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The expressions for various possible mechanisms under the point-multipole approximation
which contribute to the zero-field splitting parameter D in the spin Hamiltonian Hs=Df3S~-S(S+1)]
for a paramagnetic 'S ion in a trigonal symmetry have been derived. Important differences
have been noticed in this axial symmetry in contrast with the results in the tetragonal symmetry
considered previously. The applications of the expressions to two hypothetical cases and the
real case of CdC12. Mn ' reveal that both the spin-spin and spin-orbit interactions are important.
In the case of CdC12. Mn ', the spin-orbit contribution (- 10.43x10 4cm ) cancels a large part
of the spin-spin contribution (+15.35x10 ' cm-'), giving the value D=+4. 92x10 cm . This
compares favorably with the results (at room temperature) of & + 5 x10 4 cm for D from ex-
periments on single crystals and - + 1 x10 4 cm from experiments on powdered samples.
The latter approximate result from powdered samples has been deduced by reducing the uncer-
tainty in D using the graph illustrating the experimental variation of D with temperature. For
CdCl2. Mn ' it has also been pointed out that the value of D varies from —2. 11x10 4 cm to
+ 10.49x10 cm if one considers the existing uncertainty in the crystal structure para-
meter obtained from x-ray diffraction. In the present study, the presence of higher multi-
poles because of the ions, and the distortion of the lattice surrounding the magnetic ion,
have not been taken into account.

I. INTRODUCTION

It has been shown recently' that the zero-field
splitting of a S transition metal ion in tetragonal
and rhombic symmetries can be explained reason-
ably well on the basis of a point-charge point-mul-
tipole model. The following mechanisms involving
spin-spin and spir. -orbit interactions were treated
in detail: (i) the Blume-Orbach(BO) mechanism, ' '5

(ii) the spin-spin (SS) mechanism proposed by
Pryce, ' (iii) the Orbach-Das-Sharma' (ODS) mech-
anism, and (iv) the Watanabe (W) mechanism' and
also its corrected form in the presence of the cubic
field (the WC mechanism). The contribution from
the BO mechanism was found to be most dominant
and the ODS and WC contributions, being of the
same order of magnitude and opposite sign, were
shown to nearly cancel each other.

Though the procedure used here is the same as
given in Ref. 1, every step has to be repeated to
make sure that the same relative phases of the wave
functions and matrix elements have been retained
throughout the work, since the functions in the tri-
gonal systems are different and changes in relative
phases may lead to wrong signs in various expres-
sions for the splitting. Thus, in Sec. II we diag-
onalize the Hamiltonian containing free-ion terms
in a cubic field in trigonal axes system to obtain
the representations '1"4 of the cubic field. One is
required to repeat the diagonalization procedure
here since different amplitudes and MI values of
'F and G free-ion terms are now required to con-
struct 'F4 representations. Following the lines of
Ref. 1 the quartet states are then admixed into the

S ground state via spin-orbit interaction. The ex-
pressions for D, the zero-field splitting parameter
in the spin Hamiltonian

Hs = D[3$ g
—S (S + I)]

are then derived for BQ mechanism in Sec. III.
The ODS and WC mechanisms (and also W mecha-
nism for comparison) are considered in Secs. IV
and V, respectively. As regards the spin-spin con-
tribution we use the expressions derived in tetrag-
onal case, the explanation for which is given as fol-
lows.

The BO, ODS, and WC contributions are different
in the present case than in tetragonal symmetry
since, as mentioned above, different combinations
of F and 'G states are now admixed into the ground
state S. On the other hand, the spin-spin mecha-
nism as derived in the tetragonal case and the W
mechanism neglect the presence of the cubic field
and therefore do not involve the effects of cubic
field admixtures of higher states. As shown in
Ref. 1, the corrections to the W mechanism by the
presence of the cubic field results in the WC mech-
anism. The spin-spin mechanism should also be
corrected similarly. However, it can be shown
that mixing of higher states by the cubic field into
the ground state will not change the results drasti-
cally. In the presence of the cubic field the spin-
spin contribution should be written as

D - &'S(3d')
~
H~

~

'r) '

instead of (BS(3d')
~
Hss (BS(3d')) considered in Refs.

I and 3. The state ]
'I')' stands for the sextet rep-
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The Hamil. tonian of a 3d magnetic ion in e trigonal
symmetry may be written as

H=Hp Vc++ Vso + Vss + Vz+ V2+ V3+ V4 . (3)

The first term corresponds to the free-ion Hamil-
tonian and Vc is the cubic field (in trigonal axis
system}

V, =B,'(4v/9)"'P, r', (Y,'(i)

+('8 'tY4(i)- Y4(i)11 (4)

resentations of the cubic fie1.d using a prime to show

that they are perturbed to the first order by the ax-
ial field. The unperturbed [ I") representations
are linear combinations of the sextet terms (6S,
aeD, z E, z 'Po, etc. ) of the free-ion admixed by
the cubic field. In Refs. 1 and 3 only the contribu-
tion from the lowest term S was retained. This
can be justified since the separations of higher
sextet terms from the ground state are about an
order of magnitude larger than the cubic field split-
ting, thereby giving a negligible contribution to D.
An important effect of this is that the spin-spin
contribution remains the same in both trigonal and

tetragonal cases as long as the axial field remains
the same. In view of the above arguments one may
use the expressions for D» written in Ref. 3 for
calculations in trigonal symmetry.

