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The interaction of a fast electron (energy & 1 keV) with collective modes in a thin metallic
or doped semiconductor film is studied, taking explicitly into account bulk and surface effects.
Reducing the problem to an exactly soluble quantum-mechanical model, we obtain results to
all orders of the interaction and investigate the multiple-plasmon contribution to the electron
energy losses. The theory is applied to transmission as well as to reflection and a complete
description of the loss spectra is obtained. It is shown that the zero-energy plasmon mode
does not cause singularities in the low-energy excitation spectrum. The strength of the many-
body processes is given by the "fine-structure constant" e /Sv&, where v~ is the electron
velocity normal to the surface, and in some cases multiple-plasmon emission becomes im-
portant, especially so in the specular reflection at grazing-angle incidence. For a thicker
slab (a -500-1000 A), this results in a series of sharp peaks in the loss spectrum which have
maximum strengths corresponding to several excited plasmons. For a thin slab (a-few 100 A),
the dominant contribution to the loss spectrum is a, broad structure with a high-energy (~ & ~P
tail, characteristic for the recombinational effect of many emitted low-energy plasmons.

I. INTRODUCTION

The interaction of fast electrons (or other charged
particles) with collective excitations in solids (plas-
mons in metals or doped semiconductors, optical
phonons in dielectric crystals) and the resulting
electron energy-loss spectra have been extensively
investigated, both theoretically' and experimen-
tally. ~ This work has provided our basic under-
standing of the elementary excitations in solids and
their spectra. We shall not review the vast litera-
ture in this field, but only point out that while a full
quantum-mechanical treatment has been developed
for an infinite solid, the case of a finite solid (e. g. ,
semi-finite medium or thin film) was usually
studied" in the framework of classical electro-
dynamics. The fast electron, which is treated
as a "white" uniform source of electromagnetic
radiation frequencies, loses energy through the
resonant interaction with bulk and surface polar-
ization eigenmodes of the material. As we show
later, this classical theory corresponds to the
first-order (Born) approximation for the transition
between quantized polarization eigenstates, and
therefore can only describe the over-all excitation
of a single plasmon or phonon quantum.

Recently, Lucas, Kartheuser, and Badro' worked
out the quantum-mechanical formulation of the non-
retarded interaction between electrons and long-
wavelength optical phonons in thin films, and applied
it to the single- and double-phonon excitation losses.
In this paper we shall take their Hamiltonian and
adapt it to the plasmon case.

In Sec. II we describe the fast electron treated as
a classical particle, the plasma oscillations in the
slab, and the linear electron-plasmon interaction.
We obtain the explicit form of the eigenvectors, dis-

persion relations, and coupling functions for the bulk
and surface plasma modes in the slab. In Sec. III
we define the electron energy-loss function and ex-
press it in a usual way in terms of a correlation
function. By noticing the connection of our system
with the forced harmonic oscillator we are able to
solve the problem exactly and obtain the loss func-
tion which includes the electron-plasmon interaction
in all orders.

The importance of the exact description instead
of the perturbation approach arises from the fact
that the surface-plasmon dispersion curve for a
finite slab has a branch which goes to zero in the
long-wavelength limit. This means that a combined
emission of many low-energy plasmons is a Priori
possible for all energies and could drastically alter
the shape of the loss spectrum as compared to the
one derived classically.

In Sec. IV we apply this theory to the case of the
transmitted beam and in Sec. V to the specularly
reflected beam, and obtain a description of the com-
plete loss spectrum. The results show that many-
plasmon losses dominate the spectrum when the
electron velocity v, normal to the slab surface is
smaller than or of the order of e /h. This condition
is not satisfied in usual transmission experiments
with very fast electrons, but it can be easily real-
ized for the reflection case either in low-energy
electron-diffraction (LEED) experiments or with
high-energy beam at grazing incidence. ' The latter
experiment provides the most favorable way of ob-
serving the multiple-plasmon effects predicted by
the present theory.

