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The dynamics of an inhomogeneously broadened S=1 system strongly coupled to a bottle-
necked lattice are analyzed in the context of the usual rate-equation formalism. The center
of the d M&

—-+1 resonance is characterized by an equally spaced three-level system, while
the wings of the resonance are viewed as an almost equally spaced level system in which r es-
onant phonons are noninteracting. Calculations of phonon heating under rf saturation of the
spin transitions show the phonon linewidths to be noticeably less than the EPR bandwidth; con-
servation conditions which relate the various phonon excitations are also obtained and extended
to a general multilevel system. Determinations of the normal unbottlenecked spin-relaxation
rate and the intrinsic phonon decay times are possible at early times in the decay to equilib-
rium, while an analytic expression for the final asymptotic decay rate of the coupled system
is obtained in the limit of a large phonon lifetime . Numerical solutions to the rate equations
at early times are also presented and discussed in terms of the strong competition between
resonant phonons for the spin-excitation energy.

I. INTRODUCTION

At low temperatures, spin-lattice relaxation may
occur through a direct phonon process which trans-
fers energy to the crystal lattice at the spin-res-
onance frequency. If the spin-phonon coupling is
strong and the thermalizing process for the res-
onant phonons is slow, the usual assumption that
the lattice is in thermal equilibrium may break
down, and phonon heating can occur. Such a situa-
tion, now commonly known as a phonon bottleneck,
modifies the spin-system decay, and the relaxation
is governed largely by the rate at which excess
phonons can be dissipated.

The possibility of such a phonon bottleneck was
first recognized by Van Vleck' in the early 1940's.
Since then, a wealth of theoretical and experimental
information on the phenomenon has been accumu-
lated. ' ' The early experimental data have dealt
primarily with the spin decay characteristics,
from which the phonon behavior can often be in-
ferred. Only recently have more direct measure-
ments of the phonon-system properties been re-
ported. "-"

Since a large part of the experimental work has
been directed toward S= —,

' systems, much of the
theoretical effort' ' has also followed this trend.
However, recent experimental studies ' ' in a
number of S=1 systems, for which the theory is
sparse, have yielded considerable information on
the bottleneck problem; in addition, very recent
measurements' in one such system (Mgo: Ni ')

provide the most complete study to date of the
phonon-system properties.

It is the purpose of this paper, therefore, to
extend the existing theory to the more general
S= 1 system. Section II examines the spin-phonon
behavior for the case of equal spin-level spacings,

as would occur in the ideal S= 1 configuration,
while Sec. III is concerned with a nearly equally
spaced system in which all phonons are uncoupled.
In Sec. IV, we examine our results in terms of a
typical inhomogeneously broadened 8= 1 resonance
line and further extend a number of our conclusions
to the general multilevel spin system.

II. EQUALLY SPACED THREE-LEVEL SYSTEM

Ne consider initially the three-level configuration
depicted in Fig. 1, which is characteristic of the
ground state of an 8= 1 spin system in a pure octa-
hedral environment. An external Zeeman field
splits the levels equally by an energy 6 = hid~ with
their respective populations n&. The spins are
assumed coupled to the lattice only through the
emission and absorption of resonant phonons of
energies 6 and 26 = k+2 (we neglect Raman and Or-
bach relaxation via an excited state); the resonant
phonon excitations are p, = (et/~&~" ~" —1) ', where

T,",,' is an effective phonon temperature which may
or may not be equal to the ambient (bath) tempera-
ture T.

The simplest model for a study of the dynamics
of a strongly coupled spin-phonon system is based

I3&, n3

I2&, n2

Il&, nl

FIG. 1. Energy-level diagram for S=1 spin system
with equal spacing I'~~ of states I i) (with populations
n;). N', z denotes rf field saturation at frequency co~.
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on rate equations for the level populations g, and
the phonon exeitations p, , an approach which has
yielded quite reasonable results for the simpler
two-level system. ' In the usual manner, the rate
equations for the level populations can be written

ding =- (mls+ mls)nl+ sealsla+ zosllls —W I(n, —ns),

653
(Ksl + Rsa)133 + w)3131 + l033313 W I (ss Ila)

whex'e K5g ls the single-phonon tral181tlon yrobablllty
from level li) to level I j), ' and nl+na+II3=Nis
the total number of syins. The last term in each
equation represents the effect of any rf fieM-in-
duced transition probability 5"„atfrequency iy~

on the level populations. Following the formalism
of Faughnan and Btrandberg, we assume a linear-
loss mechanism for the phonons, such that the
phonon lifetime is v; in the absence of any inter-
action with the spins, and write for the yhonon rate
equations

dpi'
GV

= [p((OI)d(01] {t033333—ÃasÃa+KslÃa —Klalll)