The crystal fields required to estimate D for var-
ious mechanisms are given in Sec. VI. In order
to assess the relative importance of different mech-
anisms, we first discuss two hypothetical cases in
Sec. VII. One hypothetical case deals with the ax-
ial fields generated at a Mn~ ion due to two single
positive charges situated on a threefold axis of
symmetry of the cubic field. The other hypotheti-
cal case is concerned with the axial fields produced
on a magnetic ion by three single positive charges
arranged on the vertices of an equilateral triangle,
the plane of which is normal to a threefold axis of
symmetry of the cubic field. In both cases it is im-
portant to remember that the magnetic ions are
located in a cubic field and the axial fields are the
perturbations over it. The first case should not
be confused with the case of a single-charge con-
sidered in Ref. 1 where the charge lies on a four-
fold axis of symmetry of the cubic field. These
two cases represent different situations and there-
fore are not identical (even when the axial fields
in both the cases happen to be equal). Section VII
also includes theoretical estimates for a real case
of Mn ' in CdCl~ where the results are compared
and discussed in view of the available experimen-
tal data, .' '" Sec. VIII is devoted to the conclusion.

Il. DIAGONALIZATION IN A CUBIC FIELD AND
PERTURBATION BY SPIN-ORBIT INTERACTION

AND AXIAL FIELDS

The terms V«and V~ in Eq. (3) are the spin-orbit
and spin-spin interactions. The fifth, sixth, and
seventh terms, the axial crystal field terms of the
first, second, and third degree, respectively, are

V, = —Boz(4zz/3)V'Q, r, Y,(i),
V'- B—'(4v/S)V'L r,' Y,'(i),

V 3
-——

B 3(4zz/7) P z
r z Y 3 (i ) .

(sa, )

(5b)

(5c)

The last term V4 in Eq. (3) is the "unbalanced"
axial field of the fourth degree,

V, = —(8,')'(4zr/9)~'P, r', Y,(i) .
In this paper, we shal1. be concerned with a mag-

netic ion present in a trigonal symmetry especially
where odd-degree crystal field terms do not survive.
Therefore, one may ignore, at present, the pres-
ence of such terms as Vy and V3 in the Hamiltonian
(3). However, such terms may be important for
magnetic sites where these do not vanish; in those
cases, the effect of these must be taken into account.

In order to perturb the S ground state with spin-
orbit interaction in the presence of the cubic field
we use essentially the same treatment as given in

Ref. 1 with the difference that the form of the repre-
sentations of the cubic group ( (I' F) M)rchanges
so as to correspond to the trigonal symmetry. The
new functions } I,(~1',)Mr ) are listed in the Appen-
dix. By comparing these functions with the corre-
sponding functions in Ref. 1 one notes that different
signs, amplitudes, and M~ values of the quartet
states are required to construct these functions.
For example, the functions ) G(~I'4)1) contain the
sum —(g)~ ] Gl) —(8)~ } G -3) in tetragonal sym-
metry against —(~za)" ] G4) + (~za)~ ( Gl) + (za)~ IG —2)

in trigonal. symmetry.
Thus the spin-orbit admixed wave functions

)
~ SMz)' in our case are the same in form as Eq.

(14) of Ref. 1 with the important difference that the
functions [P( I'4)Mz ), ) E( I'4)M„), and ] G( I'4)M„)
are appropriate to the trigonal symmetry as listed
in the Appendix in terms of the states ) I,M~) of a
free ion. The wave functions ] SMz)' require the
knowledge of the parameters zz, , P„y, , h„a(Mz),
b(Mz), and c(Mz), which must be recalculated in
our case since the relative signs of these param-
eters (especially zz, , P, , y, ) directly affect the signs
of the terms in the expression for D in BO, ODS,
and WC mechanisms (which involve the effects of
cubic field mixing). It turns out that our calcula-
tions give the same values of e&, P „y&, and 6, as
given in Table I of Ref. 1 [and a(Mz), b(Mz), and

c(Mz) as in Table II in the same reference] if one
uses the same values of the free-ion sylittings and
10 Dq as given in Ref. 1. Though the values of these
parameters have not altered in going from tetrag-
onal to the trigonal case, it does not however mean
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that the splitting parameter D from various mech-
anisms will not change from the tetragonal to the
trigonal case.

For the ODS mechanism one also needs the yer-
turbations by the axial field on the one-electron
free-ion 3d states, These have already been ob-
tained in Ref. 1 and may directly be used here (with
a proper check that no wrong relative phase differ-
ences are introduced by doing so).

