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Green's-function theory is used for the calculation of the specific heat of superconducting
transition metals containing nonmagnetic impurities at low temperatures, T 0. It is found
that in this temperature region, the s-band specific heat is lowered by the presence of the
nonmagnetic impurities. The logarithm of the s-band specific heat obeys the following re-
lation: lnC, =lnC~ —I'/k&T for T % 0, where C, ' is the s-band specific heat for a pure two-
band superconductor, and I' is proportional to the density of impurities, the density of states
at the d-band Fermi surface, and the strength of the interband impurity scattering. This re-
lation agrees very well with the low-temperature experimental data of Shen, Senozan, and
Phillips ~

I. INTRODUCTION

It was first proposed by Suhl, Matthias, and
Walker (SMW)' that at low temperatures, both the
s-band and the d-band electrons in transition met-
als, such as niobium and vanadium, can be in the
superconducting phase. This model is known as
the two-band model. Recently, the two-ba, nd model
has received considerable attention, since it does
succeed in explaining various physical properties
of the superconducting transition metals. 2 On the
side of experiments, particularly noteworthy are
the specific-heat measurements made by Shen,
Senozan, and Phillips in the low-temperature re-
gion of the niobium superconductors. They notice
that there are two slopes appearing in the logarithm
of specific heat versus T ' plot, a larger slope near
the transition temperature and a smaller slope in
the low-temperature region, T & 0. Based on the
BCS theory and the SMW model, they identify the

two slopes as due to the existence of two order
parameters in the two-band system, 6, and A~,
for s band and d band, respectively. The two-
slope behavior in the lnC versus T ' plot is not limited
to pure niobium crystals. The same behavior is
also observed in imPure niobium crystals, but then
the values of the specific heat are generally lowered
by the impurities in the temperature region,
10 'T, & T &0. A simple analysis of the data for a
pure niobium superconductor has been separately
given by Sung and Shen. The analysis is simple
in the sense that they have only fitted the BCS
theory for Pure one-band superconductors to the
data of Shen et al. to obtain the values of 6, and

It should be pointed out that so far no system-
atic attempt has been made to interpret the specific-
heat data, of impure niobium superconductors,
particularly in the most interesting low-temperature
region, 10 'T, &T&0.

Recently, a detailed investigation of the thermo-
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dynamic properties of two-band superconductors
containing nonmagnetic impurities in terms of
Green's functions has been made by Chow. ' lt is
noted that in the intraband BCS (phonon) coupling
limit, the intraband impurity scattering generally
does not cause changes in thermodynamic prop-
erties of two-band superconductors. This is con-
sistent with the Anderson's theorem for one-band
superconductor s, containing nonmagnetic impu-
rities. All changes in thermodynamic properties
for two-band superconductors containing nonmag-
netic impurities in the intraband BCS coupling
limit are caused by interband impurity scattering.
Thus, the interband impurity scattering in a two-
band superconductor plays a similar role of the
spin-flipping scattering of the magnetic impurities
in one-band superconductors, so fa.r as thermo-
dynamic properties are concerned. It is in this
connection that we would expect that the interband
impurity scattering must play a decisive role in
causing the lowering of the specific heat in the
impure niobium superconductors in the low-tem-
perature region. Further, based on the theory
already given in Ref. 5, it is natural for us to re-
gard the d-band transition temperature T~ as the
transition temperature T, of the niobium supercon-
ductor as a whole, and the s-band transition tem-
perature T„to be of the order of 10 'T„such that
we reach consistency with the niobium specific-heat
data.

In Sec. II, we give a brief review of some re-
sults obtained in Ref. 5, which are to be applied
in the later sections of the present paper. In
Sec. III, we first obtain the changes in densities
of states for quasiparticles N, ((d) and N~((d) for the
two bands. As will be shown, only the s-band
density of states for quasiparticles N, ((d) will be
changed significantly by the interband impurity
scattering. Following this, we evaluate the change
in specific heat due to the interband impurities in
the low-temperature region T & 0. The results
are shown to agree very well with the experimental
data.