~I (Pl Pl) y

df =[p{(oa)4oaj (msllls-sllsnl)-va (pa-p, ),-1 0

where p(&o, )d~, is the number of lattice modes in
the frequency interval 4g& which interact with the
ions, and the superscript denotes a thermal-equi-
librium value. YVe define new normalized variables

N, =Sn, /N, F, =(p, -p', )/ (op,
' '+),

where

&I = 2NAI&I/3(PI+ 3) p(~I) d~l,

oa = NKar 3/3(Psa+ —,') P(~s) boa

are the "bottleneeking factors" for phonons of ener-
gies 5 and 26, and the K, are the spontaneous emis-
sion rates for direct relaxation at frequencies e; .
After some rearrangement, the rate equations be-
come

' = -&8(2pl+ 1+ )'331pa)NI+ [pl+ 1 —)'331(pa+ 1)]Ns

+ &I(pl+ 3) (2N1+ Ns —s) F,
+ halos(Pa+ 3) (Nl —Ns) Fa

-3(pl+ I)}- W,I(2NI+ Ns -3),
de
dt +1((pl ~alps)NI+ [2pl+ 1+ )331(pa+ 1)]N3

0 0

+o, (p,'+ ,') (N, +2N, —3)F;-
-)'salo'a(Pa+ 3) (Nl -Ns)Fa

-spl] - W,I(NI+2N3-3),

d7~ 0=-(2rl) j(pl+I)Nl-p, N3-3

+[o,(p', +-,') (N, -N, )+2]Y,],
0 0

dt
= - I'3 (Pa» - (Pa+1)N3

+[o,(p,'+-,') (N, -N, )+ I]F,J,
with )t,&=K,/K&. In Eqs. (3), the terms in F, and
Fz indicate the effects of the excess phonons on the
spin decay rates, while normal unbottlenecked re-
laxation is represented by the remaining terms
(wl'ttl W~I = 0). As ill tile two level system~ tile O'I

represent the ratio of power transferred from
spins to yhonons to the powex' transferred from
phonons to bath. For o; «1 one obtains the usual
unbottlenecked relaxation profiles, while for 0,~ 1
one expects marked deviations from exponential
behavior. Neith 7'& and ~& independent of frequency
and temperature, and a Debye density of phonon
states, a non-Kramers system will show
o, ~i~, /Tc4, for small ha&, /kT. The bottleneck will
therefore be enhanced at high Zeeman frequencies
and low bath temperatures.

The above xate equations are nonlinear and as
such ax'e not readily soluble; however, in certain
instances one can obtain useful and informative
solutions. %'e begin by considering a saturated
spin system and its subsequent decay to equibbrium.

At saturation, we have d NI/dt = dY/dt= 0, with-
Ã, =- 1. From Eqs. (4) we find F, =— 1 which,

' for
AT,",,'& AT&h~&, is rewritten to obtain

Tell —(Gl + 1)T. (5)

Thus, even for steady-state spin saturation, the
phonon temperature is limited to the finite result
of Eq. (5) which can be reasonably estimated using
Eq. (2). As shown earlier, o, ~ T', and Eq. (5)
becomes T,",,'= P, + T, with P, temperature indepen-
dent. For large bottlenecking, the phonon excita-
tion is therefore large and constant at low bath tem-
peratures but approaches equilibrium with increas-
ing temyeratux e. S'e also note that the phonon tem-
pe1'atlll'8 givell by Eq. (5) call be speclailzed 'to RIly
given phonon of frequency ~, (with specific polariza-
tion and propagation direction) out of the totality of
yhonons fy&, provided one uses the appropriate
quantities in the evaluation of o, . This is noi the
case after removal of the rf field, when the various
monoenergetic yhonons ean comyete unequally for
the spin enex'gy during the decay to equilibrium.