III. BO MECHANISM

The BO mechanism involves the first-order ma-
trix element of an axial field between the spin-orbit
admixed ground state I 8 Mo)' constructed in Sec.
II. In trigonal symmetry both the second- and
fourth-degree axial fields give nonvanishing con-
tributions to the zero-field splitting. For purposes
of comparison, we separate these parts. The first
part, arising from the second degree crystal field,
will be denoted by Dgp y Thus, making use of
Eqs. (29) and (30) of Ref. 1, with H„as given by
Eq. (5b), one obtains

Dso -i = (~&14)&o &r') &'pea p „
where the various symbols carry the same meanings
as in Hef. 1.

The other part is derived in a manner analogous
to the one given above but using Eq. (6) for the ax-
ial field H,„. Denoting it by Dpp 2 we have

Dao, = —(W5/189)(Bo)' (r') O'P, „(7P„,+ 4P,o ),
(8)

again using the same symbols as in Hef. 1. It must
be noticed that the BO-1 contribution [Eq, (7)] is
finite here while it came out to be identically zero
in tetragonal case (Ref. 1). The reason for this
is the following. As mentioned in Sec. II, the
functions I L( I"4)M„) involve different combinations
of components I'LMz, ) of the quartet E and G states
in the two cases. In other words, the mixing of
these states by the cubic field is different along
trigonal and tetragonal axes. The functions
IL( I'&)Mr) (and therefore different I LMz) compo-
nents of F and 'G states) are further admixed into
one another by the application of the axial field [see
Eq. (3) of Ref. 1]. In the tetragonal case the mix-
ing is such that the contribution to D, as a result
of mixing of I 6+ 1) and I E+ 1) by the Vo axial
field, is equal and opposite to that from the mixing
of I'G+3) and I'E+3) [see Eqs. (3) and (15) of
Ref. 1]. Moreover, the other components I LM~)
do not get admixed by the axial field V2 and hence
do not contribute to the splitting. Consequently,
the net splitting in tetragonal symmetry from the
BO-1 mechanism vanishes. This is in sharp con-
trast with the situation in trigonal system where
the charge density of I L(41",)Mr ) states along the
trigonal axis [compare expressions (Al) in the Ap-

This process involves terms proportional to the
axial field and spin-orbit interaction contributing
both in the second order. Following the procedure
of Ref. 1,

Dono ———(I/18~5 (Bo) f P~„[2(M 4oM)+ 3Mo)P„~

+ (14Mo —11M' —3Mo)P a a l ~

Here Eq. (5b) has been used for the axial field.
The quantities M stand for

(9)

M = Z a, . (uo~ Ir Iuo", .), (10)
ls = 0, 2, 4

where the coefficients a, , are defined in Eq. (37)
of Ref. 1. For other symbols one may consult Ref.
1.

One again notes that both sign and magnitude of
the coefficient of p p „ in Eq. (9) have changed
while only the magnitude of the coefficient of P~~P»
has changed from the tetragonal to the trigonal case

pendix with the corresponding expressions in Ref,
1]isdifferent than along the tetragonal axis in the
previous case. As a result, the part of the splitting
produced by the mixing of I'6+1) with I'F+ 1) by
the axial field V2 does not cancel that yroduced by
the mixing of I G+ 2) with I Es 2). Moreover, the
contribution obtained by mixing I

4G + 3) with I E+ 3)
by V2 does not vanish. Hence, the net splitting
in trigonal symmetry from the BO-1 process comes
out to be finite.

On account of the reasons associated with the
charge density being different along the tetragonal
and trigonal axes, it is not difficult to understand
why we get different expressions for D in trigonal
and tetragonal cases by the BO-2 process. On com-
paring Eq. (8) above and the corrected' Eq. (32) of
Ref. 1 one finds that the coefficient of P p „has
changed not only in magnitude but also in sign,
whereas the coefficient of p zP „has changed in
magnitude. The reasons in terms of the mathemat-
ical arguments are that (i) the matrix ( I'4 OIV, I'I', 0)
vanishes in the tetragonal case while it is nonzero
in the trigonal case; (ii) the matrix elements
( I"4+1IV~I I'4+1) have different values since in
tetragonal case the contribution comes from
('F+3I V, I'6 +3) while in trigonal case it comes
from ('F+2I V, I'G+ 2); and (iii) the relative signs
and amplitudes of I'LM~) states constituting the
quartet I'4 functions are different in the two cases.
The change in sign of the term P + „ is mainly due
to different signs of the terms containing I'LMr, )
states.

Al.so, since this term is dominant in expression
(8), the contribution of the BO-2 mechanism chang-
es sign from the tetragonal to the trigonal situa-
tion. This point will be clear from the numerical
values in Sec. VII.