II. SOME PREVIOUS RESULTS CONCERNING THE
s-BAND GREEN'S FUNCTION AND THE d-BAND

GREEN'S FUNCTION

The Hamiltonian for a pure two-band supercon-
ductor without intrinsic interband BCS (phonon)
coupling, i. e. , go=0, can be obtained from Eq.
(C1) in Ref. 5. [Equations from this paper are
denoted by the form (C 1), etc. ] The interaction
Hamiltonian due to impurity scattering is given by
Eq. (C 2). The 2&&2 matrix Green's functions for
the two bands of a two-band superconductor con-
taining nonmagnetic impurities in the intraband
BCS coupling limit in the (p, 2„) space are given by

Zsv+ ~ao'3+ ~svo'i

Z sv EQ ~sv

r Z i Zav+ ~~SO'3+ ~uv&i
(2)

with z„=i~„=i»(2p+1)T, p being any positive or
negative integer, and with 2,„=in™,„, z„„=i~„„.cr's

are 2~ 2 Pauli-spin matrices. Various quantities
shown here are related to the corresponding quan-
tities for a pure two-band superconductor by the
following:

(5)

where (&,,«& is the order parameter of the s(d) band

of a pure two-band superconductor. The 7's are
impurity-scattering relaxation times given by the
following:

I/». = «;N, (0)& I v.(p) I
'). ,

I/2' =«(N2(0)& I v2(p) I )„,
I/2r„= «,N„(0)& I v„(p) I')„,
I/2~„=«(N, (0)& I v„(p) I') „, (lo)

(7)

(5)

(9)

1 Ouv
sv v+

2 /-2 +2 )1/2 y

~sff iy v+ u v

b, =6+ 1 b,if v
sv s 2r (&2 ++2 )&/2

sd fv dv

where n, is the impurity density, N, ((02)&is the
density of states for the s(d) band at the Fermi sur-
face, V,«&(p) is the Fourier transform of the s-
(d-) band intraband impurity-scattering potential
due to one impurity, V, 2 (p) is that of the interband
impurity-scattering potential, and ( ~ ~ )„represents
the solid-angle average.

In view of various mistakes made by Sung et al. , '

we point out that these equations, Eqs. (1)-(10), are
obtained by solving self-consistently the Dyson
equations shown in Fig. 1. (For details, see
Ref. 5. )

For niobium superconductors, N2(0)» N, (0). If
all of the scattering potentials are assumed to be
of the same order in magnitude, we have approxi-
mately
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/ X /
~S/ y S & ~S~

/

c(s sd

In the actual calculation of the specific heat, we
have to know the densities of states for quasipar-
ticles, N, (+) and N, (~), of the two bands. They
can be obtained from the following:

( 1 dp
) ——

7/ (2 )a ~G, (p, z)
I ~-~+&a & (15)

FIG. 1. Dyson equations for the s-band and the
d-band Green's functions. The single solid lines are
to denote the bare Green's functions, the double solid
lines the dressed Green's functions. The dashed lines
indicate impurity scattering. The self-energy diagrams
are always of second order in impurity-scattering poten-
tial. The interband impurity scattering causes the cou-
pling between the two Dyson equations.

d3
N, ((u) = ——Jl a ImGa(p, z)lg „,„, (16)

where G, (p, z) and Ga(p, z) are obtained by analyti-
cally continuing the 1-1 components of the 2& 2
matrix Green's functions [Eqs. (1) and (2}], to the
whole z plane except the real axis on which the
singularities of G,(p, z) and G, (p, z) take place.
Explicitly, we have

dv
+dv= +v+n r-2 -2 i1/22 7d $ Q7d v + 6d v J

Qv ++2 (-a ~~a )1/a

(13)

(14)

Z ~+&~
G.(p, z}=-a 'a -a,

~d+ &de
Ga(p~ z)= -a a ~a i8 d

—6dy —Ed
(18}

These relations are to be used in Sec. III.

III. SPECIFIC HEAT OF TWO-BAND SUPER-

CONDUCTORS AT LOW TEMPERATURES

As the lowering of the specific heat due to im-
purities takes place distinctly in the low-tempera-
ture region T &0, we shall pay particular attention
to the change in s-band specific heat in this tem-
perature region. The reason is the following.

According to the BCS theory for one-band super-
conductors, as a superconductor passes from its
normal phase to its superconducting phase, there
is a discontinuous jump in specific heat at T„.
then in the immediate vicinity of T„ the specific
heat decreases linearly with decreasing tempera-
ture; and in the low-temperature region T &0, it
deceases exponentially with decreasing tempera-
ture.

In a two-band niobium superconductor, the be-
havior of the specific heat for each individual band
shows clearly in the experimental data of Shen
et al. This is also the reason why in Sec. II we
only pay attention to the two-band model in the in-
traband BCS coupling limit. First, in the tempera-
ture region T, & T & T„, we notice the decrease of
d-band specific heat with decreasing temperature.
When temperature reaches T„, the s band provides
an increase in specific heat. Since T„=—10 T„
we expect that in the temperature region T„&T &0
the s-band specific heat becomes larger than the
d-band specific heat. The above qualitative argu-
ment should be correct for the pure two-band
superconductors and two-band superconductors
containing a small amount of nonmagnetic impuri-
ties. This is clearly demonstrated by the experi-
mental data of Shen, Senozan, and Phillips.

where
1. z„

/ 2 - 2x1/2&7'~ k~d —8 d:&

1
~s s+ n I -2 -2x1/2ci7~ (kd Zd /

1 Zd
a 2 (na z a)1/a

1
~d n / 2 - 2)1/2 ~

2~d k~d —~d

(19)

(20}

(21)

(22}

Here, we have used the approximate relations
Eqs. (I 1}-(14}.