The complete decay profiles of the spin and phonon
excitations are only obtainable using numerical
techniques. We see from Eqs. (3), however, that
at the start of the decay the spin relaxation is given
by the usual unbottlenecked rates, irrespective of
the phonon excitations; this results from the can-
cellation of induced emission and absorption at sat-
uration. The yhonon excitations, meanwhile, begin
their decays with zero slope —the phonon excitations
cannot change until the spin excitation is altered.
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The behavior of the N, and Y& can also be deter-
mined near the end of the decay where N, -N, and
Y&-0. By replacing the bilinear terms in N&Y&

by N& Y&, we obtain a new set of four coupled linear
equations. Although these are analytically soluble
in principle, one can also determine approximate
solutions which are quite accurate in the limiting
case 0, » 1. The exponential decay rates are
readily obtained using a straightforward matrix
diagonalization procedure: If one constructs the
matrix A» of the coefficients of the variables N,
and Y, , the eigenvalues X& of this matrix are the
required rates. In general, for 0,» 1 and y, «1
(a valid assumption in almost all cases), one finds
that the coefficients of the variables Y, in the equa-
tions for d Y,/dt are typically orders of magnitude
greater than any of the other coefficients. This
indicates that the matrix is almost partially diag-
onal and these larger coefficients are, to a very
good approximation, required eigenvalues. With
these eigenvalues (rates) determined, one can now
solve for the remaining rates. This is done by
equating coefficients of the parameter X of the
characteristic equation of our original matrix
IA&& —X5&& I

= 0 to the coefficients of the charac-
teristic equation for the actual eigenvalue X&,

l(&» -X)5(&1=0; the still unknown X, can then be
determined to any order in the bottlenecking factors
0'g ~

Using this technique we have solved the linearized
forms of Eqs. (3) and (4), to lowest order in o, ,
and have obtained the following decay rates when
0'g» 1:

pi= —(2'ri) '[o'i(pi+ra) (Ni -Na)+2],

which further simplifies to X40-(di T . Thus, the
relaxation rate increases quadratically with the
bath temperatures and is independent of the level
splittings, just as in the two-level system. With
NQ) f » kT, one obtains

~4 3 ff /iol(pi +2)

Now we have X4~X:~2& T, so that the rate is tempera-
ture independent but varies quadratically as the
level splittings. In all cases, X4 is inversely pro-
portional to the spin concentration and shows a
dependence on sample size when v'& is determined
by boundary-scattering processes.

It appears from the foregoing expressions that
A.4 is independent of K, , the spontaneous-emission
rates. This is illusory since 0; also involves
other parameters which are contained in K„e.g. ,
p(&(i, ). However, with the exception of (f(d, the
interaction bandwidth, these parameters are char-
acteristic of the lattice, not the spin system. For
large 0&, one therefore expects similar ions doped
into a given lattice host to show the same long-time
behavior, other things being equal. This is not
unexpected since, for a large bottleneck, the re-
laxation of a tightly coupled spin-phonon system
should be governed by the loss mechanism for the
excess phonons.

In Fig. 2, we show results of numerical solutions
to Eqs. (3) and (4) for early times. The values
of the parameters chosen are typical of a number
of systems (e. g. , MgO: Ni "). The decay profiles
for the spin excitations are not depicted since they

~a = - va '[oa( pa+ -a') (N,
' - N,') + 1],

Xa= -3Zi[pi+ (1 —Na)/(Ni -Na)],

3(pi) +3pi+1
3[pi(Ni —Na)+ 1 —Na ] &i(pi+ 2) 0.8

I I I

+ kg)
3Pi Pa - 1+3(Pi +Pa+ 1)[(1—Na )/(Ni —Na )]

&a(pa+ a)

The first three rates are effective in establishing
internal equilibrium within the coupled spin-phonon
system; since this is not applicable in the present
case, we will defer further discussion of them un-
til later. The fourth and smallest term A. 4 repre-
sents the decay rate of the coupled spin-phonon
system to the thermal bath and characterizes the
long-time relaxation rates normally measured in
spin-lattice relaxation studies. This rather cum-
bersome expression can be greatly simplified by
considering several limiting cases. For $~& «k T,
one finds

uT Kg Kg
~i((l'l) &~a(u((+l)) '

