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We consider the problem of a Josephson junction interacting with a quantized electromagne-
tic field contained in a microwave cavity. Inasmuch as the cavity has a quality factor Q, and
an external current & Qows in and out of the junction, this is a problem in nonequilibrium
statistical mechanics. We use a technique that eliminates adiabatically the radiation field
directly from the total-density-matrix equation of motion. The resulting equation for the re-
duced density matrix is found to have a simple physical interpretation. The spectrum of the
voltage f'uctuations and the linewidth of the emitted radiation are then calculated for the case
when the resonance cavity is at absolute zero.

I. INTRODUCTION

It is well known' that a superconducting tunnel
junction can support a dc current up to a certain
critical value without developing any voltage across
the junction. However, when an external current
in excess of this critical value is forced through
the junction, charges pile up on one side of the
barrier and a voltage Vo = q/C is devolped, where

q is the excess charge on one side of the barrier
and C is the capacitance of the junction. In the
presence of the voltage, it was predicted that an
ac current will oscillate in the junction and radia-
tion will be emitted.

In previous work" we considered the interaction
of such a tunnel junction with a radiation field con-
tained in a resonance cavity possessing a quality
factor Q. We concluded that there is a slight pull-
ing of the frequency of the emitted radiation from
&u = 2e Va/a. In obtaining this result we formulated
the problem in terms of the density matrix.
Furthermore we factorized the density matrix into
two separate parts corresponding to the supercon-
ductor and the radiation field at all times and con-
sidered only the mean equations of motion. Hence
the treatment was semiclassical. In the present
work we consider the time evolution of the total
density matrix of the combined radiation and super-
conductor system and relax the factorization as-
sumption. The linewidth of the emitted radiation is
calculated and is found to arise from fluctuations
in the voltage across the junction, which in turn
give rise to a frequency modulation of the radia-
tion. The voltage fluctuations are calculated by
deriving an equation of motion for the reduced den-
sity matrix involving the superconductor coordinates
alone. This is achieved by noting that the charac-
teristic time of the radiation field (v/Q) '=10 8 sec

is the fastest decay time in the problem. Conse-
quently the radiation field can be eliminated adia-
batically. The adiabatic elimination is performed
directly using a density-matrix technique for the
case of zero cavity temperature (Sec. III). The
case of finite cavity temperature requires more
involved techniques and will be treated in a later
paper. An equation for the reduced density matrix
is obtained which is interpreted physically as a
flow of probability. The physical origin of the
voltage fluctuations is then clearly demonstrated
to be shot noise associated with the tunneling of
electron pairs. The resulting linewidth agrees with
that obtained by Stephen using Langevin equations
with noise operators. However, in Ref. 5, oper-
ators are treated as c numbers, and it is felt that
the present quantum-mechanical treatment is more
consistent.

In Sec. II we present a description of the tunnel
junction and its interaction with a quantized radia-
tion field. Insofar as this is a nonequilibrium prob-
lem we set up the equation of motion for the total
density matrix including the effects of a finite
quality factor Q of the cavity and the external cur-
rent forced through the junction. In Sec. III we
present a calculation of the linewidth of the radia-
tion for the case of zero cavity temperature.

II. FORMULATION

A. Discussion of Tunneling Junction

In this section we consider a, tunneling junction
consisting of an oxide layer sandwiched between
two superconductors. We shall investigate the
properties of the superconductors responsible for
a tunneling current and establish our notation.
Let us define cg, to be the annihilation operator of
an electron with momentum k and spin o in the
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H~ = Z T& g(cll~cg~+ cg~cf~)
ke 4~fy

(2. i)

left-hand superconductor, and a, similar c+ for an
electron on the right. Tunneling across the junc-
tion is then described by the Hamiltonian

where

=A»n(AL Aa) (2. 7)

= —2eg —P (ul.,vga;v& e"~1 ~&' —c.c. )
k, g

In this paper we shall restrict our attention to
tunneling of Cooper pairs. It is convenient to use
the pseudospin notation of Anderson7 and define

of = cllc» ~ og g 2 (1 —
cycle

—c qc q) .
A similar set g&, g, &

is defined for the supercon-
ductor on the right. Here -k indicates a momentum
of -k and spin down in the usual manner. Follow-
ing Wallace and Stavn, we make a canonical trans-
formation on Eq. (2. 1) and obtain an equivalent
tunneling Hamiltonian in terms of ok-, 0&.

.

ffr = Z gg, g(ojog+0goj) ~' (2. 2)
k~4

We shall assume that the dependence of gk ~ on k, q
is weak and replace it by the coupling constant g.
To obtain the tunneling current J, we note that
J= -2e/i, where Ni represents the number of elec-
tron pairs in the left-hand superconductor:

Ng = gZ (cjcf + c fc~) =Z (~2 og, f) (2. 3)

j, = 4e —Z (~v~-,v,-) .
kgb

(2. 8)

S= SiS

S =S~Si,

(2. 9a)

(2. 9b)

s, =-,'(s, , -s, ,),
where

(2. 9c)

Thus we see that the current is nonzero as long as
a relative phase its maintained between the super-
conductors. This current has a maximal magnitude

of j, as given by Eq. (2. 8). This is the dc Joseph-
son effect. '

If we examine the above calculation of the tunnel-

ing current, it becomes apparant that the properties
of the superconductor relevant to the tunneling
problem can be described by three operators S,
S~, S, defined as follows:

The tunneling current J is then given by

J= —2eNi

= —2e(f/a)[Z„~, ]

1
SI ~2 Q og i

m

s, , = —&o, „-,
k

s„=~ Qo, ,2m'
s, ,=- Zo„, .