IV. OOS MECHANISMS
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[compare Eq. (9) above and Eq. (35) in Ref. 1].
The reasons for this are similar to those discussed
in Sec. III for the BO process. Concisely, both
amplitudes and relative signs of the )'LM2) states
of E and G terms appearing in the I'4 functions are
responsible for such changes. One important point
to be noted is that the matrix element
( G —21 &2 I F- 2) contributes additionally to the
splitting in trigonal case while no such matrix ele-
ment appears in the other case. This is the main
reason why the coefficient of p ~ p „ is quite differ-
ent in the two cases. Finally, the term containing

P„P „ is dominant in expression (9) (as will be seen
in Sec. VII) and since it has changed sign from the
tetragonal to the trigonal case, the ODS contribution
changes sign from one case to the other, as it is
true for the BO-2 contribution.

V. W AND WC MECHANISMS

The WC mechanism considers the admixture of
)4P), ) F), and ) G) states into the ground state by
spin-orbit interaction. The axial field then admixes
the ) D) states into the spin-orbit perturbed ground
state. Proceeding as before, one gets

VI. CRYSTAL FIELDS

As is clear from Eqs. (7)-(9), (ll), and (12),
one needs to evaluate the crystal fields (82) and
(B40)' in order to estimate the zero-field splitting
parameter D. In this section we give explicit ex-
pressions for these crystal fields. If the crystal
fields are assumed to be generated by external
point charges q~) e) located at (X1, I'&, Z&) with the
paramagnetic site as an origin, one has

B2 =Z~ q1(3ZJ —Rq )/R1,

(14)

where

(15a)

(B4), = —Zg q1(35Z1 —30 Z1 R1 + 3R1)/R~, (15b)

35 jj2

(B4), = Z1 q1Z1X1 (X1 —3I'~ )/R1, (15c)

(B4)„,= —Z1' q~(35Z J
—30Z~R1 +3R~ )/Rj, (16)

(r2) 2 (BO)2
DS

351/2
(B'4)„, = Z,"'

q, Z, X,(X,' — 3,'I)/ ',R. (17)

[(Pea 21 Pe )2+ 441 (Pe2) ) ~

where the parameters used here have already been
defined in Ref. 1. For comparison, we also give
the expression which one obtains using the W mech-
anism:

(r2)2
Dw=-

70 ~
—

~2 (B2)',
DS PS

(12)

with the symbols defined in Ref. 1.
One notes again that because of the different

weights, signs, and values of Mz of ) LM2) in 'I',
functions, one gets different expression for D„~ in
trigonal case [compare Eq. (11) above with Eq.
(27) of Ref. 1]. Since the relative weights of 'P
states have not changed in the trigonal case against
the tetragonal case [see Eq. (Al) in the Appendix
and Eq. (15) of Ref, (1)], the term containing P
remains intact. Also the sign and weight of ) Fl)
state is responsible for changing the factor P to —~
in Eq. (11). The last term in Eq. (11) appears be-
cause an additional matrix element ('D —2) V,)'F- @
also contributes to the splitting in trigonal case.
One may also note that the outside sign in expres-
sion (11) has not changed from the tetragonal to the
trigonal situation, which is clear from the fact that
D„~ involves absolute squares of matrix elements.
The situation is not the same for BO —2 and ODS
contributions which have already been investigated
in Secs, III and IV. This will be further clarified
from the numerical values in Sec. VII.

Here X&, Y&, Z&, and R& are in units of ao, the
Bohr radius; the parameter B20is in units of e2/

2a0, and (B4)', (B4)„„(B4)„,, (B4), , and (B4), are
in units of e /2a0. In Eqs. (15) c stands for the
cubic environment whereas in Eqs. (14), (16), and
(17) nc designates the noncubic environment of the
magnetic ion in a given host lattice. In writing the
form of (B4)' [Eq. (14)] it has been assumed that
the orientation of the X and Y axes relative to the
Z axis (symmetry axis) is such that the cubic crys-
tal field retains the form of Eq. (4). This is essen-
tial, as otherwise the effect of a part complemen-
tary to (B,')„„ that is,

354'
(C', )„, = Q,"'

q, Z, Y,(Y,' —3X,')/R~ (18)

must be accounted for to express (B4)' correctly
It will be seen that Eq. (18) gives vanishing results
for the axes system we have chosen in Sec. VII.
In that case one may use Eq. (14) directly to evalu-
ate (B,')'.

VII. RESULTS, COMPARISON WITH EXPERIMENT,
AND DISCUSSION

The expressions derived in Secs. III-VI will
now be employed to estimate the zero-field splitting
parameter D in the following three different cases:
(i) a hypothetical case which consists of two single-
positive charges at the points (0, O, a) and (0, 0, —a)
with some aypropriate value of a to produce a crys-
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tal field at the origin where the magnetic ion (Mn )

is located; (ii) the case dealing with the axial sym-
metry at the magnetic ion at the origin where the
axial crystal field is generated by three single-pos-
itive charges on the xy plane; and (iii) the case of
the Mn ' ion in CdC1~. For all these cases the odd-
degree crystal field terms vanish. The first two

cases are investigated in order to assess the rela-
tive importance of various mechanisms in different
environments of cbarges. The third case consider s
the real case of CdC12: Mn where experimental
results are available for comparison.