0.4

0.0
0

I i I ( I i I

2 4 6 8
TIME (p sec)

FIG. 2. Phonon-relaxation curves following saturation
of all spin transitions depicted in Fig. 1 for T= 2 'K,
(d ~

= 25.6 GHz, K~ = 100 sec, k2~ = 10, r, = 1 psec, o~ = 10,
and 02=10, 10 . Spin excitations show negligible change
over given time interval.
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experience little change over the given time inter-
val: The spins begin their relaxation with the un-
bottlenecked decay time which increases mono-
tonically to the asymptotic time. The decays of
the phonon excitations, however, show a markedly
different behavior: The decays begin with zero
slope as required, quickly speed up over a short
period of time, and then slow down and proceed
to equilibrium, over a much longer time. ' This
is in sharp contrast to the expected exponential
decays one would obtain if the spin system were
not present. One finds that increases in either
Zq, k,q, oz, or az (while holding the other param-
eters fixed) cause the phonon decay to turn over
sooner at the onset and to drop more rapidly at
the early times. The initial decay, however,
cannot proceed at a greater rate than the intrinsic
phonon decay rate 7;; only a decrease in 7', can
further shorten this time. The final return to
equilibrium occurs at the rate X4, as has been
shown earlier. However, even after an appreciable
time into the decay, when the phonon excitation
has dropped to a fraction of its initial value, the
decay is still proceeding at a rate much greater
than the final asymptotic value (for our examples,
the decay times several milliseconds into the re-
laxation are still in the msec regime). Thus, one
has to rely on spin-lattice relaxation measure-
ments to determine the asymptotic rate X4, the
main interest in the phonon decays occurs only at
the very early times, where a determination of r,
is possible.

We now consider the relaxation behavior for the
case where the spin system is initially placed in a
negative temperature state (inversion of popula-
tions) and the phonon excitations are left at their
equilibrium values. Experimentally, this is ac-
complished using either the adiabatic rapid-pas-
sage" or 180 '-pulse technique. ' In particular,
we examine the case of total spin inversion where
the initial spin temperature is —T, the negative
of the ambient temperature.

Initially, the spins begin their decays with the
usual unbottlenecked rates, while the phonon build-
ups begin with small but nonzero values. It is not
immediately obvious that latex in the decay one
can once again obtain the unbottlenecked rates.
As evidenced by Eqs. (3), this requires that all the
spin transitions reach saturation simultaneously,
a feat which may not be possible for all choices of
our parameters; numerical solutions to the equa-
tions are required to answer this question. We
also note from Eqs. (4) that, for Nq ——Ns and Y&»N&,
the phonon relaxation proceeds at the intrinsic rate
7',.'. One therefore has the capability of determin-
ing this rate by monitoring the phonon decay as the
& M& = 2 spin transition passes through saturation.
For very long times, the coupled spin-phonon sys-

tern will again decay at the asymptotic rate A, 4

given by Eq. (6).
Numerical solutions to the rate equations for the

case a&=oz are presented in Fig. 3, where decay
profiles for the various spin transitions are de-
picted. & N, &

signifies the quantity (N& —N, )/
(N; —N&0), a normalized level population differen-
tial which represents the strength of the usual EPR
resonance transition between levels I f) and I j) .
& N;~ = -1 corresponds to the thermal-equilibrium
resonance; & N, &

= 0 and 1 signify saturation and
total inversion of the transition, respectively.
Values of ~ N;& &1 indicate an inverted-state res-
onance greater than the equilibrium resonance.
One notes the pronounced nonexponential decays:
The relaxation begins slowly at the unbottlenecked
rate, speeds up quickly and then slows down once
again as it proceeds to equilibrium at the asymp-
totic rate A4. This is very similar to the behavior
obtained for the two-level system. Of particular
note, however, is the profile of &N&3. In this
instance, the transition starts in an emissive
state, quickly passes through saturation to an ab-
sorptive configuration, returns more slowly to its
saturation state, and then proceeds to its final
equilibrium value. This behavior arises from the
competition between the &M& = 1 and ~M~ = 2 spin
transitions and will be discussed in greater detail
when we consider the o2&o& case. We might note

2
I

dN23

dN

4N

n0

„o
2 $ 2

„0
3

0—

Y2

Y1

0 I I I &. I I I

0 10 20 30 40 0. 5 1.0 1.5 2. 0
TIME (nsec) TIME Igsec)

FIG. 3. Spin-system and phonon-relaxation curves
determined from Eqs. I'3) and (4) following spin inversion.
Insert shows initial spin configuration; n; signifies popu-
lation of level ( i) at thermal equilibrium. Parameters
are the same as for Fig. 2 except (T~

——0&
——10 . Note

break in time scale.
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here that, at some given time, all transitions do
pass through saturation simultaneously and the un-
bottlenecked decay rates can be determined.