(2. io)

i t.= 2eg g Z (ohio, +o', og),"Z og, g.
kt0

= —2eg —Z (ohio~
—op„-) .

k
(2. 4)

To calculate the current to first order in g, we
simply calculate the mean value of J as given in
Eq. (2. 4) with an initial wave function ( 4o) . Thus
if we take the wave function I 4'o) to represent two
pieces of superconductors both in their ground
states with phase Q~ on the left, and phase Qa on
the right, i. e. ,

(2. 5)

where

14'z) =II' (up7+ vg e oi) I 0)

The normalization factor m is the number of elec-
tron momentum states with energy between f~
—@vDand &„, ~D being the Debye frequency. We
recall here that the attractive interaction respon-
sible for superconductivity involves electron states
with energy in the range &~+h~zD, and the sum over
k in Eq. (2. 10) is over momentum states in this
range. The operator Sz, (Sa) destroys a coherent
superposition of pairs on the left (right) han-d

superconductor, and S, J (S, a) describes the number

of electron pairs in excess of the value required to
maintain charge neutrality. Since the total charge
is conserved, we conclude that S, i +S, ~ = 0 and

by Eq. (2. 9c), S,=S, I, . Consequently, S, de-
scribes the number of excess electron pairs on
the left superconductor, and S describes the co-
herent transfer of a pair from left to right. These
operators obey the following commutation rela-
tions:

I pa) =Et (uc+ vie '
o~) I 0),

the average current is given by

(2. 6)
[s, s, ] = s,

[s', s,]= —s',

[S', S] = (2/m')S, .

(2. 11)

(2. i2)

(2. iS)

(Qe loelpa) —c. c. )

It has been shown in Refs. 3 and 5 that the com-
mutation relation in Eq. (2. 13) leads to a small
frequency pulling (of order 1/m ) of the radiation
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frequency away from the electrostatic potential.
However, since we are presently most interested
in obtaining a linewidth which is orders of magni-
tude broader than the magnitude of the frequency
pulling, we shall neglect this small effect and set

equation of motion:

8= (t/")[a, 8] = (t/@)[ae'S,'/C, e]

= [(28)'/@c]s,

or

(a. ai)

[s, s'] = o. (a. i4)
8(t) = [(ae)'/nc]s, t+ e, . (2. 22)

With this simplification, we note that the operator
SS commutes with every operator in the system,
and can therefore be treated as a c number. We
have chosen a normalization such that V= ae(s, )/C . (2. 23)

We observe that the average voltage V across the
junction is given by

S~S = 1. (2. 15) Taking the mean of Eq. (2. 22), we obtain

We can then define an operator 8,by

S= e-" . (2. 16)

To reproduce the commutation relations (2. 11)
and (2. 12), we shall require that

[e, s,]=t . (2. 1'r)

=j,(s~ —S)/2i= j, sine . (2. 19)

The maximum value of (8) is then given by j, as
it should be. Equation (2. 19) is an operator equa-
tion, the mean value of which yields Eq. (2. 7).

We next note that Eq. (2. 19) describes an ac
current when the operator 8 has a linear time de-
pendence, as is the case when a voltage is estab-
lished across the junction. The superconductor-
oxide-superconductor sandwich has a capacitance
C, the value of which depends on the geometry,
but for a typical junction, C —1 p, F. When a cur-
rent in excess of Jg ls forced through the junction,
charges pile up on one side of the oxide layer, and
a voltage of 2eS,/C develops across the junction.
To describe this situation we will 3dd to the Hamil-
tonian a term corresponding to the energy of the
capac itor,

Hc=q/2C, (a. ao)

where q = 2eS, is the total charge on one side of the
junction. The operator 8 sow obeys the following

The operator S is now recognized as the operator
described in Josephson's original paper' which
transfers a pair without disturbing the supercon-
ductors from their respective ground states. The
angle 8 is the operator corresponding to the macro-
scopic phase difference (Q~ —Q„), and S„as
mentioned earlier, describes the number of excess
electron pairs on the left-hand superconductor.
Equation (2. 2) can now be written as

a, = —(nq, /ae)-,'(s'+s) . (2. iS)

The coefficient (Nj, /4e) has been chosen to yield
a correct dc tunneling current as is shown in the
following. The current operator J is given by

z = —ass, = —ae(t/a)[a„s, ]

(8(t)) = (aeV/k)t+(80) . (a. 24)

Putting Eq. (2. 24) into the mean equation obtained
from Eq. (2. 19), we conclude that when a voltage
V is established across the junction, Bn ac current
at the frequency aeV/5 is produced. This current
will in turn emit radiation at the same frequency.
Typically this frequency is in the microwave or
infrared region. The junction can either be placed
in an external resonance cavity, or as it turns out,
the junction itself provides a good resonance cavity.
The modes of the cavity and the way the radiation
field interacts with the superconducting pair cur-
rent is discussed in Sec. IIB.

