant
of the bound states, Eq. (3.18), if we define

~= ~(~]2)n(a) g —~($/2)g(D) —~i( (D)
j/ 0

p
g- ~i)(a)

V
—~f/(2D

Rearranging the evaluated determinant of Eq. (S.19)
in the appropriate way we obtain

FIG. 2. Graphical solution of the eigenvalue equation
for the bound states in isolated normal regions. The
energy eigenvalues are given by the intersections of the
straight lines 2mEa jk»- n~ with g(a) = arccosE/4 for a
steplike pair potential; we have put 2m/k»= 5n/~. The
negative energies belong to depaired quasiparticles in the
ground state of the system. Each quasiparticle state is
characterized by a set of quantum numbers (k„, k~, n)

and its spin.

p25 @CO& 7

We see that D«=0, if (a) P =1, i. e. ,

q&(D)=-arcosh(E/&) =0 so that E=n;

(3.23)
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ducting contact. It gives approximate analytical
solutions of the Bogoliubov equations by changing
Eqs. (2. 9) and (3.8) into integral equations which
are solved in second order by the method of suc-
cessive approximations. It does not require de-
tailed assumptions about the spatial variation of
the pair potential &(g) save one, as we believe,
unimportant exception. Only over-all properties
of the spatial variation expressed by an effective
variation length d remain in the final expressions.
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I
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A. g and $ for Bound States I;& 6

Ne are going to consider positive-energy eigen-
values only. We integrate Eq. (2. 9a) subject to
the boundary conditions (3. 5) and obtain

FIG. 3. Energy bands in the intermediate state with
a Kronig model for the pair potential. For x—= E/b smaller
[larger) than 1, I'(x) is given by the right-hand side of
Eq. (3.22) I.Kq. (3.25)]. The energy bands, which are
indicated by heavy lines on the x axis. are given by the
values of x for which I E(x) l «1.

2m
i), ,(g) =+ i)n — — [E —&(g) cosi), ,]dg . (4. 1)

In zero-order approximation the solutions of Eq.
(4. 1) are

ihogi = t iin = a arccos(E/~).

Substituting them for g& 2 under the integral we
find in first order

x sin2[t„(a) —$,(D)]. (3. 24)

(b) the term in curly brackets vanishes, which
implies that

cos(k —k,)2D= cos[i),(a) —2qa] cos2[t'„(a) —$„(D)]

—cothi); (a) sin[i)„(a) —2qa]

2m &(g)
i), 'gi(g) = w i)ii — E 1 — dg,

and resubstitution yields in second order

(2) 2m
i)i g=+ i)n — E —+(g) cos + i)ii

kg

(4 2)

For a steplike pair potential with E 1 — dz' dz. (4. 3)

i)„(a)= 0, i), (a) = arcosh(E/i) )
As in Ref. 6, we may add to and subtract from

this expression

$„(a) —$,(D) = (m/k, ) (E —4 )' (a —D),

Eq. (3.24) becomes

cos(k —k, )2D

= ccs Ec ccc —(Z —C ( ( - )iic2m 2 2 1/2

kg kg

use

2m 2m D h(g ')
cos +pa -- --E 1- - dz' dz,

2m D ~(g')
u 2g + -E 1- dzi

k,

E(E' —n, ') ' sin—Ea2 g/2, 2m
kg

x sic -—(Ec —C ) (D —c)),
'

kg

which turns into Eq. (3.22) for E (&.

(3.25)

as a convenient integration variable, define

=2m
'

2m
Ei g(g) =— + cos 'gD T

kg kg

x 1- dz' —E dz,

and obtain

(4. 4)

IV. CALCULATION OF q AND $ IN SUPER-
CONDUCTING REGIONS

In order to calculate the functions g and $ from
Eqs. (2. 9), (3. 5), (3. 8), and (3. 10) we use the same
approximation method as in the calculation of the
excitation spectrum of a paramagnetic-supercon-

~2 1/2 2m
'gi g(g) =6'gp+ ~ —1 —cos E

kg

1 — — dz'
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2m n, (z')-sin E 1- dz'+E) z(z).
k»

(4. 5)
s '" 2m

8 z—f(~ )
IE & k»