In this work we neglect plasmon-photon coupling
and excitation damping. The retardation effects
were shown by Chase and Kliewer not to be signif-
icant for the electron-loss spectrum, and the finite
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excitation lifetime can be included in the theory by
using a complex dielectric function.

II. FORMULATION OF PROBLEM

H= Ee+ Ho+ H

where E, is the fast-electron energy, Ho is the
Hamiltonian of the free plasmon modes of the slab,
and H, describes the electron-plasmon coupling.

A. Electron

We treat the electron (or any other charged par-
ticle used in the experiment) as a nonrelativistic
particle of velocity v and kinetic energy E,= —,'mv
so high that the plasmon field sees it as an infinite
reservoir of energy and momentum. This approxi-
mation of a recoilless electron is valid, e. g. , for
E, 1 keV in metallic films with plasmon energies
@cop & 20 eV. Thus we consider the electron as a
classical particle on the well-defined trajectory
r(t) acting as a source of time-dependent perturba-
tion for the slab.

B. Slab

For the slab we assume that it is a plasmon sys-
tem, i. e. , it contains only one type of excitations.
In principle, however, it is possible to generalize
the theory to include interactions with various fields
in the slab (e. g. , plasmons plus phonons).

The plasmon modes are described in the contin-
uum approximation, i. e. , we consider only long-
wavelength excitations, neglecting the spatial dis-
persion of volume plasmons. In order to write ex-
plicitly the Hamiltonian Ho of the free plasmons and
the interaction energy H~, we need the eigenvalues
and eigenvectors of the polarization modes of the
slab. These have already been described in the
microscopic theory ' for the optical-phonon case
and we here briefly review the results which we
shall need later.

Let ~~ and (d~ be the transverse and longitudinal
optical-phonon frequencies of a polar crystal with
a dielectric constant

&(~)=e-(~&- ~')/(~', —~'), (2)

where the high-frequency dielectric constant c will
be taken equal to 1 (point-ion model). Equation (2)
satisf ies the Lyddane-Sachs- Teller relation'

2 / 2
o

—~ L/ z (3)

where &o is the static dielectric constant.
The nonretarded Maxwell's equations applied to

a crystal slab lead to a set of long-wavelength pho-

We shall use the Hamiltonian formalism to de-
scribe the quantum-mechanical system consisting
of an electron and the excitations in a slab of metal
or doped semiconductor. ' Our exactly soluble model
Hamiltonian is

non eigenmodes of P polarization. " These eigen-
modes a,re characterized by the index i=—(k, m, P),
where k is a two-dimensional wave vector parallel
to the slab, m is a non-negative integer such that
m/2L (where L= 2a is the slab thickness) plays the
role of a "quantized" wave vector perpendicular to
the slab, and P= +1 is the parity of the mode. All
the modes with m W0 are degenerate at either the
longitudinal or the transverse frequency and have
sinusoidal polarization patterns typical for the bulk
mode (see eigenvectors in Table I). The modes
(k, 0, + 1) are the two surface modes with dispersion
relation '9

~,(k) = ( &r [1+ (~,'/2~r) (1+e '")]"',
where

(o~ = ~r(eo —1)'

(4)

is the ion plasma frequency. The corresponding
polarization patterns (see Table I) are peaked at the
surfaces and decay exponentially on both sides of
each surface.

The eigenvectors 2 ~(k, z) of all the eigenmodes
satisfy the orthonormality and closure relations

a'p (k, z) .w ., (k, z ) dz = 5 „,5„, , (8)

Q &„"~(k,z) a ~(k, z')=E 5(z —z'),
mP

where E is the (2 x2) unit tensor.
We shall use these results to obtain the micro-

scopic description of the plasma oscillations in a
slab. The connection between the optical phonons
and the plasmons is obtained by using the limiting
prescription'

Q) ~~ 0 fo ~ 00

(8)
lim

" o' 'oT

Then Eq. (3) gives &uz= &~, the dielectric function
(2) goes into

e(M) = 1 —&dJ&d

and the dispersion relation (4) becomes

(o,(k) =((u /W2) (I +e '")'"

(9)

The corresponding eigenvectors (Table I) remain
unchanged as they depend only on the geometry of
the system and not on the eigenfrequencies.