J = —(c/4vX)A (a. as)

in the superconducting region, where X is the
penetration depth. One then proceeds by imposing
continuity conditions on E„and B„across the oxide-
superconductor surface. This has been done by
several authors. ' The main conclusions are:
(i) The dominant component of the vector potential
is A„ i.e. , the direction pointing into the super-
conductor. (ii) While the penetration depth X is
usually much larger than the thickness of the oxide

B. Cavity Modes and Interaction between Radiation Field
and Superconductors

Let us consider a Josephson junction consisting
of an oxide layer sandwiched between two super-
conductors. The oxide layer bounded by supercon-
ducting surfaces serves as a resonance cavity for
microwave radiation with Q= 10-100. Let the
superconductor surfaces be in the g-y plane.
Typical dimensions of the cavity are l„= l, = 0. 1 cm
and l, = 10 cm, l, being the thickness of the oxide
layer. While the ends of the cavity are open, there
is a large impedance mismatch with the outside
world that enables us to assume that K = 0 at the
boundary. We can then imagine that standing
waves are supported in the x direction (or y direc-
tion), with wave vector k„=nv/t„. Such modes can
be analyzed in detail by solving the usual macro-
scopic Maxwell equations in the oxide 3nd the Max-
well equations combined with London's equation
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(2. 26)

where & is the dielectric constant of the oxide.
Thus the penetration of the field into the supercon-
ductors causes the mode frequency to be reduced
by as much as a factor of 10.

With these facts in mind, the normalized eigen-
function of the nth mode can roughly be written as

(2/f„l„l,)" cosk„x, i
z

i
& 2 &,

y„(x, x)=
0, otherwise.

(2. 27)

The radiation field A, can be quantized in the
standard manner,

(x g f) = Q —
p (x x)(a & i&zt i' -i A&i)

n

where

I„ the bulk of the A field is confined to the oxide
region. (iii) The oscillation has an effective phase
velocity

88 2ed
9x @c

(2. 32)

Hence in the presence of a magnetic field Il the
phase has a spatial dependence of the form 8= —Kx,
where K= 2edH/fic.

'

Returning to Eq. (2. 30) we can take as a first
approximation the expression (2. 19) for the current
j (r) =j, sin8=j, sinKx. Furthermore, due to the
small size of the cavity, the cavity modes are well
separated in frequency, and we can assume that
only one particular mode with frequency Q is ex-
cited. The integral in Eq. (2. 30) can then be
evaluated, and we can write Eq. (2. 30) as

H, = ÃT(a'+ a)(S-S'),
where

side both superconductors. The change in phase
~8 over a distance 4x is then proportional to the
total magnetic flux ~xdH, where d is the barrier
thickness l, plus twice the penetration depth X. One
then obtains the following equation for the spatial
variation of 8:

0„=ck„ (2. 2S)
xl, " 2Z sin[(K- k„)l„]T=~1 A--EQ'l

/ E2 kz

2nd the following commutation relation is obeyed:

[a„, a'„,]=8„„.. (2. 29)

For a complete description of the radiation in
the cavity, we need to take into account the loss of
radiation through leakage to the outside world and
dispersion in the oxide layer. This loss is de-
scribed by a finite quality factor Q. This is further
discussed in Sec. IIC.

Next we will couple the field to the supercon-
ductors via interaction with the current, i. e. ,

H, = (1/c) f d x A (r ) 1 (r ), (2. 30)

where j (r) is the current density.
Up to now we have not discussed the spatial vari-

ation of j (r ), and Eq. (2. 19) for the current should
be interpreted as a local relation between the cur-
rent and the local value of the phase 8(r ). From
the relation 5 = (2e/k) V it is clear that a change of
gauge V- V+ (1/c) [sy(r)/&t], A - A + Vy, implies a
corresponding change in phase 8- 8+ (2e/kc)y(r).
We then conclude that the equation describing the
spatial variation of 8 must be of the form

v8 = (2e/Kc) A (2. 31)

in order to be gauge invariant. Let us suppose
that a constant magnetic field H is applied to the
junction along the y direction. Following Josephson
the change of the phase 8 along the barrier in the
x direction can be obtained by integrating Eq. (2. 31)
along a loop in the x-z plane that extends deep in-

where the factor in [] comes from the interference
between the spatial variation of the current j (r)
and the mode function Q„as given in Eq. (2. 2V).
We note that the coupling strength T vanishes
when E=O. Hence it is necessary to have a uniform
magnetic field in order to observe interaction be-
tween the Josephson current and the intrinsic elec-
tromagnetic modes of the junction. This is so be-
cause the region of interaction is comparable to the
wavelength of the radiation field. However, in the
case of a point contact placed inside a resonance
cavity, the region of interaction becomes much
smaller than the wavelength of the radiation. This
situation is then more analogous to an atom sitting
inside a cavity and a magnetic field would not be
necessary for coupling to take place.

