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Surface Excitations in the Random-Phase Approximation. II. Retardation Effects*

John Harris~ and Allan Griffin
Department of I'hysies, University of Toronto, Teronto, Ontario, Canada

(Received 6 August 1970)

Within the framework of a linear-response correlation-function approach to the collective
modes in an inhomogeneous electron gas, a theory is given of the effect of retardation on sur-
face plasmons. The case of a sharp metal-vacuum interface is worked out in detail as an

illustration of the general formalism.

I. INTRODUCTION

V ~ 5E = 4g5p
8—5p+ V' ~ 5J=0.
Bt

These give the local electric field fluctuations in
terms of the local electromagnetic current (5 X)
and charge (6p) densities. Fourier transform-
ing into (k, ~) space, we may combine the equations
in (l. 1) to give (i = x, y, z)

It is well known that the electromagnetic fields
which are produced by charge fluctuations give
rise to a strong modification of the surface-plasmon
dispersion relation at long wavelengths. The sim-
ple case of a sharp metal-vacuum plane interface
is amenable to an elementary treatment (see, for
example, Economu ). It is found that for q& &~/a,
the surface plasmon is simply a transverse photon.
Here q is the wave vector, c is the speed of light,
and (d~ is the bulk-plasma frequency.

Feddexs3 and Feibelman3 have discussed the
problem of surface plasmons in the electrostatic
approximation (c-~) using the concepts and tech-
niques of many-body theory [in the random-phase
approximation (RPA)]. This kind of formulation
is necessary if one wishes, for example, to deal
with a smoothly varying electronic density in the
interface region or to include the effects of lattice
structure in a fundamental way. The authors have
recently given a many-body formulation of surface
problems based on linear-response theory and the
equation of motion for the Wigner distribution
function. We believe that our approach brings out

the common features of collective modes in many-
body systems, be they homogeneous or inhomoge-
neous. In this paper, we extend our earlier dis-
cussion to include retardation effects. We believe
that this is the first time that such effects have
been discussed within the framework of a linear-
response correlation-function appx'oach.

After the magnetic field is eliminated from Max-
well's equations, we have

1 8 4m' ~ 1Vx VX5E= --——5J+——
c &t c c Bt

Assuming a weak external time-dependent electric
field, we have a lineax' constitutive relation between
the local current and the local (effective) electric
field~

We shall refer to 5,&
as the screened or local con-

ductivity. Inserting (1.3) into (l. 2), we have the
following coupled-integral equation which the com-
ponents of the local electric field must satisfy:

4

4&$(d —c }t ) g, ) (2i7I')

xa), (k, -p, ~)5E,(p, ~).

This equation mill determine the dispersion rela-
tion of both bulk and surface collective oscillations.

In this generalized dielectx"ic formulation, 5'6 the
question of surface plasmons is reduced to the
problem of finding the components of the local
conductivity 5,&(k, —p, &a). In Sec. 11 and the Ap-
pendix, we show how to determine this quantity
within the RpA by using an equation of motion fo1
the Wigner distribution function in the presence of
external time-dependent fields. To leading order
in ~ (high-frequency limit), only the diamagnetic
current contributes, and we find simply

i t'1
a,&(%, -p, v)= +o(k-p)~&s+OI-~ (I »

where go(k} is the Fourier transform of the static
density distribution. In Sec. III we briefly dis-
cuss the nontrivial solutions of (l.4) using (l. 5).
In particular, we show that in the electrostatic
limit, the results of Ref. 4 are recovered. As an
illustration of retardation effects, we then com-
pute the surface-plasmon dispersion relation for
the simple case of a sharp metal-vacuum interface.



750 J. HARRIS AND A. GRI F F IN

The results are well known from more elementary
grave-matching calculations. ' However, the latter
method cannot be generalized to deal with realistic
density profiles. Our approach provides a general
framework within which the significance of special
limiting cases can be judged.