One recognizes in (9) and (10) the usual disper-
sion laws for a compensated electron gas of plasma
frequency ~~ in a metallic film" [see Fig. 1(a)].
The limiting procedure (8) means, on the one hand,
that a free-electron gas has a vanishing shear mod-
ulus (&r-0) and, on the other hand, that the lon-
gitudinal optical modes of the ion plasma should
correspond to the long-wavelength density fluctua-
tions of the electron plasma (~z —

&u~).
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is linear in the plasmon field operators. The
coupling functions I' are defined by

I' q(k, z ) =g q(k) f dze e y. fr*ad(k, z),

where

g ~(k) = [(ke'(o,'/svA(u, (k))] ~',

(14)

y =[i, sign(z, —z)] . (16)

The explicit form of the coupling functions F& is
obtained by inserting into (14) the eigenvectors
listed in Table I, and the result is given in Table II
and illustrated in Fig. 2.

r,0+

FIG. 1. (a) Plasmon dispersion relation for a
metallic slab in vacuum. There are two flat bulk
plasmon branches at frequencies co& and zero ("shear"
modes). The lower surface plasmon branch ~0 goes
to zero as Wk. (b) Same for a metallic film deposited on
a substrate with a high-frequency dielectric constant e.

0 8 ~

zt zt

The orthonormality and closure relations (6) and
(7) allow one to expand the polarization field in
terms of annihilation and creation operators a&, a&

for free-plasmon quanta. The free-plasmon Ham-4

iltonian then takes the form

HO=A f dEEI&„~(%)[a~~(k) a ~(%)+ &], (11)

where the a& satisfy the quantization relations

[a &(R), a .&i (R')] = (1/A) 5(% —P) 5~~. 5&&. , (12)

and where A. is a unit area of the slab surface.

C. Electron-Plasmon Interaction

0 .~

&b. )

The electron with coordinates r, = (p, , z, ) couples
to the degenerate bulk plasmons of frequency +~ and
also to the divergence-free surface plasmons &,(k).
It does not interact with the zero-frequency "shear"
modes of S or I' polarization. The interaction
Hamiltonian

lc. )

FIG. 2. Spatial dependence of the electron-plasmon
coupling functions I'; (k, z~). (a) and (b) give the coupling
strength for the two surface modes. (c) and (d) corres-
pond to the volume plasmon modes. The "shear" modes
are not coupled to the electron.
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TABLE I. P-polarization plasmon eigenmodes in a slab. The zero-frequency modes have been
included for completeness although they do not interact with the electron,

Eigenvalue s Eigenvectors

~0 (k)

coo, (k)

= C06 COshk8s SlnhkZ)

7f'0 = Co(t slnhkg coshk8)

I'm~
ska sin —z,

m~&i
lka COS

I Zs2a j

IW COS
t, 2a

—2tPEX Sln

1 m~&
p sl xcos 82a p

pf87l' Sln ( z.
2a j

. t'mm
na sinI —z

( 2a

8~ ka cos 8

2, 4, 6, ...

2, 4, 6, ...

Co=(k/sinh2ka) ~; C =(1/~a(k a +4m m )

III. LOSS SPECTRUM

A. Evolution of Plasmon State

The plasmon state vector in the interaction rep-
resentation

I0'(t)& =e"'"'"0'Itt'(t)&

satisfies the evolution equation

t8 —
I(l) (t)) = vt(t) Ig (t)),

where

y (t) e ((lt))llot H e ((i)))8()tI

(19)

=5~(F((t) (at(e("(t+a(e '"(') .
The solution of (19) is given by

(20)

According to our assumption, the electron is
treated as a source of time-dependent perturbation
acting on the plasmons in the slab with the trajec-
tory [p, (t), z, (t)]. Then the Hamiltonian of the per-
turbed plasmon field takes the form