For the evaluation of Eqs. (7) and (8) for D»,
RIll Ds o 2 one requires the values of P, P
and p „. These may be obtained using their defi-
nitions and Table I in Ref. 1. One finds, in units
of 10 ' cm, that P = 3. 821, P ~

= —0. 1327, and

P~„= 1.295 for 10 Dq = 10000 cm '. As regards
the spin-spin coupling constant, one may assume
that f =300 cm for Mn . The values of (r2) and

(r4) are calculated to be, respectively, 1.5482 and

5. 5126 a. u. using Watson's Hartree-Fock functions
for 3d electrons. '2 For D„c and D„[Eqs. (11) and

(12)] one further needs the energy denominators
which are taken as, in units of 10 cm ', dos
= 3, 2347 Aps = 2, 9205, We will make use of these
values for the parameters to estimate D from vari-
ous mechanisms (BQ, ODS, W, and WC) for all the
three cases. As for the spin-spin contribution, as
discussed in Sec. I, one may either use the rele-
vant expressions from Ref. 3 or obtain it directly
on multiplying the numbers under spin-spin mech-
anism in Table IV of the Appendix of Ref. 3 by the
appropriate ratio of axial fields B~.

A. Case I

This case considers the zero-field splitting of
the Mn ion at the origin due to perturbing axial.
fields created by two unit-positive charges placed
on a threefold axis of cubic symmetry at a distance
4ao from the origin, which may be thought of as a
characteristic distance in crystals with trigonal
symmetry. The present case must be compared
with the case of a single charge considered in Ref.
1. The two cases are completely different since
the charge distributions of the electronic cloud of
a magnetic ion along [111] is not the same as
along a. [100] direction of a cubic crystal, especial-
ly when the axial fields (even though equal) are ap-
plied along these directions. The cubic field enters
the picture because contributions from BO, ODS,
and WC mechanisms involve p, p z, and p „,
which depend on the strength of the cubic field and
the probability of mixing quartet states into one
another to form 1"» functions, which in turn depend
on the strength of the cubic field.

As regards the crystal fields in the present case
one finds from Eqs. (13)-(17)that B0=6.250x10 '

TABLE I. Results for the zero-field splitting para-
meter D in the spin Hamiltonian Hs= D[3S~- S(S + 1)]
arising from various mechanisms for two hypothetical
cases and the case of CdC12. Mn '. (Values of ~ are
included just for comparison with ~c.)

Dso-i
Dso-2

d~s
a d d

88

Total

Case I

—26. 24
—85.40
—32.62

+3.16
—16.22
—45. 68

Case II

+19.68
—48.04

+24. 46
2 ~ 37

+12.16
+34.25

CdC12. Mn '
+8.82
—6.80

+10.96
—1.06
+5.45

+15.35
—24. 14
—37.87
—29.56
—56, 12

—4. 85
—7.60
—5.94
+ 4.92

&+5b
D(Expt)

The spin-spin contributions may directly be obtained
from Table IV of Ref. 3 by weighting with axial fields
B2 in various cases.

"Result from a single-crystal sample; see Ref. 10.
CResult from powdered sample; see Fig. 3 and Ref.

11.

DoDs

Ar
D(Total)

and (B,)' =39.06x10 ', where Bz is in units of
e /2ao and (B4)' in units of e /2aso. Here, the value
of o. [Eq. (14)] is not effective since (B,)„, vanishes.
Using these values of B,'and (B,) ' the zero-field
splitting parameter D for the BO, ODS, WC, and
W mechanisms are then calculated from Eqs. (I)-
(9), (11), and (12). The spin-spin contribution is
quite straightforward to estimate from the relevant
values in Ref. 3 and 82 for the present case, as ex-
plained earlier. The contribution from the W mech-
anism is included just to compare with that from
the WC mechanism. The calculated values of D
from these mechanisms are listed in Table I. It is
clear from this table that all the mechanisms con-
tribute results of the same order of magnitude and
are therefore equally important. One point to be
noticed is that these mechanisms give the same
relative sign to D. As regards the comparison be-
tween the WC and W mechanisms, the splitting from
the WC mechanism comes out to be about 26% lar-
ger than that from the W mechanism. The ODS
and WC mechanisms have the same relative signs
and therefore they do not cancel each other as used
to be the case in tetragonal and rhombic fields.
Instead, they reinforce each other with the result
that the sum of D»s and D„c, namely, —110x10"
cm ' is almost equal to the total BO contributions
(- 112x 10 cm ').

Since the results in trigonal symmetry are pro-
foundly different from tetragonal symInetry, it may
be difficult for a reader to see how the results in
these symmetries approach each other as the cubic
field vanishes. The curves in Fig, 1 clarifiy this
point, where the individual splittings from various
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FIG. 2. Th ee positive-unit charges producing tri-
gonal field at the Mn ' ion.