II. LOCAL CONDUCTIVITY OF INHOMOGENEOUS

ELECTRON GAS

The interaction of a weak external electromag-
netic field with a gas of electrons is given by the
standard expression

A'(r, t) = A(r, t) —VA(r, t)

implies that

(2. 8)

~
~

no(k —p)XII(k Py &) '
p &X jn(kp —

pp (d).
(2 't)

As is well known, the requirement that the in-
duced electrical current be invariant under an arbi-
trary gauge transformation

V= e f drn(r)P'"'(r, t)

—(e/c) f dr j(r) A'"'(r, t), (2. 1)

In the first term on the left-hand side of (2. 7), the
multiplication involves a dot product of p with

J(-p) in the correlation function defined by (2. 5).
Assuming that our approximate calculations are
consistent with (2. t), we may simplify (2. 3) to

where 8 is the actual charge of an electron (& 0)
and, in terms of the electronic field operators,
the particle density and current operators are

n(r) = t)'(r)|)(r),

2

5J(k, (o) = —.

2(0

dp ~ no(k -pI)
(») ' ' ' mo X')( y P~~)'

(2. 2) xgE "(ps~) (2. 8)

The potentials (Q, A) are c numbers. Using linear-
response theory, one finds that the perturbation
(2. 1) induces an electric current given by

6J(k, (u) = —
o no(k —p)A'"'(p, (~)mc (2o )

- e'
(2 )o X j.(k, -p, ~)p'"'(p, ~)

(2 )o X jj(k, -P, (g) 'A'" (P, I'd) .

(2. 3)

The first term on the right-hand side is the so-
called diamagnetic current. The current-current
correlation function is defined as follows:

where the external electric field is given by

5E'n(p, ~) =- —i pP'"'(p, (o) + (i(u/c)A'*'(p, (o).

(2. 9)
Equation (2. 8) may be written in a form analogous
to (1.3), the true conductivity being given by

2ze
o (%, —p, a) = no(k —p) I + —. X j&-(%, —p, v).

(2. 10)

Just a,s (2. 3) describes the linear response to ex-
ternal potentials, one may define screened correla-
tion functions which give the current response due
to the local effective potentials. Using gauge in-
variance with respect to the effective potentials,
we find that o;, in (1.3) is given by

(2. 4)

with

X""(k P (u)-=f„dtJ dr f dr'e '" ""'" e'"''''
xi([ J(r, t), J(r', 0)])

(2. 5)
where the average is over the unperturbed Hamil-
tonian and J(t) is in the Heisenberg representation.
The current-density correlation function Xj„(k,p, to)
is defined in an equivalent fashion.

o(k —p, (o) = no(k —p) 1 + —. Xjj(k, —p, (u).
mm zoo

(2. 11)
Of course, y~~ is not a true response function such
as defined in (2. 4).

Since the long-range self-consistent field effects
are incorporated into the local effective field, in
evaluating a«we need only include the short-
ranged screened interactions between electrons. '
In the so-called RPA one argues that these screened
interactions may be neglected. In this approxima-
tion, it is rea.sonable to take ft„(k, -p, ro) to be
equal to o«(k, -p, ~), the latter being evaluated
for a fictitious inhomogeneous system of noninter-
acting electrons. The RPA should be good at high
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frequencies where collisions are unimportant. If
a high-frequency expansion of the right-hand side
of (2. 4) is made, we may prove with great gener-
ality that

gif(k, -p, ~)-0(1/~')

by making use of the microscopic definition (2. 5).
In the RPA, we can immediately conclude from
(2. 12) that

proach within the electrostatic approximation. It
is easy to obtain our previous results from (3. 1)
by taking the limit c- ~ (i. e. , retardation effects
are neglected). A'e are left with

6E;(k, ~) = z Q 'z'
2 z no(k -P)5Eq(P, (d).

4me' Iz;)z, d p
B1(d

y
Iz 271

(s. 8)
Making use of the fact that the local electric field
is given by

XII(k, -p, ~)-o(1d '), (2. 12) e6E;(k, 1d) = —ik; v(k)&n(k, 1d), (3. 7)

and hence arrive at (1.5). In the Appendix, we

sketch the equation-of-motion method which gives
(1.5) as zvell as higher-order corrections.