H(, +HI (t) =Q([tt(d((a, a, + —,')+F( (t) (a, +a,)], (1'7)

where i =(k, m, P) and

functions are listed in Table II for the transmission
case and normal incidence (p, =O). From (18) and
(21) one obtains the state vector of the plasmon field
in the Schrodinger representation

Ig'(t, t,))=exp — H, t e~I ———E(f(a, +f(a, )
g i
I )I

& exp —Hots IP'(to)&

I-oss Function

The energy spectrum of the outgoing electrons
will be described by the loss function P(())) giving
the intensity of electrons which have suffered a
loss of energy I'& transferred to the excitations of
the slab. P((d) is therefore defined as the prob-
ability that at time t ~ the plasmon modes are
found in any of the excited states 1[i]& of the free
Hamiltonian Ho with a total energy E«& =Eo+ 8 at
S(d above the initial state energy Eo. If we neglect
the temperature effects, which are not important
in the plasmon energy range, the initial state
lg'(to)) at to —~ isthe ground state IO& of Ho. From
this definition it follows that:

P(~) = iim 5 I&)'(t, t,) I[t]&I'
+v tO ~ -oo «3

1~-—E«&-Eo

I (t t ) = f dt' E (t')e
to

Usually one needs only I,(- ~, +~), and these

(22)

where l)1)'(t, to)& is the final state (23) of the slab
which, in general, contains all possible multiple
excited states

(25)
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ate
l
x—p(Iie —a, eae)t)2r &I (26)

Inserting (23) into (24) and taking the indicated
time limits, the resulting loss function is found to
be

It is important at this stage to avoid specifying
the final state in terms of a few lowest excitations.
This would amount to the usual perturbation treat-
ment. Instead, the summation over [i] in (24) can
be done by writing the energy-conserving 6 function
in the integral form

1
5 e-—E&i&-E0 ]

&& 0 exp — Ii e '"i'-1 ai
(i

i).', )) o). (32)

The ground-state average is finally obtained by
using the relation

L( acta) I i (1/2) tOI

LOTTO)

where

II I, )tg Il, t . , ) (33)

where I is any linear combination of boson opera-
tors a, a . The final result of all this algebra' is
remarkably simple,

with the correlation function P(t) given by

P(f) =(oiU'(f) U(o) io),
where

U=exp ——Q (ftat+It ttt)

U(t) e t Hot Ue tHot

(28)

(29)

(3o)

is anormalizationfactor suchthat f'" d»((d) = I.
It is easy to establish the connection with the

perturbation treatment by expanding (33) in powers
of the interaction lft I and integrating (2V):

P(~) =P, Q 'Z —/r, , J'. . . )I, /'
0 t iyip'"i„

U(t)=exp( ——) (l, e, e' t'tt", e, e"t')) (31)5 t

To calculate Ut(t) U(0) we use the Baker-Hauss-
dorf formulae"e =e"' " ' "', which holds when

[A, B] is a c number. Thus we get all boson opera-
tors in the exponent

)Ii )2
p(t) = exp(- i r ! eietet i

(

X5[(d —((dt + (dt + ~ ~ ' +(dt )]
1 2

(34)

The term n =0 is Po5((d) and, therefore, P, gives
the strength of the no-loss line. The term n =1
gives the classical (Born-approximation) result and

describes the loss due to a single-plasmon emis-
sion. In the phonon case this first term gives the
correct spectrum when + is below the threshold
2& for the excitation of two low-frequency surface

TABLE II. Coupling functions I';(k, z,) of the electron with the eigenmodes of the slab,
and their Fourier transforms Ii(cu).