Also shown in Fig. 3 are the responses of the
phonons to the spin-system perturbation. The
phonons increase slowly at first and then quickly
build up as the spin transitions drop to saturation
(this occurs with rates of the order of A& and X,).
After peaking, the phonons begin a slow return to
equilibrium which, however, is initially faster
than the spin-system decay; as expected, the de-
cay rates at saturation are just the intrinsic 7,
The phonons peak at essentially the same time with

Y& & Y» although both are large. Variations of the
other system parameters cause only quantitative
differences in the decays with the exception of k»,.
a reduction of k» causes the dip in the &N&2 re-
laxation to be gradually removed.

Figure 4 illustrates the relaxation for the case
02» o,. The &N» transition behaves very similarly
to that of the preceding example, while &N» and
&N» show more interesting behavior. &N» has
the same dip below saturation as the previous case;
however, it lasts for a much greater length of time
and maintains a constant limiting value. &N»
shows a rapid relaxation to less spin inversion,
which it holds for a considerable time, and then
more slowly approaches saturation. This behavior
is readily understood when one notes that the initial
fast decay of the spins is associated with relaxation
via (d2 phonons; the N, and N3 populations quickly
come into internal equilibrium with N& = N3

0 I I I 0 0
0 1 2 3 4 2 4 6 8 10

TIME (A sec) TIME (@sec)

FIG. 4. Relaxation profiles for spin and phonon sys-
tems after spin inversion shown in insert. The parame-
ters of Fig. 2 are applicable except 0~=10, 0.2=10 .

= ~(N& +N~), while N2remainsunchanged. Over a.

longer time the tightly coupled N& and N, relax to
N2 through the generation of &j phonons and all the
transitions approach their saturation values. This
is further pointed up in the phonon profiles of Fig.
4. Y& rises rapidly to its large peak value and
then decays away, beginning with the intrinsic rate

Y„on the other hand, builds up very slowly
to a small peak value Yq ™1;here one does not
have the opportunity to determine 7'& as Y&& N&.
Although not observable from our figure, the var-
ious spin transitions do not pass through saturation
simultaneously; however, the deviations are small
enough that decays measured at "saturation" will
probably be good estimates of the unbottlenecked
rates.

Numerical decay profiles for the case 0&» oa
have also been obtained but are not shown here.
Their behavior is qualitatively similar to that of
the case o&» o& with a few exceptions: In this in-
stance, Yj peaks considerably ahead of Y& in time
and its intensity is typically several orders of
magnitude greater. The peak of Y2 occurs quite
late in time (analogous to the behavior of Y, in the
previous case) and is limited to Ya-1. Neither
&N&z nor any of the other transitions shows a dip
or plateau in their decay and all transitions pass
through saturation at the same time. For &N»= 0,
the decay of Y& proceeds at the rate 7'&, while 7g
is undetermined.

We should point out at this time that an experi-
mental determination of the behavior of &N» or
&N» using resonance techniques is unfortunately
not possible. Because of the equal level splittings,
any attempt to monitor either quantity separately
leads to a measurement of &N», and, as we have
noted earlier, the &N&3 transition decays to equi-
librium without displaying any of the unique be-
havipr pf the pther &N&&.