Upon substituting Eqs. (1V& and (I 8~ into Eqs.
(15}and (16), we obtain

u, =z//a, . (25)

This is not surprising at all, since with our ap-
proximation [Eqs. (13}-(14)]only intraband im-
purity scattering is associated with the d band. In
the spirit of Anderson's theorem, ud should be ex-
pected to take the same values of a pure super-
conductor. Physically, this means that since Na(0)
is much larger than N, (0), the scattering of s elec-
trons into the d band is more favorable than the
scattering of d electrons into the s band, and that
the d electrons are more likely to be scattered

N, (&o}=N, (0} Re
(u, —I )

N~(a/) =Na(0} Re
(ud aI - CO+io

with a& only assuming positive values, and u, = Z,/6,
and ua = z a/6a

From Eqs. (21) and (22), it is straightforward to
show that
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0 (28)

The expression for u, is more complicated,
since now we must take the interband impurity
scattering into account. From Eqs. (19), (20),
and (25), we have

(1 —z3y//, ')'/'+ r//,
(1 —z'/2 )

'
+ I/ (27)

For simplicity in notation, we have let I'=- I/2m~.
Since we are only interested in the temperature
region T„&T=..O, for reasons to be pointed out
later, we have only to know N, ( )0)accurately in the
frequency region (4)«(48. From Eq. (23), we ob-
tain

N, (v) = N( 0)(u/( 0')—(d,')'" 03& & CO(( +y

0 (d & (ds, (28)

within the d band itself. With Eq. (24), the d-band
density of states for quasiparticles is given by the
same expression for a pure superconductor with
only a d band present:

Ns ((4/) = Ns (0) (4) /((4) —4448)
'

superconductor:

(34)

In the temperature region T«T„and T~O, we
have the following approximate relation:

ln(1+e ")+p(d/(e "+1)= e "(1+p0/) . (35)

Since P is large, e "is a rapidly descending func-
tion of &. This explains why, in order to calculate
the entropy and the specific heat, in the low-tem-
perature region, we have only to know accurately
the expression for N, (0)) in the frequency region,
~ (( Q~.

Substituting Eq. (35) into Eqs. (31), and (33) and
letting D- ~, we obtain

S, = (m, f/F, /1/')(2V0)sp)"'e '"s,
S,")= (m, f „/v')(2v/3. ,'P)"'8

(38)

(37)

S', '=4ks d(dN', '((u) ln(1+e 8")+ 8„
0

S Bf/(1

(33)
where

N,' '(i~) = N, (0)(4)/((4)' —Z')1/3

where

6,,+I'
1+ I'/as (2O)

In the temperature region T ~ 0, both 6s and ~~ are
nearly independent of temperature and approximately
equal to the values at T = 0: A, =—6,(0) and (4)s

=—&us(0).
The specific heats for the two cases are

It is interesting to note that in the absence of im-
purities (1"=0), 0)s reduces to the order parameter
of a superconductor with only an s band present.
In view of the familiar form of N, ((d), one can re-
gard &~ as equivalent "energy gap" for the s band
in an impure two-band superconductor.

The specific heat for the two-band system can be
calculated from the entropy of the system:

p
s sPFs (2& 5pS)1/3 -8(dS8S nz h

BP m
g

BS'" m pC(0) P
s se Fs (2&n5P3)1/3e-845s

8P n
S

(38)

(3o)

If the impurity density is low enough, we have
I'«D, «h~ and ~~ = 6, + I". Further, since the tem-
perature dependence of C, and C', ' is mainly asso-
ciated with the factors e ~"~ and e ~ s, we obtain

S=S +S~, (30) C =-(I p /v')(2v~'p')"'8 """ (40)

S, = 44 d )e(e) ()e(1 e ), , -), (41)
0

$„=4k8 d(d Ns((d} ln(1+e 8")+ 8„, (32)
0 e +1

where wL) is the phonon Debye frequency.
As shown in Eq. (26), with our approximation,

[Eqs. (13) and (14)] the d-band density of states for
quasiparticles is unchanged upon introducing im-
purities, Ns((d) N„' '