Eigenmodes

0+

z~ &-a

kgb

Coupling functions I'i

-a & z~ &+a

e-ka
coshkz~

coshka

z, ) +a

-kge

Integrals Ii

2k cos (aa/ v)
k2+ co /v2 v coshka

0-
e- ka

sinhkze
sinhka

+~- kgb 2k
2+ ~2/V2

i sin(cuba/v)

vsinhka

m+
(m=«, 3, 5, )

m~i
COS Z~2a j

( «)(gpg f ) /2 mm/a cos(cuba/ v)

co2/ v2 -m'n'/4a2 v

(m=2, 4, 6, ...)

sin zt2
. (mmi imr/a sin(cuba/ v)

co2/ v' —m 2~2/4a2

"shear" modes
(all m & 0)



724 M. SUN JIC AND A. A. LUG AS

phonons. Above 2'~, many-phonon excitations are
found to give small contribution. In the plasmon
case, such a threshold does not exist since the
lower surface plasmon branch goes to zero in the
long-wavelength limit. As a result, any energy
h& can a Priori be lost through the excitation of
an arbitrarily large number n of these surface
plasmons. Such processes are described by the
nth-order terms in the series (34) which may not

converge fast. Therefore, one should first perform
the summation over the mode index i in (33) and then
introduce the energy conservation through the Fou-
rier transform (27).

C. Summation over Modes

ln the summation of (33)

J=A. J( -A. d p e '" p
II (k) I2

mp

(35)

where

J'(R) =5~n Qn(k) +A (k), (38)

tI )2

p p A

are the two surface terms and

(37)

the k integrand Z(k) can be split into two surface
terms (m = 0) and an infinite number of bulk terms
(m 40). We shall first perform the summation over
the bulk modes. Using the definitions (22) and (14)
for the I integrals, we have

+do +00 +a +a

A(%) = Z dvdr'e '"n" "'"—I d& d&
& e -0( l 8-a' (7') I+ ) s' -g (7') ) )

m00, p «oQ mg

xe """' ' ""y[z —z,(r)] rr* (z~ ) rr (z') X[z' —z, (&')] (38)

is the bulk contribution. Rewriting the closure re-
lation (7) as

rr+ ( n)zrr n(z') = E 5(z —z') —Q Trg, ( )zrr„(z'),
m40n p p

(39)

we can perform the summation in (38). The result
is

IV. TRANSMISSION CASE

'gfe shall first apply the results of Sec. III to the
case of a transmitted beam at normal incidence.
The electron trajectory is then z, (t) =vt, p, (t) = 0.
When we insert this into (41) and integrate over
momenta we find a periodic bulk contribution to
d in (35),

A(k) =B(k) —D(%),

where

(4o) k2 2

B(t) -=2rrA kdkB(k) = —,'Ce '"n'ln 1+
0 (dp

(43)
2 +0

B(K) =Q e "n' dz
5

where

C = 2e' rona/hv', (44)
2

d7 e ~
p

-&I - e( ) t -~~'P (7')
e

em OO

(41)

is the main bulk contribution arising from the 5

function in (39) and

D(k)=5~~ lIon(won ton)l e '"n
p

(42)

is the so-called "begrenzung" term which is ob-
tained from the surface term (37) by replacing the
surface mode frequencies &0p by the bulk frequency

The physical meaning of this contribution D(k)
will be discussed later but here let us point out its
derivation. It arises from the second term on the
right-hand side of the closure relation (39), which
can be thought of as a sum rule for all the modes
in the slab.

To proceed with the calculation and integrate over
the slab and times r, one has to specify the electron
trajectory [pc(r), zc(v')] in each particular case.

and where k, is either the wave vector beyond which

the continuum approximation would break down or
the maximum momentum transfer related to the

aperture of the electron spectrometer, whichever
of these two limits is lower.

The begrenzung term becomes, after inserting
the proper coupling integrals of Table II,

I'nc

D(t)= 2rrA kdkD(k)
0

]. k
=C e n dk

(ka ay a)a

2 &d &0
x tanhka cos2 ~ + cothka sin

V

(45)

D(t) oscillates with the same frequency &n as the
bulk term B(t), so it will partly compensate the bulk
loss. This reduction is a simple geometrical effect
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=C —
J

dk
(k2 2/ 2)2 (k)

(tanhka) +1

(48)

corresponding to the two branches of the dispersion
curve &e,(k). Collecting terms, the correlation
function (33) is now given by

P(t) P ez&t)

where

(4V)

coming from the finite thickness of the slab.
arises from the redistribution of available degrees
of freedom when the surface plasmons are included.
In the limit of a very thin slab (a 0), there is exact
cancellation of B(t) by D(t), as can be seen from
(45).