III. STEP-FUNCTION STATIC DENSITY PROFILE:
SIMPLE EXAMPLE

Using the results of Secs. I and II, the surface
plasmon in the high-frequency limit is seen to
correspond to a nontrivial solution of the coupled
integral equations (i= x, y, z),

24ge ~ dp
5E,. (k, ~) = „,,„2,2 „n,(k-p)

x(1dz5, q
—c k, kq)«)(P, (d). (3 1)

No assumption has been made concerning the static
electronic density nz(R), the Fourier transform
of which enters into the kernel of (3. 1).

In a homogeneous system, we have no( k) = n06(k)
so that (3. 1) reduces to a set of well known linear
algebraic equations,

COg, c k]k~
5E;(k, &d)= a z z + 5&J — z «g(k, 1d).

(d -ck (d
(s. 2)

we see that (3. 6) is equivalent to C2. 28] of Ref. 4,

411e dp ~ ~ peak&n(k, (d)= z —,

2 z n (kz-P) z 5n(P, 1d).
m&d (2v p

(3. 8)

In the rest of this section, we wish to apply our
general result (3. 1) to the simple case in which
the static electronic density is given by

nz( r) = nz(z) = np8(z), (S. 9)

where 6(z) is the step function. This calculation
is in the way of anillustration. As we have empha-
sized earlier, the real advantage of our formulation
and results such as (3.1) is that one can deal with

more realistic density profiles, including the ef-
fect of lattice periodicity.

For simplicity, we assume that the surface col-
lective mode is moving along the x direction in the
x=0 plane and that 5F.,=O. Making use of the
Fourier transform of (3. 9)

.
(2 )z nz5(k„)5(k, )

g Z

(3. 10)

we may reduce (3. 1) to two coupled one-dimensional
singular-integral equations,

In this case, it is convenient to decompose the
local electric field into longitudinal and transverse
parts,

k ~ E,(k, 1d) =Ex 5E, (k, 1d) = 0. (3. 3)

Then (3. 2) may be written

5E,(k, 1d)+ 5E1(k, 1d)

QPy
2 2

z z 5E,(k, td)+~ 5E,(k, rd).
Q) -Ck (dp

(3 4)

The two possible solutions to (3.4) are completely
decoupled,

5E„(a,) =W„(u„q, ~)
"dp, &E„(p)

"dp, 5E(p)
+ A1z(kg q q, (d)

gp &WZ g hing
2 %J

"dp, «(p)«, (u, ) =~az(u„q, &)
moo 7t S Pg g Z

(3. 11)

"dp, 5E„(p,)
+ A1z(Iz ) q~ (d)

QQ W Z g g

We have introduced the following abbreviations:

5E,(k, &d)+0 if &d =ada

5E,(k, &d) & 0 if 1d = &da + c )'z . (s. 5)
&d,'(1d' —c'q')

+11(Izs i q~ &) zi z z z z~z)+&(d -cq -ck,
In Ref. 4, surface plasmons were discussed

using a linear-response correlation-function ap-
(~ )

(df(1d —C l2z)
zz zi$1d =— —

a( a a z zIz1 (s. 12)
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(d 4Ck4q&(2(k. )qi(d)= 2. -4 '2 2 2 2)(d (cO -CQ -Ck»

Since ~' ~ c q for the solutions of interest, the
A.

&&
coefficients are nonsingular. We also note

that
Since x, and A.

&&
are real, we must have

K+K =g

(3. 18)

(3. 19)
5E„,,(k,) = 5E„,,(q, k„(())

is the Fourier transform of 5E„,,(x, z, t).
Rather than making use of the general method

of solving homogeneous singular-integral equa-
tions, ' we write down the following ansatz. for the
solution of (3. 11):

as well as

K [(A) (c k4+c q —(d )+(dt, ((A) —c k4)]

= —K,[(d2(c'k,2+c'q'-(o2)+(o~((o' —c'q')].
(3. 20)

6E,(z) =E,(q)e At",

5E„(z)=i sgnz E,(q) (K,/q)e "4'".
(3. iS)

Since K,(q) and (d = (d(q) are independent of k„we
can equate the coefficients of k, and k, in (3.20) to
0. This gives us two relations