3 4 5

10 Dq (in units of 10 crn'I

RGURE — 1

FIG. 1. Variation of D for various mechanisms as
a function of 10 &q in tetragonal (Te) and trigonal (Tr)
symmetries corresponding to the crystal fields for
Case I in text. "Total" designates the sum of the
contributions from BO, ODS, WC, and SS mechanisms.

mechanisms and the total splitting are plotted as a
function of 10 Dq in both tetragonal (Te) and trigonal
(Tr) symmetries. When 10 Dq becomes zero, the
BO and ODS contributions become zero, whereas
the WC contribution approaches the % contribution
in both symmetries. The W and SS values are
marked on the left-hand side of the figure. The to-
tal contribution also approaches the sum of W and
SS contributions in both symmetries.

B. Case II

In this case the perturbing axial field is assumed
to be generated by three unit-positive charges
placed in the xy plane on the vertices of an equi-
lateral triangle where the z axis is a threefold sym-
metry axis of the cubic field in which the magnetic
ion is located. The charges are assumed to be at
a distance 4ao from the magnetic ion at the origin
(see Fig. 2). The crystal fields Be and (B4e)' (Sec.
Vi) in this case are —4. 688x 10 s (in units of e /2ae)
and 21.97x10 (in units of e /2att), respectively.
The value of a (Eq. 14) is not required since (B4)„,

vanishes in this case too. The results from various
mechanisms may now be estimated using these val-
ues of Bee and (Bse)' Th. e calculated values for D
are listed in Table I. One notices again that the re-
sults from all the mechanisms are comparable.
However, contrary to the conclusion from the first
hypothetical case, the contributions D~o, and D~o,
are opposite in sign. Also, the relative signs of
Dgp i and Dss are the same, diff ering from the
signs of Dao s, DotM, and D„c (or D„). Again,
the WC mechanism is about 26% higher than the W

mechanism. In contrast to the results of tetragonal
and rhombic symmetry, but in agreement with the
previous case, Doos and D„c agree in sign and
therefore do not cancel each other.

A comparison between the results obtained for
the two hypothetical cases (see Table I) reveals that
the total contribution to D has the same relative
sigil.

C. Case of CdC12 . Mn2'

The crystal structure of CdC12 belongs to rhom-
bohedral symmetry and space group DM (R3rtt).
Pauling and Hoard" have given crystal structure
parameters from x-ray diffraction for a hexagonal
unit cell of CdClz which contains three molecules.
These parameters together with the coordinates of
the Cd ' and Cl ions are listed in Table II. The
successive Cd' layers in CdC12 crystal are sepa-
rated by two Cl layers. As for the position of
Cd~' ions, they are situated in the octahedral holes

TABLE II. Crystal-structure data by Pauling and Hoard for a hexagonal unit cell of CdC12 containing three molecules.

a„(in A,) Cg(in A)

Positions of
Cd2' ions

(0, 0, 0),

Positions of
Cl ions

3.S5 17.46 0.25 +0.01 4, 3, S),

2 1 2(3, g, 3).



R. R. S HARMA

between the nearest Cl layers. Vfe attempt to in-
terpret the zero-field splitting of the Mn

' ion which
substitutes for Cd2' ion in the crystal. Though it
is not strictly true, it will be assumed that the ions
surrounding the Mn ' ion occupy the same positions
as they occupy in pure CdC12. It means that the
lattice distortion effects due to the presence of the
magnetic ion are neglected.

One may now compute the crystal fields B~ and

(8,) from the expressions (13)-(17) and obtain
Dao-i, Dao-a, Dss DoDs, Dwc and D„. In order
to assess the relative importance of various neigh-
bors in explaining the splitting we first calculate
the parameter D by considering successive neigh-
bors starting with the first nearest up to the fourth
nearest neighbors. The axes systems we have cho-
sen are such that the Z axis lies along the crystal
c axis [001], and Y axis along [100]with the X
axis appropriately chosen to preserve the right-
hand coordinate system. In Table III we list (i)
the number of neighbors of a particular type (first
nearest, second nearest, etc. ), (ii) the distance of
the neighbors from the Mnz' ion, and (iii) the com-
puted values of (82), and (8,) using Pauling and
Hoard's data (Table II) with u= 0.25. The param-
eter a needed to compute (84) [Eq. (14)] has been
found to be (Q~z from Eqs. (15). From the crys-
tal fields (Bz) and (84) it is easy to calculate D
from various mechanisms. The calculated values
are shown in Table III.

It may be observed from Table III, that the con-
tribution due to the first and second nearest neigh-
bors gives results with a negative sign. On the
other hand, the contribution due to the third and
fourth nearest neighbors is positive in sign. Be-
sides this, the large contribution comes from the
third and fourth nearest neighbors. It depicts,
therefore, that a large number of surrounding ions
must be taken into account to ensure correct value
of D under point-charge approximation.