The surface modes (k, 0, + 1) give two contribu-
tions to J,

k

Q,(t) = 2)&A -k dk Q,(k)
0

C1 ' )&2k dk
I a (k2 + 2/v 2)2 (52)

In deriving (52) we have used the approximations

&d t(k) —
&&) t

tanhka = cothka = 1
(53)

From (51) and (52) we can see the dependence of
(50) on the slab thickness. For large a(k, a» 1),
the interval 1/a & k & k, covers essentially all avail-
able k space so that the Al contribution and, there-
fore, the 6-like peak at (gl, dominate. For a thin
slab (1/a -k, ), A, goes to zero, the peak disappears
and the broad structure given by F, dominates. In
this case, the bulk peak at co =id~ is also suppressed
due to the begrenzung effect, A~-O.

It is necessary to notice that the peaks at equal
to an integer multiple of (z, are not exactly 5 func-
tions although they are very sharp for large thick-
ness. One can also show that single-plasmon con-
tributions are zero at ~ =~,. However, this nar-
row dip in the spectrum could be filled as a result
of many-plasmon processes and we shall return
to this point later.

We may now write the loss function in the form

d(t) =A, e '""+q,(t)+q (t),

A, =&(0) -D(0).
(48)

(48)
P(o)) =—Po e'"'

2v J

From (47) and (48) we can now see the general
shape of the loss spectrum. The first term in (48),
which is periodic in t, will give rise to 6 peaks in
the loss spectrum at frequencies which are integer
multiples of &d~. The surface terms Q,(t) are com-
plicated functions of time containing all frequencies
&d,(k), which makes further rigorous analytic treat-
ment very difficult.

In order to extract physical information from (47)
and (48) we notice that the flat region (1/a & k & k, )
of &d, (k) will give a nearly periodic contribution to
the integrals (46) with the approximate time depen-
dence e &"tt, where &qt=&d~/K2 is the asymptotic
surface mode frequency. These contributions will
ultimately result in sharp 6-like peaks in the loss
spectrum at frequencies which are integer multiples
of ». We can separate this part and the one arising
from the region of strong dispersion (0 &k & 1/a):

x exp (A&e '"&tyAte ' tt) (54)

where

F(t) =F,(t)+F (t) (55)

P(&d) = &(&d) +S(&o),

+(&u) = Po Z Jmn 5[o) —(m&o&+ n&dt)],
%2tl=0

(58)

is an aperiodic function which vanishes for large t
(compared to I/&2). By writing e =-1+ (e~ —1) in
(54) we can separate the periodic part responsible
for electron losses at discrete energies from the
aperiodic part which gives rise to the continuous
broad structure. Expanding the periodic part, which
is allowed for discrete energy transitions, one
finally obtains

Q,(t)+Q (t) =F,(t)+F (t)+ A, e '"", (5o)

where

S(&o) =P&) Z d „S [&o —(tno), +no)t)]I,

where

(58)

Ft,.(t) = C— dk 2 2 2 2
—(tanhka)')a 0 k +&ot V Q)&,

sin
(51)

A"
mn m ~+ '[ '

S (II) =—'~ e'"' (e""' —1)dt
2)r

(58)

(8o)

t)(o)) represents the series of discrete 5 peaks
with strengths given by J „. For A.

& or A I & j. the
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s opal
tains

(68)

100 .
~2c ~

Q
- —-~

mb.

where p ls
lntegratlon
the simple
cidence.