To summarize the total Hamiltonian for the
interacting system is given by

H=@Qa a —(kj&/2e) —,'(S+S )+ihT(a +a)(S —S )

y 2e2$2/g (2. 33)

Recall that S=e, and according to Eq. (2. 22),
e ' and e" oscillate at a, frequency 2eV/k. At the
same time, a Bnd a oscillate at their natural fre-
quency Q. We may then throw out terms in the
Hamiltonian which have this rapid oscillatory time
dependence. Hence we will neglect the j, term
which is associated with 3n ac current at frequency
2eV/k, and make a rotating wave approximation
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on the T term, keeping only the difference fre-
quency components. Our working Hamiltonian is
now

H= %la a+ (2e /C)S~+iAT(ats —aS ) . (2. 34)

C. Cavity Q and External Current

——2n —(aa p+ paa —2a~pa), (2. 35)

where n is the Planck function (J'"' —1) ', or the
average number of thermal photons in a bleckbody
cavity at temperature T. Equation (2. 35) describes
the absorption of energy from the field Bt the rate
(v/Q)(w + 1) and the flow of energy into the field at
the rate (v/Q) n, and hence implies a net loss of
(v/Q) photons per unit time.

A similar approach will be adopted to provide a
model for the current Qow. We will couple the
pair creation and annihilation operators S and S to
an external electron reservoir, S and S now playing
the role of a and a in Eq. (2. 35). The following
equation then provides a description of the increase
in the number of pairs on the left-hand supercon-
ductor:

(p),„,, „=——'A(ss~p psst —2S ps) .

We can calculate the rate of increase ( S,):
(S ) = ——'AT ([S,S]Sp S[S,S,]p)=A. (2. 3'7)

(2. 36)

Equation (2. 36) then describes a flow of A pairs per
unit time, or a current of J~, =Bed.

To summarize, our interacting system is described
by a density matrix the time evolution of which is
given by the following equation:

p = —(i/I )[H, p] + (p) + (p),„„„,,
where H is given by Eq. (2. 34); (p)o and (p),„„„,
are given by Eqs. (2. 35) and (2. 36), respectively.
A pictorial representation of Eq. (2. 38) is found in
Fig. 1.

D. Mean Equations of Motion

To gain some insight into the physical implica-
tions of the equation of motion for the density

In order to set up a description of the nonequilib-
rium problem, we need, in addition tothe Hamil-
tonian, a description of the finite Q of the resonance
cavity, as well as that of the external current
forced through the junction. A good model for the
effect of the finite Q of the cavity is to couple the
radiation field to a heat bath consisting of harmonic
oscillators or two-level atoms at temperature T."'
The result is a contribution to the time evolution of
the density matrix in addition to that implied by the
Hamiltonian given in Eq. (2. 34):

= ——,(n +1) —(a a p +pata —2apat)(
8P j P

Bt q Q

(b) (c)

FIG. 1. Illustration of the density-matrix equation of
motion. (a) Two superconductors separated by the bar-
rier and maintained at different chemical potentials. An

electron pair drops from the higher potential on the left
to the lower potential on the right, and emits a single
photon. (b) An imperfect resonance cavity having a
finite quality factor Q. (c) Illustrates the role of the
battery as electron pump, bringing the electrons from
the right-hand superconductor back to the left via wires
of normal metal.

matrix, we find it instructive to make use of Eq.
(2. 38) and write the mean equations of motion for
(a), ( S), and ( S,):

(a) = —[in+ (v/2Q)](a) + T(S),
(S) = —f[2e /KC](S, S+SS,)

= —f[(2e)'/ac](s, )(s)
= —i(2e V/h)(s),

(S,) = —Z'(aS'+a'S) +A

= —T((a)(s)*+(a)*(s))+A.

(2. 38)

(2. 40)

(2. 41)

v'(s)
i(n —~~)+ (v/2q)

' (2. 42)

We next recall that the total current J is given by
Z= 2e(S,) . Equation (2. 41) is then an expression
for the total current through the junction. At
steady state (S,) =0, and we obtain, using Eq.
(2. 42),

A = ' ((a )(S) +(a)(S ) )

~'(~/Q)(s) &s')

[0—(2e/h) V]'+ (v/2Q)'
' (2. 43)

The presence of the radiation field then gives rise
to a dc current which is balanced by the external
current when steady state is reached.

In deriving Eqs. (2. 40) and (2. 41), we have factor-
ized the mean values of products of operators.
Equation (2. 39) implies that the average radiation
field (a) is driven by the current T(S) which oscil-
lates, according to (2. 40), at a frequency ~ =2eV/8'.
The mean value (a) then oscillates at the same
frequency v and reaches the steady-state value
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E. Philosphy of Linewidth Calculation

It is of interest to note that while ~/V has been
measured to such great accuracy as to give e/k,
the linewidth of the Josephson radiation is about one
part in 10 . Compared with the laser linewidth of
one part in 10', the Josephson linewidth is rather
broad. The physical explanation behind this is
that when electron pairs tunnel across the junction
via interaction with the radiation field, the charge
number, and therefore the voltage, fluctuates about
the steady-state mean value calculated earlier.
This gives rise to a frequency modulation of the
radiation, and is the main contribution to the line-
width.