For estimating the crystal fields due to a suffi-
ciently large number of surrounding ions we employ
a method ' of direct lattice summation. The meth-
od consists of dividing the crystal into different
spherical shells about the magnetic ion with the ra-
dii na~ where n = 1, 2, 3, . . . , etc. , and a„ is the a

dimension of the hexagonal unit cell of CdClz (see
Table II}. Next, neutral groups each consisting of
one Cda' ion and two Cl ions were formed in each
crystal cell. For example, a neutral group consists
of a central Cd ' ion at (x, y, z) and two Cl ions at
(x, y, z+u) and (x, y, z —u). Such a neutral group
contributes to that shell in which the Cd ' ion is
located. Then, starting with the smallest shell the
contributions to the crystal fields from larger shells
were added up one by one until convergent results
were obtained. The convergence is important in
our case for estimating (8) correctly in Eq. (14),
since it involves the difference of two large and
nearly equal quantities (8,)„, and n(84')„, . It is
worth pointing out that the crystal field (8,) ac-
counts for the departure from the cubic field; it
vanishes when the crystal symmetry is cubic.

In our calculations the crysta. l fields Bz and (84)
converge when one sums up the contributions from
the shells within the radius 7a~. The computed
results (using Table II with u = 0. 25) from the neu-
tral groups contained in the sphere of radius 7a„
are 820= —8. 107, (8,)„, = 35. 5812, (8,')„, = 34. 9475,
and (84) = 6. 3421, where 82O is in units of e /2a„
and the other crystal fields in units of e'/2a„'. The
parameter n needed for (84) [Eq. (14)] comes out
to be (~} and the XYZ axes system used here has
been described earlier. Just for comparison we
also give results from spheres of radius 15a&.
Bz = —8. 091, (84)„, = 35. 5806, (84)„,= 34. 9473, and

(84) = 6. 3416, where again Bz is in units of e /2a„
and other crystal fields in units of e'/2a'„.

Making use of the crystal fields (Bz) and (84)
from sphere of radius 15a& we now estimate D~o &,

Dao-2, Dss, DoDs Dwc and Dw ~ These are tabu-
lated in Table I. Here again all the mechanisms
are equally important. As seen in two hypothetical
cases, it is also true in this case that the ODS and
%C contributions are as large as other contribu-
tions. These two mechanisms have the same rela-
tive sign and therefore do not cancel each other.
This differs from the results for tetragonal and
rhombic symmetries. As regards the comparison
between Dwc and Dw we notice again that the inclu-
sion of the cubic field increases the W contribution
by about 26%. The combined result of Dpp y and

TABLE III, Calculated values of the crystal fields 132 and (B4)' using Pauling and Hoard's crystal-structure data
with u=0. 25 in CdCI2 at Cd+ site for first, second, third, and fourth nearest neighbors. B2 is in units of 10 e /2a()
and (B~4)' in units of 10 4 e /2a(}. Also, D values are given in units of 10 cm

Type of
nearest

neighbors

First
Second
Third
Fourth

Number of
nearest

neighbors

6
6
2

12

Distance from
Mn2' in units

of a„
0.6898
1.0000
l. 1324
1.5107

gyo
2

0.4748
—3.116
—0.7127
—0.6199

—l.533
4.415

—l.047
+0. 5220

D
(total)

—2.75
1 ~ 21

+ 9.05
+ 4.91
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D» gives a large positive value +24. 17&10 cm '.
On the other hand, the sum of D~o &, Doos, and

D„c gives a comparable negative value —19.25
x10 4 cm '. The total from all these terms results
in a small value", +4. 92&10 cm ', for 8, which

compares with the corresponding resu]ts &+ 5 x10-4

cm (at room temperature) from the electron para-
magnetic resonance experiment on a single crystal
of CdClz containing Mn ' and &+ 1 &&10 4 cm ' (at
room temperature) from experiments on powdered
Cdclq.

Although the experiments at room temperature
have not been able to give a definite value for D,
it is possible to show that the experimental value
lies close to + 1& 10 cm '. For this purpose we

plot in Fig. 3 the experimental 3D values fox vari-
ous temperatures as obtained by Hoeve and Van
Ostenburg. ' Hoeve and Van Ostenburg give definite
values for the D parameter at the temperatures (in
'K} 20, 96, 510, 620, and 710. Perusal of Fig. 3
shows that the curve passes through a point close
to D=+1&10 cm ' at room temperature. This
verifies that the experimental value of D is not very
far from + 1X10 ~ cm ' at room temperature. If
this value is accepted as the experimental value of
D our calculated result + 4. 92 & 10 4 cm ' is in rea-
sonable agreement with the experiment.

However, one notices that in Pauling and Hoard's
crystal structure data (see Table II) the crystal
parameter u is uncertain by the amount + 0. 01.
This forces us to estimate D for values of u lying
between 0. 24 and 0. 26 in order to find how much D
varies in this range of u. The crystal fields which
we need to estimate D for different values of u may
be computed by the method described earlier. The

TABLE IV. Crystal fields for different values (cover-
ing whole range of uncertainty) of the crystal parameter
u using Pauling and Hoard's data. Bz is in units of
10 e /2ao, (B4) and (B4)„ in units of 10 ~ e /2ao~, and

(B4)' in units of 10 4 e /2ao.