Here the upper (lower) sign is obtained when z & 0
(z&0). For a nontrivial solution of (3. 11), K, and
z must satisfy a certain relation. This condition
will give us the dispersion relation of the surface
mode (d= +(q). Our ansatz (3. 13) is guided by
several criteria. First of all, we recall that with-
in the electrostatic approximation, we found that
the surface plasmon of frequency &2//2 corre-
sponded to electric fields given by (3. 13), but with

z, = q. Moreover, we are looking for surface modes
in which there is no bulk-charge fluctuation, and
thus ~ ~ 5E = 0 for s& 0 or

= (id2 —(At )/(d
(3. 21)

—' = (c'q' —(d2+u)22)~'/(c'q' —(d')((~2 —u)'),

from which it directly follows that

u),'/Pu) 2+ u) 2/2((d'- c'q') = 1. (3. 22)

Solving this quadratic equation for ~, we find that
the solution corresponding to a surface plasmon
with retardation effects is the well-known expres-
sion

q6E„(q, z) = i [6E,—(q, z)], z x 0.
8

(3. 14) (o = ~~(1+ 2(cq/(d2) —[1+4(cq/(d~)']'t2] .

We emphasize that neither (3. 13) nor (3. 14) are
correct for s = 0 since

V 6E(K, z) = - 4ve6n(z).

Taking the Fourier transform of (3. 13), we have

( )
(k, +iK )E,—(k, —it(,)E

i(k - iK,) (k + iK )

( )
(k4+'LK )E,K, + (k4 —iK,)E K

q(k, —iK,)(k, +iK )

(3.16)

Since 5E„,(z) is finite at z = 0, we have ignored
the contribution from this point in (3. 16). Inserting
(3. 16) into (3. 11) and performing the integrals
with the aid of Cauchy's residue theorem, we ob-
tain the following linear equations for the field am-
plitudes E, :

(3. 22')

The other solution of (3. 22) is clearly unphysical.
Finally, making use of (3.22) in (3. 19), we easily
obtain the following relations:

c2K~ = c~q 2 —v 2 c2K2=czq2+(d2 &2 (3 23)

This completes our discussion for the simple
case of two different media separated by a plane
boundary. The results summarized by (3.13),
(3.22), and (3. 23) may, of course, be easily ob-
tained by matching the tangential components of the
electric fields in two homogeneous systems (see,
for example, Ref. 1). However, our method can
equally well be used to deal with a smooth-transition
region, such as described, for example, by the den-
sity profile

(k, +iK ) —' (1+2„)+iA,2 E,+(k, —iK,)= E =0,
n()(z) = n()(1 —e 't4) 8(z) .

The Fourier transform of this is

(3. 24)

(3. 1V)

(1,+iv) ()+Aa~) —1—"'A„)&.—(1,-1~.)& =0.

A nontrivial solution is obtained if

n,6(k, ) 6(k„)
(k —iO')(1+ idk )

(3. 26)

The skin depth "d"is expected to be only a few
angstroms. Using (3. 25) instead of (3.10) in (3. 1),
we can easily write down the appropriate coupled
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integral equations for 5E„„. In this case, we will
no longer be dealing with Cauchy-type kernels.
The solution of such singular-homogeneous integral
equations is discussed in Chap. 18 of Ref. V.

APPENDIX

c
p2

t—+ ' + [~, A"'(I)+A"'(I) rr ]

+ 8e "~(1))e,(1, e) = 5 (1 —e), (AS)

The main purpose of this appendix is to obtain an
equation of motion for the quantum-mechanical
Wigner distribution function f(p, R, t) in an inhomo-
geneous electron gas. More precisely, this will
be done treating the Coulomb and magnetic inter-
actions between electrons in the self-consistent
field approximation. We recall that since the aver-
age velocity of electrons is much less than the velo-
city of light, it is quite adequate to use the effective
current-current interaction'

2

dr dr', j r j r'

2dr', — n r n r' (A2)

in addition to (Al). If we use the Hartree decoupling
for the two-particle Green's functions, the equation
of motion for G,(1, 2) and its adjoint can be written

to describe the exchange of tranverse photons be-
tween moving electrons. While the magnetic inter-
action term (A1) appears to be of order (vs/c)
relative to the Coulomb interaction, it actually gives
rise to a self-consistent local-field correction
which is just as important as that due to the Cou-
lomb interactions. This is discussed in qualitative
terms by Pines and Nozieres' in the context of
homogeneous systems. Qn the other hand, the
screened magnetic interaction between electrons
is of order (v„/c)o relative to the screened Coulomb
interaction, and thus can be safely neglected. In
the BPA, even the screened Coulomb interaction is
omitted.