In Sec. III we present a calculation of the line-
width for the case where the resonance cavity is
assumed to be at temperature T=0. But first we
would like to outline the idea behind the calcula-
tion. We recall that the system is described by the
density matrix p which satisfies the equation of
motion

= exp[- i(2e V/k)(f —i')]

x exp{- —({f di, [(2e)'/kc]6N(t, )] ') ]

= exp[- i(2e V/@)(f —i')]

(2e)8
xexp ——,

'
dt& dt2 (6N(t&)6N(&p))1 2

(2. 52)

In order to obtain the linewidth of the emitted radia-
tion, we must calculate the number correlation
function

G„(f„t2) =(6N(t&)6N(t8)) .
This is done in Sec. III.

(2. 53)

Making the Gaussian approximation, we obtain

G8(t, f') = exp[- i(2eV/Ii)(t —f')] exp{- —,'([58(f) —58(f')]8)].

p = —(i/@)[ff, p]+ (p), + (p),.„.,&, (2. 44)
III. LINEWIDTH AT ZERO CAVITY TEMPERATURE

where

&I= k Qa~a+2e S, /C+iIIT(a e ' —ae' ). (2. 45)

Our model describes a radiation field interacting
with the supercurrent e in the same way as a
damped harmonic oscillator driven by a classical
external force. As is well known, the oscillator
will oscillate at the frequency of the driving force.
Now if we further assume that the damping con-
stant is much greater than the linewidth hp of the
driving force,

v/Q» bv, (2. 46)

i8(&& i8(t-&)' (2. 47)

The correlation function G~ arises out of the oper-
ator nature of Eq. (2. 21), which implies that the
rate at which the phase angle 8 rotates is sensitive
to the local fluctuation of the pair population S, in
the junction area.

Let us define

and

6N=S, —(S,) (2. 46)

the linewidth of the radiation will equal Av as given
by the correlation function of the driving force,

The description of the superconductors relevant
to our discussion can be spanned by the eigen-
states of S,

(3. 1)

From the commutation relations (2. 11) and (2. 12)
and the normalization condition (2. 15), we con-
clude that

slk) = lk-l), s'I» = lk+» . (3. 2)

The state vector I k) has the interpretation of rep-
resenting two superconductors both in their re-
spective BCS states with k excess electron pairs
on the left-hand side. We can now write down the
equation of motion for the density operator [Eq.
(2. 44)] in n representation for the field, and pair-
number representation for the superconductors.
In this section we shall restrict our attention to
the case where n = 0, i. e. , the cavity is at zero
temperature. The basic physics can be brought out
more easily in this case, and we shall treat the
general case of n 4 0 which requires more involved
techniques in a separate publication. Using Eqs.
(2. 34)-(2. 36) and (2. 36) and setting n =0, we obtain

58 = 8 —[(2e) /kC] (S,) f .

Then

(2.49)
~ . , (2e) k+ k'

p, , „,„.„,=-i n(n-.n')+ (k-k') p, „, „,

58 = [(2e) /hC]6N .
Equation (2. 47) becomes

(2. 50)

G8(t, f') = exp[-i (2eV/ff)(f —f')] (e """e" '" ')

(2. 51)

T[(n+ 1) P8-&, +&lh', ' (n ) P8, lk'+& '-&]

+ 7'[(n) P»+&, -&;8', ' (n'+ 1) Pa, »;8'-&

—( / vq)2{[(n 1)++ (n'+ I)] „P,». , „8.
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—2[(n+1)(n'+ 1)]' Pn „,s.,n, ~ f]'

A(Pn, n;n', n' Pn 1, ln-n'-1, 'n)' (3 3)

As discussed in Sec. IIE we are interested in
calculating the pair-number correlation function

G„(tg, t, ) =(6N(t, )6N(t2)) .

This correlation function involves only the super-
conductor coordinates and hence can be calculated
from the equation of motion of the reduced density
0„~. obtained by tracing over the radiation-field
coordinates as follows:

~k~ n~k't n (3.4)

on n
= —(1/2e) [J'(k)o„,„-J'(k+ 1)o„„n„]

An equation of motion for the reduced density
matrix can be obtained by performing 5n adiabatic
elimination of the photon coordinates from Eq.
(3. 3). This is achieved by noting that the radiation-
field characteristic time (v/Q) is the fastest de-
cay time in the problem, and hence the radiation
field follows the time development of the electron-
pair population. The time development of the en-
tire system is then described by the time evolu-
tion of the reduced density matrix p.„~. alone. De-
tails of the adiabatic elimination are discussed in
Appendix A. The resulting equation of motion for
the diagonal element of the reduced density matrix
is the following:

pairs at steady state,

k =~n k(on. n)n~. ~, .t.~. ~ (3.7)

We may approximate Eq. (3. 6) for J'(k) by expanding
J(k) about the mean value k:

8J
J(k) = J(k)+ (k —k)+ ~ ~ .