((d) [w=ith superscript (0) to de-
note quantities for a pure two-band superconductor].
From Eq. (32), we have Ss =S„' '; that is, the en-
tropy of the d band is also not changed. Thus, the
change in entropy of the two-band system in the
low-temperature region due to impurities is only
associated with the s band. For comparison, we
write down the s-band entropy in a pure two-band

in the low-temperature region.
From these two equations [(39) and (40)) we

reach our final result

C =- C(0)ebr (4S S

or

with
lnC, = InC( ' —I'/ksT,

F = «;Ns(0) (Ip'. (p)I'&o

(42)

(43)

We notice that the lowering of lnC, of an im-
pure two-band superconductor is proportional to
the density of impurities, the d-band density of
states at the Fermi level, and the interband im-
purity-scattering strength, represented by
( I V~(p}l )o. In Fig. 2, we plot the essential
features of lnC, as a function of T ', with I
treated as parameter. In view of the fact that
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1n C,
"'

FIG. 2. Essential features of the logarithm of specific
heat as a function of temperature, with I' treated as
parameter (I'p ~ I' f).

in the literature only the specific-heat data of
one impure niobium superconductor have been
reported, and no sufficient information has been
supplied on the various quantities such as n, and

N~(0), we do not intend to make a quantitative
comparison between the experimental data and
our present theory. ' Yet, the essential features
as plotted do resemble closely those of the experi-
mental data of the impure niobium superconductor
given by Shen, Senozan, and Phillips.

IV. CONCLUSION

In conclusion, we point out that the specific heat
of a two-band superconductor containing nonmag-
netic impurities, as a thermodynamic property,
has been shown to be dependent on the interband
impurity scattering. It is in this sense that the
nonmagnetic impurities in a two-band supercon-
ductor play a role similar to that played by the
magnetic impurities in an one-band superconductor.
Physically, they both have the pair-breaking me-
chanism in their respective superconductors.
Further, in the simple model we have treated, the
two Fermi surfaces of the two bands are regarded
as spherical, each with its own Fermi momentum
and electron effective mass. We have not taken
into account other effects, such as band-structure
anisotropy and strong phonon-electron interaction.
Nevertheless, we still succeed in interpreting the
essential features of the specific-heat data for an
impure niobium superconductor. Finally, it should
be remarked that, at present, more specific-heat
experimental data for niobium superconductors
with different amounts of impurities and different
types of impurities are needed before we can make
a quantitative comparison between our theory and
experimental results. From these data, one can
deduce various important properties, such as the
d-band density of states at the Fermi surface for
niobium and the strength of interband impurity
scattering for particular type of impurity.
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Foundation.
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The quasiparticle wave functions and the energy-eigenvalue equations of the intermediate
state in extreme type-I superconductors are calculated for the full range of the excitation
spectrum. A WEBJ method of solving the Bogoliubov equations at any temperature below
T~ is used. The periodicity of the pair potential leads to Bloch-type wave functions and a
band structure of the energy spectrum for fixed momenta parallel to the phase boundaries.
The magnetic field has an effect on the quasiparticle energies only by its influence on the
structural and thermodynamic properties of the system. The width of the normal regions, and
an effective variation length summing up the space dependence of the pair potential, are the
variational parameters of the theory. From the general eigenvalue equations explicit energy
spectra are obtained for simplified models of the pair potential.

I. INTRODUCTION

The excitation spectrum of a sequence of super-
conducting and normal or nearly normal regions
has been discussed in a number of recent investi-
gations.

Bound states with quantized energy levels have
been found (a) in the isolated normal regions of
the intermediate state of type-I superconductors, '
(b) in the core of a single vortex line in the mixed
state of type-II superconductors, ' and (c) in the
normal regions of normal-superconducting con-
tacts. ' The spectrum of these states with ener-
gies less than the maximum value ~ of the pair
potential determines the low-temperature proper-
ties of the respective samples.

For the mixed state of type-II superconductors,
the scattering states with E& 4 have also been
analyzed, and the periodic structure of the inter-
mediate state has been considered by van Gelder,

who, using a Kronig model of a periodic steplike
pairpotential, obtained a band structure of the en-
ergy spectrum in the one-dimensional case. '

Common to all these investigations is the use of
the Bogoliubov equations, the Schr'odinger -like
equations for electrons and holes, coupled by the
pair potential &(r) of the superconductor. Whereas
often it has been found necessary to assume sim-
ple forms such as step functions for the pair po-
tential, or to limit the discussion to rather low
temperatures where only the lowest-lying bound

states are important, we intend to lookintothe peri-
odic intermediate-state structure using the VfKBS
approximation of solving the Bogoliubov equations,
developed in Ref. 3. This allows us to treat the
full energy spectrum at any temperature below T,
without introducing a simplified pair potential.

In Ref. 3 the problem of self-consistency of the
pair potential 6( r) and of the local magnetic field
h(r) of a vortex line has been dealt with by using