Since the pair potential only appears in the in-
tegrated form of

where

—(2m/b, )E(2d+ a - z)8(2d+ a -z), (4. 11)

f (z) f (( — )dz, (4. 5)
C[y]-=(2z) '"

~ dt,
0

f(z& b) =0;

and
(b)

(4. 7)

(4. 3)

(c) The effective length of the spatial variation
of the pair potential defined by

the details of its spatial variation should not matter
much. Therefore, in order to calculate F, z(z) we

may approximate f (z) by the simplest possible
function which satisfies the conditions imposed by
the physically important features of the pair poten-
tial:

(a) Beyond a certain limit z =a b in a periodicity
interval -D&z &+D there exists a region of con-
stant pair potential &(z) = 4 which does not contri-
bute to f(z), so that

S[y]=- (2.)-'fz '&" di
(4. 12)

are the Fresnel integrals, and

for x&0
0 form 0.

We suppose that q[ z(z) as given by Eqs. (4. 5)
and (4. 11) is a sufficiently good approximation of
'()(z)

For the calculation of $ let us put the zero-order
solutions q,

'
z in Eq. (2. 9b) and integrate it sub-

ject to the boundary conditions (3. 5). We obtain
in first order

D

t"'=+ —(~' -E')'fz 1 — ('
dz'k,

1 — dz= a

is, because of Eq. (4. 8), equal to

d=— 1 — dz .

(4. 9)
m (nz Ez)ljz
k»

The second-order approximation $[zz) is calculated
similarly to rh z, inserting gq, z into' Eq. (2. 9b)
and evaluating integrals of the same type as in
Eqs. (4. 3) and (4. 4). This results in

This relates the limit b to the variational param-
eter d.

(d) Since &(z)=0 for - a&z & a,

dz

g(z& +
~ m (gz E 2)l/2

2m . 2m—i 1 —c—os Ef (z) + —i —1 sin Ef(z)
2 k»

(e) — = 0.d
dz »&b

(g) f(z) decreases monotonously from f(a) = d to
f(b) = 0. The approximation

' z2 2d+a 1f(z) = —— z+ —(2d+ a) 8(2d+ a -z),4d 2d 4d

-i m&d — + —-— g g z

-(, s) &
&

zf(z) I

+i (n —E—)' (2d+a —z)8(2d+a —z),
k»

(4. 13)

b=2d+a (4. 10}
and we approximate t'~, z by $,' z

Defining

is the simplest possible function which has the
properties (a)-(g), and we will use it for the calcu-
lation of E, z(z). Without further approximations
we obtain

" 1/2 E 1/2

F,,,(z) = 4v~d —„- C Ef(z)
» »

—(2m/k, )E(2d+ a-z)8(2d+ a-z},
g2 1]2 Rm

B(z)-=arccos —— t -1 1- cos Ef(z)
k»

(4. 14)

1/2 g 1/2
&(z)= (4z4L — —. C Zf(z) —sis Zf(z)— —

k»
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m '" S E "' 2
+ 4gW™ ——— S E z

k, E & k

we may write

n (z) = A(z)+ B(z), n, (z) =A(z) - B(z). (4. »)
Vhth that and

Z=i[4(a) -4(a)+2(' (D)]

bound states. VYe encounter the same type of in-
tegrals, use the same approximation (4. 10) for
f(z) = f, (1 —n(z)/n) dz, and find

. /2m m
17(2)(z) = -sin~ Ef(z) + 4(fdd—

I, k, k,

x

= (2m/k, )(n —E )"2(2d+ a —D)

~2 &/2

+ E~ 1 sin -Ed

4gcQ, — —-— C —Ed

B. q and $ for the Scattering States E)b

We write Eqs. (3.8) in integrated form using the
boundary conditions (3. 10)

D

[E—,&(z) cos(7„cosh17(]dz, (4. 17a)
kg I

E 2m
q( = arcosh —-— &(z) sin(7„sinh1)( dz,

(4. 1'7b)

D

t„=—„(E -&2)'/2D- — b(z) cos1)„sinh(7( dz,

m
&(z) sin(7„cosh(7( dz .

kg g

(4. 1'7c)

(4. 17d)

With 1),(D) and 2)((D) as zero order approx-ima-
tions, we obtain as first-order solutions

the eigenvalue equation (3.20) for the bound states
can be rewritten in the form

cos(k —k,)2D= coshZ cos[A(a) -2qa]