8k
(3.6)

Keeping only the first two terms of Eq. (3. 6), Eq.
(3. 5) becomes

J (k)
on, n

—
2 (on, n on+i, n i) A (on, n on -t, n-s)

1 8J= [(k —k )on, n
—(k+ 1 —k)on„,n„] .

(3.9)
I.et us examine the mean equation of motion for S,
as implied by Eq. (3.9):

J~ = 2eA = J(k ) . (3. 11)

After making this identification, Eq. (3.10) has the
following solution:

[(S,(t)) —k] = [(S,(0)) —k] exp ———t . (3 12)1 8J

(S ) =Q ko = A —— ——= ((S ) —k ).
J'(k ) 1 BJ
2e 2e 8k

(3. 10)
This leads us to identify the average tunneling cur-
rent with the external current as follows:

where

-A(, , — „,„,),

2e~ '(~/0)
ftl- [(2 )'/«](k--.')P (./2~t)'

(3. 5) This shows that (S,(t)) decays to the steady-state
value k at the rate (1/2e)(sJ/sk ). Recalling that
V = (2e/C)k, the rate can be written in terms of
more physical quantities,

Equation (3. 5) can be interpreted in terms of the
flow of probability from the k-to-(k —1) and the
k-to-(k+1) excess pair states at the rate A and

J(k), respectively. This is shown in Fig. 2.
Furthermore, detailed balance can be used to ob-
tain the steady-state solution for cr».

Next, let us define k as the mean number of

—==(R,C) ',
2e 8a

(3.13)

where Ro = (BJ/8V) ' is the dynamic resistance of
the junction.

To calculate the linewidth b, v, we need, as noted
in Sec. II,

G„(t)= (6N(t)5N(0)),

where
k+I

k- I

A'k. k

Aok-I k I

I

2c
j(k + I )ok+ I. k+ I

I

j(k)~k. k2i.*

6N(t) =S,(t) —k .

We shall have to apply the Onsager regression the-
orem, ' ' which is based on the statement that at
t =0, when we make the first measurement, the
superconductor and radiation-field density matrix
factorizes as follows:

FIG. 2. Flow of probability for having k excess pairs
on the left-hand side when the cavity temperature T=0.
Terms proportional to & are due to external current and
drive the system toward higher values of k, while terms
resulting from tunneling tend to lower the number of
excess pairs, as indicated by the arrows pointing down.

P(o) =o(0)&(0) . (3.14)

The correlation function G„(t) then describes how
the system evolves to time t.

With this additional assumption we obtain the fol-
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lowing expression for G„(t):

c„(t)= c„(o)e-'"o" ',
where

G„(0)=Tr[(6N) o(0)]

(3. 15)

(3. 16)

G (t) e-t(2sv/» )g

xexP —
2 @C J dt, dt, (6N(t~) 6N(t»)) .

(ae)' '
t

(3.19)
and o(0) is the steady-state solution to Eq. (3.9).
For completeness, a proof of the regression theo-
rem applied to this particular situation is given in
Appendix B.

Setting o»» = 0 in Eq. (3. 9), we multiply both sides
of the equation by (k —k) and sum over k. After a
straightforward calculation we obtain the following
expression for G„(0):

(((i'(0)) =
( +A) [2()) (:) '] . (3.17)

G])((t) =(—,'[J (k)/ae]RoC)exp[ —(Roc) 't] . (3. 16)

We note in this expression that the contribution
from the term proportional to A arises entirely out
of our model which has the external current flowing
in discrete numbers. The shot noise that arises can
be "smoothed out" in an experimental situation by
placing a large resistance in the external circuit.
The shot noise then becomes Johnson noise kT/R.
A discussion of how shot noise and Johnson noise
both arise out of the fact that the electric charge is
a discrete quantity is found in Ref. 15. With a, suf-
ficiently large resistance in the external circuit,
we will neglect the contribution to Eq. (3. 17) arising
from the external current and keep only the contri-
bution from Z (k), which arises from the actual tun-
neling of electron pairs with the emission or absorp-
tion of quantized photons.

Our expression for G])((t) is then

We make the change of variables

o =-,'(t, +t,), 7=t1 —t2 . (3.2o)

Equation (3.19) becomes

c (t) = e """'""
8

t/2
(ae)' '

x exp —
@

2 J do dr G„(r)

t»ADC, (3.22)

and we can extend the limits of the v integration to
infinity. We then obtain

e f&Rvl&)0 exp
' j g2 g 3 23

8e
@2 dc D

The spectrum is Lorentzian centered at frequency

v = aeV/8', (s. 24)

(s. 21)

We note that G„(r) decays to zero in the character-
istic time RDC and contributes to the 7 integral
only in this range. Furthermore the resulting line-
width hv is expected to be much smaller than
(Roc) . Hence we are interested in the behavior
of Ge(t) for

The knowledge of G„(t) enables us to calculate
G»(t, t') according to Eq. (2. 52). Standard FM the-
ory' can be applied here; the derivation is outlined
as follows:

with a full width at half-height Av in Hz,

8e
AV =

2 2 Jdc~Dr (3. as)

APPENDIX A: DERIVATION OF EQUATION FOR REDUCED DENSITY MATRIX

In this Appendix we present a derivation of the equation of motion for the reduced density matrix [Eq.
(3. 5)]. From Eq. (3.3) in the text we have

o'», =Z„p» „,, „=—T[Z„(n+1)' p», „,» „-Z„(n)' p» „,».&,,-i]+T[~, (n) p»+1, »-1;», n

-~.(n+1)"'p», .:»-i...i] —&(o», »
—~»-i, »-i) .