It is straightforward to construct the equation of
motion for the single-particle Green's function

G,(1, 2) inthe presence of external scalar and vec-
tor potentials. The electronic self-energy will in-
volve a contribution from the usual Coulomb-inter-
action term

~
~

~

Q2

2

i ee"i(2)) G|(1, 2) = lt(l —2). (A4)

We work to lowest order in the effective vector po-
tential, which is given explicitly in our self-con-
sistent approximation by

5A '"(r, t) = —— dr', 5j~(r,' t),c Ir —r'I (AS)

Here 5j~(r, t) -=e5j(r, t) is the induced paramagnetic
current density. The effective scalar potential in
the self-consistent field approximation is given by

yeti�(r

t) —
brett(r) + 5ye&t(r

where

yo" (r) = yo"'(r)+ e ~p I
()( ),jr-r' (Av)

5(t'"'(r, t) =5(j)' (r, t)+e dr', 5n(r, )t).r-r'
(AS)

The second terms on the right-hand side of (AV) and

(AS) will be denoted by Qo"'(r) and 5$"'(r, t), re-
spectively. We include a time-independent scalar
potential Qo"'(r) since it gives rise to an inhomoge-
neous static density profile no(r). While we do not
linearize with respect to (tt)"(r), we do assume that
5(j)'" (r, t) and A'*'( r, t) are small perturbing fields.

Subtracting (A4) from (AS), we may derive an
equation for the Wigner distribution function
f$, R, T) in the same way as discussed in Sec. II
of Ref. 4 for the simpler case in which Ae~~(r, t) = 0.
We obtain

A"'(1)-=A'"(r, t) =A'"'(r, t)+5A"'(r, t), (AS)

with

) [
"P' [5f(p- op', k-p', (d)-5f(p+-,'p', k-P', (o)]geo" (p')

t'dp' [fo(p ——,'p', k —P') fo(P+2P k P )]5(t (P o))
(2o)' (d —p ~ k/m
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e dp' {fo(p——,'p', k —p') [2p+k —p'] fo(-p+ —,'p', k —p') [2p —k+p']), « (A9)

where

f(p, k, &u) == 1 d% f dT e "'"""rf(p,Ã, T)

=f, (p, k)+6f(p, k, ~) . (Alo)

(All)

(A12)

with

The Wigner distribution function fo(p, k) is de-
termined by Eq. (3. 20) of Ref. 4and willbe assumed
to be known. In (A9), the local induced potentials
are given by (A6) and (A8), namely,

6A"'(k, ~) =-(4ve/c]') 5](k, ~)
6)t'-(k, ~) =-(47)e/0 ) 6n(k, ~)

57(k, (u)=-,n, (k —p) A'"(p, (u)mc (2v)'

+ 6]p (k, (0) (A16)

tion of (A9). Since we are working to lowest order
in the perturbing (and induced) potentials, the dia-
magnetic current in terms of the effective vector
potential is simply

5jz&(r, t)= —(e /mc) n 0(r) A'~~(r, t) . (A15)

The total electrical current is thus

II (ic, ) f-, llf(pk, ),
))j(k, a) f, (—)=))f(p, k, a)

(A13)

One may view the y functions our procedure gives
as the RPA approximation to screened response
functions, the latter being defined with respect to
the true effective potentials by (A14). Making use
of gauge invariance relative to the effective po-
tentials, the screened conductivity is given by
(2. 11) and

In view of (All) —(A13), we see that (A9) is a
closed-integral equation for bf (p, k, &u). Nontrival
solutions of (A9) in the limit 6)t)'"' and A'"'- 0 cor-
respond to self-sustaining collective modes.