(69)
the angle between k and v„. Thi.s douhl. c.

can be done exactly, ' but jet us consid(. . c
cases;If normal and grazing angle iti-

B. Nominal Incidenre

For normal or nearly normal incidence, which
is the case in most LEED measurements. we have
v, &-. v„and (69) ran bc vasily evaluated to give

tg! fr I ~1 act J

24 v t (,t.~ I tt.&

g fc& + (.g gz~li g

(70)

10-

FlG. 4. Computed loss spcctruni 8"((e) defined in

Kq. {60}. The tail for. ('»& comes from the multiple
surface-ptasmon emission.

layers. This assumption is valid when the nornlal
electron velocity v, is small. Then the reflected
electrons couple only to the surface modes and the
trajectory is given by

r, (t) = I p, (t), ~.(t)],

p (t) = —v„t, z, (t) = —e, ~t -a. (65)

The coupling functions I',(r,) corresponding to the
two surface plasmon modes are (from TaMe II)

sinh 2' c/

(66)

The I integrals (22) appropriate to the trajectory
(65) are found to be

sinh2ka ' 3
~, 2%v,

V&) = +g.
~ v„+k v~

(67)
I et us consider a very thick slab (a-~) where

the two surface modes are degenerate at ~ i,(f, ) =~.i, .
Introducing (6V) into (33). where the summation
over the modes reduces to a k integration, one ob-

As an example, wc teak(. '. t:he electl on bc-'Rnl of
velocity ~', ==: 0. 5&& 109 cm/s~!c (energy =- 80 eV) re-
flected from the surface of silver. One finds Q '- l,
Expanding (68) in powers of (~& one sees that the in;:&s

contains not ollly the lowest-order contribut. ion due
to single-plasmon emission, but also a number of
strong pea.ks corresponding to multiple-plasmon
emission. The curve for A = I on Fig. 3 gives the
strengths of these peaks for several orders of
plasmon excitation.

In the I EED case considered here, the electron
energies are too low to justify the approximation
of neglecting the electron recoil. The decrease of
velocity causes two mutually competing and opposite
effects: (a) The electron spends more time in the
vicinity of the surface, which increases the emis-
sion of surface plasmons. (b) The effect of the re-
coil dampens the scattering and ultimately destroy. ~

the correlation between successive processes and
thus washes away the many-plasmo1l contribution.

FIG. 5. Geometry of the reflection experiment
using beams at oblique incidence.
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However, this result, together with those obtained
for very thin films, is a clear indication that at low
or intermediate energies it would be necessary to
consider (in some improved model) many-plasmon
emission when analyzing inelastic processes.

C. Grazing-Angle Incidence

Much more obvious is the contribution of many-
plasmon processes in the scattering of high-energy
electrons from the surface at grazing incidence.
Here we increase the scattering while still keeping
the recoil negligible. Because of the condition v,
«e „we can use the approximation

kv~

&g/&p 0 (4l/ kvp cosp) + k v

thickness at the grazing-angle condition can be de-
termined by using the nondegenerate dispersion re-
lation ~, (k) in the expression (67) for I„(k) and in-
tegrating to obtain Q, (t), which would contain all
surface-plasmon frequencies.

Let us here consider the limit of a very thin film
(k,a «1), where the peak at &o =v/disappears. In
this case the reflection and transmission experi-
ments should give basically similar results because
the bulk contribution at co = or~ is also completely
cancelled by the begrenzung term. In the resulting
electron-loss spectrum we expect to observe only
the many-plasmon contribution from the strongly
aperiodic part of ur, (k), with the same shape that
was already shown in Fig. 4 for the case of a trans-
mitted beam.

which enables us to perform the p integral in (69)
in a trivial manner

where

q = (2e'/hv, ) nI(n), (72)

n = Qp p/ v 2 k~ v o

(~2 2)1/2
I(n)= f d4 s

This last integral can be done exactly, but in view
of the approximation (71) we need only to use the
limit

(V3)

(74)

D. Very Thin Film at Grazing Incidence

The dependence of the loss spectrum on the slab

lim nI(n) =-,'7/+0 (n) (75)

The physical meaning of the approximation (Vl)
is that the electron which spends a sufficiently long
time near the surface interacts resonantly with
those surface plasmons which have phase velocity
ur// (k cosy) equal to the parallel velocity v„.