Next we need an equation for g„(n+1)' p», „„,» „as it appears in (Al). Hence we write

(A1)

Z (n+1)~ 'p, „,, „=— i i) —
&

— Z (m+)) p, ~, „..., „)+T(Z(n 1)p,,„,„„1/2
n

l, n+1, A n @C 2 2Q n
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-Z (n+))pn„, , „„)—T(E[(n+ p)(n+1)]' pnn„.nn, „—Z [(n+1)n] p n„n nn„ i)

Equation (A2) can be written as

where

0 —
T~

(1--,) ~— Z(n+)) p, , „,,n) =TZp, ,„,,„~'P,
(28) 1 V

(A3)

'g= —~k (Ã+ 1) P -k ln nllkn+ TZnr/(Pknnlk, n Pk-1, nlk-1, n) —T n /[(& +1)s] (Pk ak l k k f Pk l 11 l k g k g)
1/t'2 ' 1/2

—A Z„(n+1) pk l k l'k k ~k(s+1) P kk, n ll+1k, n (A4)

We now note that for a given charge configuration
k or k' the equation of motion for the density ma-
trix [Eq. (3.3)] describes an oscillating current at
a frequency 2e (k+k')/@C driving the radiation field
which has a natural frequency Q and a damping con-
stant ]//Q. Recall that the damping constant v/Q is
assumed to be large [Eq. (2. 46)]. The character-
istic times of the radiation field are then much
faster than those of the superconductors. We can
make the adiabatic approximation and assume that
the field decays rapidly to the steady state corres-
ponding to the driving force, i. e. , for a, given
k+k'. Such a steady-state solution 6'(k+k ) is well
known. It is simply the coherent state'~

~ P~ Pl,
where

P(k+ k') = . , exp{—[2ek(k+ k')/kC] f]

alization of the adiabatic approximation to a non-
equilibrium situation.

Using this ansatz, the terms in Eq. (A4) can be
written in terms of 0~,~.. We work out a typical
term as follows:

Pk, n;k, n k, k ~
( ] ll/k /s ] ll/z

~ / K~ ~

Okk@ ~+ 1 1

= &P'ok. k . (A9)

8
n = —„P k-l, k+»P*(ok, k &k l, k l—)--

Proceeding in the same way for all the other terms
in Eq. (A4), we obtain

(2e)k (k+k')
kC 2

In the number representation,
P)1 Pk111 2

ny kp (k+0 )=( ])1/p ( pl)1/k 8

We will now make the ansatz that

p».„.„,=ok kp 36'„„p(k+k ) .

(A5)

(A6)

(A7)

—»P(&k-l. k
-&k-[.k.[) -A@ok-l. k

-&k-k. k-[) ~

(A10)

l)iext we note that (S/St)ok, k can be calculated from
Eq. (3.3) in exactly the same way Eq. (Al) was ob
tained and we have the following expression:

8

st (&Ok-l, k) = &Ok-l, k+ Pok-l, k

This is similar to the ansatz made in the Born-
Oppenheimer treatment of the diatomic molecule.
There, a wave-function description can be used
and the approximation involves assuming a wave
function 11((r„R,) of the form

= —TP 2.i„(n+1)' 'p, , „,, „-Q„(n)' 'Pk l, „;k,l,„ l

+TP Q„(n)' 'p, „l, „-Q„(n+1)' 'p, , „.„,„„

'k(r„R, ) =fk(R~)4k(r„R(), (A6) "~«k l.k Ok k, k l) .-- (A11)

where Qk(r„R&) is the eigenstate with electron co-
ordinates r& for fixed nuclear coordinates R&. An

eigenvalue equation is then obtained for the function
fk(R]). Our treatment can be regarded as a gener-

If we now use the ansatz to calculate the four terms
proportional to T on the right-hand side, we ob-
tain
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8
—, ()3&k-).k) = —»'(ok-a, k

—&k-),k,a)
(B4)

krak

ok- 1 k- 1) Ap(+k-1
~ k ok 2, k-1)-~

(A12)
W'ith Eq. (A12) we immediately see that the right-
hand side of Eq. (A10) is zero. Thus )i =0 and Eq.
(A3) becomes

where

ok k(t) =- Q Ok k, k..(t)(k' —k)ok. k-(0)

s/a
g+ 1 Pk-y, n+y;k, n

tt
O, , , ,, (f)-=Z U„,„, „.(f)r, [U'(f)]',.-;...