Q Bp (B4) (B,')'

0.240
0.242
0.244
0.246
0.248
0.250
0.252
0.254
0.256
0.258
0.260

—2.951
—2.794
—2.630
—2.460
—2.284
—2. 101
—1.911
—1.715
—1.513
—1.3Q4
—1.088

0.1668
0.1691
0.1712
0.1728
0.1739
0.1745
0.1746
0.1741
0.1729
0.1710
0.1683

0.1368
0.1432
0.1501
0.1571
0.1642
0.1714
0.1788
0.1861
0.1936
0.2010
0.2084

5.251
4.930
4.559
4. 134
3.653
3.111
2.506
1.835
1.095

+0.2836
—0.601

computed results for Bz, (B,)„„(84}„„and(B,)
are given in Table IV for different values of u. It
is now straightforward to estimate D using these
crystal fields. The values of D as a function of u

are depicted in Fig. 4. We find that D increases al-
most linearly with u from —2. 11X 10 cm ' at u
=0. 24 to+10. 49&&10~ cm ' at u=0. 26. It is inter-
esting also to note from Fig. 3 that the value of u

for which D becomes close to the experimental re-
sult +1X10 cm is 0. 2445. It is difficult to say
whether this predicted value of u is the correct one
unless one estimates the contributions from effects
such as (i) overlap and charge-transfer covalency
between the magnetic ion and the ligand iona, (ii)
distortion of the lattice around the magnetic ion,
and (iii) higher multipoles (dipoles, etc. } on the lat-
tice. All of these effects may change our results
significantly. However, it is clear that the param-
eter D experiences a large variation with a slight
change in the value of u. One therefore needs a
more exact value of u to compare the theoretical
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FIG. 3. Values of 3D as a function of temperature
from the experimental data of Hoeve and Van Ostenberg
(Ref. 11). The figure shows that the value of 3D lies
close to +3 F10 4 cm at room temperature.

FIG. 4. Shows the change in the calculated value of
D (in units of 10 cm ) for CdCl~ .Mn ' with the uncer-
tainty in u, the crystal parameter.
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value of D with the experimental results.

UIII. CONCLUSION

Ne have analyzed various mechanisms for the
zero-field splitting of a S ion in a trigonal symme-
try starting with first principles and using a strictly
external point-charge point-multipole model. The
number of approximations has been kept as low as
possible to obtain a realistic value of D. Our re-
sults for two hypothetical cases and for a real case
of CdC13. Mn show that all the mechanisms (BO,
SS, ODS, and WC) are equally important. While
the effect of the second degree axial potential in
the Bo process vanishes in the tetragonal and rhom-
bic symmetries, it gives a definite contribution in
trigonal symmetry. The ODS and %C mechanisms,
in contrast to the situation for the splitting in tetrag-
onal and rhombic symmetries, are of magnitudes
comparable to other mechanisms (BO-1, BO-2, and

SS). In addition, the ODS and WC mechanisms
which used to cancel one another in tetragonal and
rhombic symmetries are found here to enhance each
other. Our calculated value of D, +4. 92&&10

cm ' in Cdcl2: Mn compares favorably with &+5
x10 cm"' from experiments on single crystals and
lies close to -+»1o cm"' from experiments on
powdered samples. However, it has been shownthat
the theoretical value of D changes from —2. 11
x10 cm ' to+10. 49x10 cm ' as one takes into
account the existing uncertainty in the value of the
crystal-structure parameter g. A more exact value
of the parameter u will be very helpful in deciding
how far the theory can explain the experimental re-
sults.

In our calculations we have neglected the effects
of overlap and charge transfer between the magnet-
ic ion Mn~ and the ligand ion Cl . Besides that,
we have not taken into account the presence of
higher multipoles (dipoles, etc. ) on the ions and
the distortion of the lattice surrounding the mag-
netic ion to calculate the crystal fields.
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APPENDIX

The functions i P(4I', )Mr), i E('I', )Mr&, and

i G('I'4)Mr) used in Sec. II are listed in terms of
the states I LMr, & of the 3d' electrons as follows:

IP('r, )I& = IP1),

P('r, )O& = Po),

IE( I' )0) =- ($) I
33) ($) I

30) ( )' I3 —3)

(Al )

I
G('I', )1) = —($)~'

I 44) + (~) '
I 41) + (~1/)

~'
I
4 —2),

I
G{ I' )0) =(W2) '

I
43) +(V2) '

I
4 —3),

G('r~)-I& =-(~~)"14-4&- (q)" l4-»+(~)" I42),

where for defining the phases we give 'P, 'F, and
G states with M~ = L, , Ms = 8:

I Pl) = (l5) '
[ I

2' 1' 0' —1' —1 ) + (~ )~
I
2' 1' 0' 0 —2' )

+ (-' )~
I

2' 1'1 —1' —2') +
I

2' 2 0' —1' —2' ) ],
I
'»& = (~2) '

( I

2' 1 1-0' - 1'& +
I
2' 2 I'0' - 2'

& ],
I
'G4) =

I

2' 2 I' 0' —I'
& . (A2)

The other
I IMz& states needed in (Al) may be

obtained from (A2) by means of lowering and raising
operators.
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