—sinhZ sin[A(a) —2qa]cotB(a). (4. 16)

—(2m/k, )E(2d+ a —z) e(2d+ a —z), (4. 19a)

g2 1/2 2ms';s(z)=srcosh ——1 — s 1-cos Ef(zl)E k,

+ 4m d& — ——— S Ed,

C —E z

+—(E -/E )'/(2d+a —z)&(2d+a-z),
kg

1, (s)= — 1-cos —Ef(z))(2) 2m
2 kg

(4. 19c)

—(zdo —
) (

—.
) E Ef(z) I. (4. 19d)

Inserting these results into the energy-eigenvalue
equation

cos(k —k, )2D = cos [17,(a) —2qa] cos2[$„(a) —k„(D)]

—coth17((a) sin[(7„(a) —2qa]

x sin2[&„(a) —k, (D)], (3.24)

(4. 19b)

~2 1/2
(',"(z)= (E' —o')'"zs—— 1 ——z sio Ef(z))

kg

(1)= 2mE 1
~z

d

= arcosh(E/&),

t(1& m(E 2 ~2)1/2
kg

(4. 18a)

(4. 18b)

we see that it becomes identical to Eq. (4. 16), if
one lowers E below ~, because then

17„(a)-A(a), (7((a)- iB(a),

2[)„(a)—$„(D)]- iZ = [$1(a) —(2(a) —2$, (D) ] .
(4. 20)

Remember that

](1) 0

(E 2 /) 2)1/2 ( 1 (z)
k,

(4. 18c)

(4. 18d)
2qa= Ea, f(a)= 1 — dz-=d, and f(D)=0.2m

' n. (z)

The second iteration of Eqs. (4. 17) with the first-
order solutions (4, 18a) and (4. 18b) is not very dif-
ferent from the calculation of gz 2 and $& 2 for the

Therefore, taking into account the relations (4. 19)
and(4. 20), it is sufficient to consider Eq. (3.24)
as the eigenvalue equation for all quasiparticle
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energies 0& E& ~.
For the steplike pair potential we have d= 0 and

recover Eqs. (3.22) and (3.25).

V. SUMMARY

The quasiparticle wave functions in the inter-
mediate state have been calculated. They are given
by Eqs. (2. 5), (2. 6), (3.7), (3. 11), (3. 13)-(3.15),
(4. 15), and (4. 19). In the direction of periodic
change of the pair potential they are Bloch-type
functions whose periodic part represents a linear
combination of electrons and holes of nearly equal
momenta but opposite group velocities. Parallel
to the phase boundaries they have plane-wave char-
acter. The knowledge of the wave functions is re-
quired for the computation of the acoustic attenua-
tion, nuclear spin relaxation, and other dynamical
properties of the system involving coherence ef--
fects.

The derived energy-eigenvalue equations (3.24)
and (4. 16) allow the following general conclusions:

(i) In a weak magnetic field H where, according
to Eq. (2. 3), the normal layers are practically
isolated from each other, the bound-state spectrum
of the intermediate state is the same as that of a
normal-superconducting contact. One may con-
clude this by comparing Eqs. (3.21) and (4. 15) with

their counterparts of Ref. 6.

(ii) @within the approximation of neglecting quad-
ratic terms of the magnetic field and its penetration
into the superconducting regions, the quasiparticle
energies do not explicitly depend upon H. But
clearly H inQuences the energy spectrum by deter-
mining the width of the normal and superconducting
layers.

(iii) Owing to the periodicity of the pair potential,
the energy spectrum for a given set of parameters
exhibits band structure. One must expect, however,
that the band structure will be obscured by the over-
lap of the different band sequences for the different
momenta parallel to the phase boundaries. For
widths of the normal layers considerably larger
than the effective variation length of the pair po-
tential, the excitation spectrum should exhibit a
vanishing energy gap. 6

It is hoped that soon numerical solutions of the
energy-eigenvalue equations will be obtained so
that the thickness of the normal and superconducting
regions and the effective spatial variation length of
the pair potential can be determined by minimizing
the free energy (1.1) with respect to a and d. Once
the wave functions and the energy spectrum are
completely known, the way should be open to the
computation of the thermal and electrical proper-
ties of the intermediate state at any given tempera-
ture below T, .
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