III. NEARLY EQUALLY SPACED THREE-LEVEL SYSTEM

We now consider a three-level spin system which
possesses nearly equal level splittings, a scheme
which is also characteristic of an S= 1 system but
one in which a small axial-field component (arising,
say, from local lattice strains) distorts the pure
octahedral environment of the spin. An external
Zeeman field yields the level splittings of energies
ha& depicted in Fig. 5. We assume a total of N
spins: By allowing for an axial distortion of either
sign, one obtains twp subsystems each of popula-
tion —,'N with level populations n& and m, , respec-
tively. W'e further assume that the only coupling
between the systems arises through the resonant
phonons with excitations p, , which themselves are
assumed noninteracting, and allow for an rf field
of transition probability S'„at the frequency i«
as before.
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Using the previous formalism one can obtain
rate equations for the quantities n&, m&, and p&.
We define normalized variables

)3&, n3

t4I3

[f&, mf

rf

Nf ——2nf/N, Mf ——2mf/N,

Y, = 4(p, -p, )/3o, (p, + -,') for i = 1, 3,

Ya= 2(Pa -Pg')/3oa(Pa'+ 2),

where o, and og are defined by Ell. (2} and

o, = 2NKsf 3/3(ps'+ —,') p(los) dios.

The applicable rate equations then become

de 0 0

dt
= -K,{[pl +kg, (2pg + l)]N1

+ [-(p, + 1) + kgl(Pg + 1)]Na

+ 4 of(pl + 2) (Nl —Na)Yl

+ gkgfo'2(pg + 2) (2N1+Na —1)Ya

—kgf(pa+ 1)}—W„(N1 —Na) ~

ding 0 0

dt Kl{[ Pl + k31(P3 + 1)]Nl

+[(p,'+1)+k„(2p, +1)]N,

+ 4 ol(P1 + 2) (N2 Nl) Yl

+ 4 kg fog (ps + 2 ) (Nl + 2Na —1)Ys

- kg 1(ps + 1)}—W~f (Ng —Nl),

(7)

(8)

)2&, n2

Wf I

)1&

)2&, m2

FIG. 5. Energy-level diagram fox S=1 spin system
with nearly equal spacing of states; the subsystems n~

and m& are described in the text. Level splittings are
greatly exaggerated; «~ = «3. rf field saturation occurs
only at frequency «~.

For steady-state saturation (W„-~) of the &Nfg

and &Mgs transitions, Eqs. (9)-=0, with N, =Na,
M, = M, . The relations dN, /dt= dM;/dt= 0 are of
little interest, because of the existence of the rf
field term. These are therefore replaced by the
expressions d(N, + Na)/dt = d(Ma+ Ms)/dt= 0. The-
equations for saturation then become

dt
= 0 = —Kl {[kgl(3pg + 2) + kgl(3ps + 2)]N1

+ 2 k21os(pa + 2) (3N1 1)Ya

+ 4 ksl o'3(Ps + -,') (3N1 - 1)Ys

—kgl(Pg + 1) —kgl(P3 + 1)},

= —K,{[pl + kg 1(2ps + 1)]Ma+ [-(pl + 1) + ksl ps ]Ms

+ 4 of(pf + —,') (Mg -Ma)1'1

+ 4 kslo'3( ps + 2) (2Mg+ Ms —1)Ys

-kslPs'} —W.f (Ma -Ms),

dt
= 0= -Kf{[kgf(3pa +1)+kg, (3ps +1)]Mg

+ 2 kgfog(pg + 2) (3Mg - 1)Yg

+ —,
'

ksfos(ps + g) (3Mg -1)Yg

-&a~P3 -&3~PS I0 OL

dM3 o

dt
= -Kl{ (-Pl + kalPa)Ma

+ [(pl + 1)+ kal(2pa + 1)]Ms

+ 4 ol(pf + 2) (M3 Mg)Y1

+ 2 kafog(p2 + 2) (Mg+ 2Ms —1)Ya

-k„P,'] —W„(M, -M,),

dt
' = 3'f {-pl (Nl+Ma)+ (pl +1) (Na+ Ms)

+[4 of(pf + 2) (Na —Nl+Ms ™2)—1]Y1}~

(9) de
dt

=O=rf (Nl+Ma- Yl),

dY~ 0=G=r. {-(3pg+2)Nf+(3P, + 1)M, +1

+ [K oa(pa + 2) (M2 Nl) 1]Yg}y

dY3 0
dt r3 { (3p, + 2)N1+ (3pg + 1)Ma+ 1

+ [gos(ps + 2) (Mg —Nl) —1]Y3}.
With dY, /dt = 0, we have Y, = N, + Mg . Using Eq.
(7) and assuming k T43", & k T & k~zl, this yields

T,ff = [ 4 of (Nf + Mg) + 1] T . (11

= 'ra {-(2Pa + 1) (Nl -Ms) —(Pg + 1)Ng+PgMa+ 1

+ [ 2 og(Pg + 2) (2Ms+ Ma —2N1 —Ng) —l]Ya},

dt
=rs'{-(Ps +1)N1 —(2Ps +1) (Na -Mg)+P3Ms+1

+ [ 4 os( ps + 2 ) (2Mg+ Ms —Nl —2Na) —1]Ys}.