If we now reconsider our previous example of a
thick silver slab but using 10-keV electron beam at
8= 1.5' incidence, we get v„=0.6x10' cm/sec and
a very low v~ = 2. 10' cm/sec. From (73) follows
n = 0. 1, which confirms our limit (75), and from
(72) one finds Q= 2. 5. When this Q is inserted into
(68) we get a series of 6 peaks in the loss spectrum
positioned at multiples of wz and with strengths given
in Fig. 3.

The classical theory could only predict the one-
plasmon loss peak at + =co&. Instead, we find that
the spectrum will be dominated by the multiple ex-
citations and this cannot be explained within the
first Born approximation for the transitions between
the quantized states of the plasmon field. Such mul-
tiple emissions of surface plasmons have been ob-
served by Powell, ' and both the separation and
strength of the successive peaks are in agreement
with the predictions of the present theory.

VI. CONCLUSION

In this paper we have developed a quantum-me-
chanical theory of the fast-electron-plasmon inter-
action in a slab, including explicitly the surface ef-
fects. Retardation effects and excitation damping
have been neglected. The main results can be sum-
marized as follows:

(a) We have obtained a complete description of
the fast-electron-loss spectrum as a function of
several parameters (a, or~, v, 8). In particular, the
origin of the begrenzung effect has been elucidated
and the thickness dependence of various contribu-
tions calculated,

(b) Multiple-plasmon emission, which cannot be
described by classical theory, has been shown to
influence both the sharp peaks in the spectrum as-
sociated with discrete energy losses and the broad
structures due to the emission of strongly dispersed
surface plasmons. These many-body effects turn
out to be important for the large "fine-structure
constant" e'/kv, ~ 1, a condition which is realized
either in LEED or in the usual high-energy electron
beams at grazing incidence.

Because of its generality and rather simple form,
this theory could be easily extended to a number of
connected problems. Its application to the electron-
phonon coupling at polar crystal surfaces can im-
mediately explain the observed shape and magnitude
of many-phonon contributions in the loss spectra of
both specularly and Bragg-reflected beams. ' For
thin films where the explanation given in Ref. 1V
cannot be applied, our theory predicts additional
structures originating from the strong dispersion
of the surface modes.

When thin metallic films are deposited on a di-
electric substrate with dielectric constant c &1, a
gap exists in the surface plasmon energies [see
Fig. 1(b)] and in the single-plasmon excitation
spectrum and, hence, this gap should be reproduced
in the electron-loss spectrum if only single-plasmon
processes contributed. Many-plasmon excitations,
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when present, can occur in this gap and partly fill
it so that such experiments could provide another
check of the present theory.

Another case where fast-electron energy losses
were observed is x-ray photoemission, ' where the
electron created in the solid can excite both bulk
and surface plasmons. The extension of our theory
to this case could be worked out, "though the situa-
tion here is more complicated by the presence of
the hole. Its lifetime and the relaxation of the
Fermi sea via low-energy electron-hole pair exci-
tations modify the shape of the emitted-electron
spectral lines. ' These effects could be treated in-

dependently of the discrete plasmon losses, but in
thin films they might interfere with the surface
plasmon emission from the region of strong dis-
persion.
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Analysis of the Magnetic Susceptibility of K20sC1,
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The configuration interaction between the t& and t2e configurations has been taken into account
to calculate the energy levels of the (OsCle) complex ion in the intermediate-coupling scheme.
The matrix elements of the magnetic moment operator between the ground level A& and the
excited T& levels are given in algebraic form, and then used to calculate the temperature-in-
dependent paramagnetic susceptibiliti. The experimental value of the susceptibility and a part
of the optical absorption spectrum can be fitted to theory by choosing the following values of
the parameters: 8=365.5 cm ~, C=1561.0 cm ~, g&=2575. 0 cm ~, 6=33000.0 cm ~, k=0. 7,
k'= 0.7.

I. INTRODUCTION

In complexes of the type XSYZ6, where X is an

alkali ion r(or NH„C(NH~)4, etc. )], F is a metal
ion of the 4d or 5d group, and Z is a halogen ion,
unlike the corresponding complexes of the iron