T
—i(A -[(2e)'/tI G j( k ——,'))+ () /2Q)

At this point we recall that
(B6)

(A13)

Replacing the terms on the right-hand side of Eq.
(Al) with the aid of Eq. (A13), we obtain Eq. (3. 5)
in the text.

gk k(i) = Tr)a(U(t)p(0)U (f))

U, ,„., „.(f)r. ..-(0)
k', k" n& n' &n"

APPENDIX B: PROOF OF REGRESSION THEOREM XOk, k„(0)[U- (f)], ,

Our objective in this Appendix is to calculate, giv-
en the equation of motion for the reduced density
matrix, the two-time correlation function G~(f): k'k-

Okyk)k'kk" ( ) k'yk" ( (BV)

G~(t) = (6N(t)6N(0))

=- Trs a [U '(t)6N(0)U(t)6N(0) p(0)] .

In Eq. (Bl),

U(f) = exp[- (i/tf H„, t ]

(Bl)

(B2)

is the time-evolution operator for the combined
radiation-superconductor system governed by the
total Hamiltonian Ht, t. The symbols R and S de-
note the vector spaces of the radiation field and the
superconductors, respectively.

To make contact with our knowledge of the time
evolution of the reduced density matrix, let us con-
sider that at a time t =0 a measurement is made
and that the density operator for the combined sys-
tem is

p(0) = o(0) 8 r(0) . (B3)

G„(t)= Tr)a(5N Tra[U(t)5N(o(0) 8 r(0))U '(f)]}

= F~(k —k) Q ~P (Uk, „k,„&(t)(k' —k).
k n, n', n" k'k"

x o„, (0)r„. „-(0)[U-'(&)j.-,.",„„j

Next we allow the system to evolve according to
U(t) to a time f, at which instant a second measure-
ment is made. With the assumption (B3), Eq. (Bl)
can be written as

&t), k(0) = (k —k)&k, k(0) . (B8)

Hence we can use Eq. (3. 9) as an equation for
~k, k«),

a'k' k(t) = —[Z (k)/2e] (o,', -ok') k)) /I ((rk k
- o-k' . k .)

1 BJ——= [(k k) ok, k (k+ 1 ——k) &k.),"—)] .
2e

(B 9)
Multiplying both sides of Eq. (B9) with (k —k) and
summing over k, we obtain an equation of motion
for G„(f),

(B10)

or

G (i) G (0) -()/aa)(aJ /ak)t (Bll)
with the initial condition G„(0) given by

G (0) =Z, (k —k)o", ,(0)=Z, (k —k)'o', ,(0) . (B12)

Noting that the only time dependence of both o'(f)
and &(f) as given by Eqs. (B5) and (B7) is contained
in the matrix O(f), we conclude that &'(t) satisfies
the same equation of motion as o(t), the only dif-
ference being that they have different initial condi-
tions, i. e. ,
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Green's-function theory is used for the calculation of the specific heat of superconducting
transition metals containing nonmagnetic impurities at low temperatures, T 0. It is found
that in this temperature region, the s-band specific heat is lowered by the presence of the
nonmagnetic impurities. The logarithm of the s-band specific heat obeys the following re-
lation: lnC, =lnC~ —I'/k&T for T % 0, where C, ' is the s-band specific heat for a pure two-
band superconductor, and I' is proportional to the density of impurities, the density of states
at the d-band Fermi surface, and the strength of the interband impurity scattering. This re-
lation agrees very well with the low-temperature experimental data of Shen, Senozan, and
Phillips ~

I. INTRODUCTION

It was first proposed by Suhl, Matthias, and
Walker (SMW)' that at low temperatures, both the
s-band and the d-band electrons in transition met-
als, such as niobium and vanadium, can be in the
superconducting phase. This model is known as
the two-band model. Recently, the two-ba, nd model
has received considerable attention, since it does
succeed in explaining various physical properties
of the superconducting transition metals. 2 On the
side of experiments, particularly noteworthy are
the specific-heat measurements made by Shen,
Senozan, and Phillips in the low-temperature re-
gion of the niobium superconductors. They notice
that there are two slopes appearing in the logarithm
of specific heat versus T ' plot, a larger slope near
the transition temperature and a smaller slope in
the low-temperature region, T & 0. Based on the
BCS theory and the SMW model, they identify the

two slopes as due to the existence of two order
parameters in the two-band system, 6, and A~,
for s band and d band, respectively. The two-
slope behavior in the lnC versus T ' plot is not limited
to pure niobium crystals. The same behavior is
also observed in imPure niobium crystals, but then
the values of the specific heat are generally lowered
by the impurities in the temperature region,
10 'T, & T &0. A simple analysis of the data for a
pure niobium superconductor has been separately
given by Sung and Shen. The analysis is simple
in the sense that they have only fitted the BCS
theory for Pure one-band superconductors to the
data of Shen et al. to obtain the values of 6, and

It should be pointed out that so far no system-
atic attempt has been made to interpret the specific-
heat data, of impure niobium superconductors,
particularly in the most interesting low-temperature
region, 10 'T, &T&0.

Recently, a detailed investigation of the thermo-