As in Ref. 4, it is useful to solve (A9) by itera-
tion, treating the second and third terms on the
right-hand side as the inhomogeneous terms. This
gives 6f(p, k, +) in terms of a nonlocal linear re-
sponse to 6Q"'(p', &u) and A"'(p', ~), the kernels
being given explicitly by infinite series. Using
(A13), the paramagnetic electric current is given
by

~E = —tP~)t)'" (P, ~)+(i~/c) A"'(P, &) (Air)

„f(„- k ), [f(p- k)-f(p+kT)] 5~„-, -
((o —p k/m)

is the effective time-dependent electric field which
is involved in (1.3) and (l. 4).

One may easily obtain the well-known RPA ex-
pressions for yp, and y&„ in a homogeneous electron
gas using (A9). In this case, P~"'(p') ~5 (p'), and
hence the first term on the right-hand side of (A9)
vanishes. We are left with

5]J, (k, &u) = —e
(2 )3 Xj)) (k~ Pi ~) 64' (P~ &)

[f(P —-'k) -f (P + -'k)]
2mc ((o —p ~ k /m )

+ „2 3Xjj(k, —P ~) A (P, &)

(A14) x2 A'«(k „) (A18)
where we have explicit expressions in terms of the
static Wigner distribution function fo (p, k) for ]tj„
and yp&, as given by the previously mentioned itera-

where f(P) is the Fermi distribution. Multiplying
(A18) by ep/m and integrating over p gives

[f(p+kk) -f(p'- kk)]
(2~)' (g —p'. k /m m

dp' [f(p'+lk)-f(p'-2k)]
~-p .k/m

(A19)
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It is easy to verify that these response functions
satisfy the key identity which ensured gauge-in-
variant results,

n, (k —p)Xjj(ki pi &) '—

f dy ~'1 p'~ 1
bj~(k, ~) =e

I ~
——

~
no(k —p)+0 —

3(2&) (u m&
o

u)

x lig"'(ii, i 0 ~ilg"') .
(d

(A22)

= & Xjii (» p i ~ ) (A20)

where we recall that in a homogeneous system
n (k) =n 5 (k).

Using a procedure analogous to that carried out
in Ref. 4, we expand the RPA screened correlation
functions in (A14) in powers of k ~ p/w. Making
use of

f dp p dp
( )3 fo (p k) 0

( )3 fp (p, k) = n, (k)

(A21)
we find

We note that these lowest-order results imply

Xi„(k, —p, (u) = —(e /m) (p/(o) no(k —p) + 0 (1/(u')

Xjj(ki pyj &)= 0(1/& ) gj (A23)

which satisfy (A20) and hence are gauge invariant
to order w '. While we have not written down the
explicit expression for g&j to order cu, we empha-
size that it is quite simple to obtain by using the
first iteration of (A9) with

~ ~p k ' 1 p k40— + — + ~ ~ ~

yn 4) POCO
(A24)

Using (A23) in (2. 11) we arrive at (1.5), which is
the basis of the discussion in Sec. III of this paper.
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Superconducting Transition Teinperatures and Lattice Parameters of Simple-Cubic
Metastable Te-Au Solutions Containing Fe and Mnt
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(Received 30 July 1970)

The superconducting transition temperatures and lattice spacings of simple-cubic Te-Au-
Fe and Te-Au-Mn alloys, prepared by rapid quenching from the liquid state, have been mea-
sured and correlated with anomalies in the Te-Au system and the band structure proposed to
explain those anomalies. The unusual behavior of these properties in the ternary alloys con-
taining Fe and Mn has been interpreted in terms of a Fermi-surface —Brillouin-zone inter-
action based on information obtained from studying binary Te-Au alloys. The results of this
study lend additional support to the electronic band structure proposed for simple-cubic
Te-Au alloys, and in addition show a very distinct band-structure effect on the superconduct-
ing transition temperatures of the Te-Au-Fe alloys.

I. INTRODUCTION

A recent investigation' has shown that the anom-
alies in the variation of lattice parameter, thermo-
electric power, and superconducting transition tem-
perature with concentration in liquid-quenched sim-

pie-cubic Te-Au alloys varying in composition from
60 to 85 at. % Te can be qualitatively explained in
terms of a Fermi- surface- Brillouin- zone interac-
tion. Subsequently it was found that about 2 at. %
Mn and about 7. 5 at. % Fe could be retained in solid
solution in quenched Te-Au alloys. The effect of