The solutions of Efl. (10) for N, and Mg are not
readily available, as we shall show shortly. It is
easily shown, however, that the largest value for
Xq+M2= 3 is obtained when all transitions are sat-
urated; for the general case, Efl. (lla) becomes

T,",,' &(-2'of+1) T. (lib)
With strong bottlenecking, then, the heating of the
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resonant phonons (dj is at least a factor of 2 less
than the heating obtained when the levels are
equally spaced.

The determination of the saturation values for
the other variables involves the solution of a quartic
equation which is further reduced to a cubic. Ex-
cept for a few limiting cases, the solution is best
accomplished using numerical techniques and
yields only one physically realizable situation.
Typically, we have N&+M2&3 and Y2&0& Y3, with
both Y&-0. The reduction of the quartic equation
to a cubic is of particular interest as it yields the
relation

Yq/ Y~ ———kgm
———Kq/Ka . (12a)

Rewriting Eq. (12a) using the results of Eqs. (2),
(7), and (8), one finds

&2 (pp -pa) p(kg)d&ga = —Tg (ps -pg ) p(rd~) d(op~ (12b)

which directly relates the phonon excitations p2
and p3. Equation (12b) represents a necessary
phonon conservation condition: The rate at which

& phonons are lost to the bath must equal the rate
at which &3 phonons are removed from the bath.
In retrospect, this is not unexpected with the sys-
tem undergoing cw saturation at frequency «&.
Since all level populations and phonon excitations
are unchanging, transitions into and out of Ns and
Mf must be compensated by the only available en-
ergy source for phonons, the bath. A similar re-
lationship involving the» phonons is unnecessary
since they are fed directly from an external source,
the saturating rf field.

Qfhen the rf field is removed, the phonon exci-
tations begin their decays with zero slope; the
spin transitions, however, do not begin their re-
laxation with the unbottlenecked rates, as that re-
quires equal populations in all levels. For very
long times the asymptotic decay rates are obtained
from the linearized forms of Eq. (9) using our ap-
proximation techniques. These rates show little
deviation from those obtained for the system with

equally spaced levels: One obtains three large rates
of the form Aq and Xa in Eq. (8), two intermediate
rates comparable to X3, and two small rates com-
parable to, though often slightly larger than, X4.

Early-time decay profiles with k» =1 and o& = 0'&,

as would be expected for an almost equally spaced
S= 1 system, were also obtained. Once again the
spin relaxation is characterized by a rate - X4.
The Y& phonon decay is qualitatively similar to
that for the equally spaced system although the
initial fast decay is more subdued; changes in o~
have little effect on Y~. Yz and Y3 show no obvious
nonexponential behavior and return to equilibrium
at the asymptotic rate - X4.

Following a perturbation which inverts all or
part of the spin system, but leaves the phonons at
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FIG. 6. Spin- and phonon-relaxation curves obtained
from Eqs. (9) following inversion of (d~ transitions (see
insert). Parameters same as for Fig. 2 except ~~=cue
=25.6 GHE, k3&=1, 0& —-0.3=10, and 02 —-10 . Curves3 4

for Y2 and F3 show little change and are not presented.

the ambient temperature, the spins begin their
decays with the normal unbottlenecked rates.
Later, one can again determine the normal rates
providing all transitions &N, &, &M,

&
pass through

saturation simultaneously. The intrinsic rate v,
for the phonons Y, is more readily obtained since
one only requires that the spin transitions of en-
ergy Sv& pass through saturation simultaneously
and Y, » all N, , M, .

If one initially inverts a single transition iz, ,
as is easily done using either the 180'-pulse or
adiabatic rapid-passage technique, the results of
Fig. 8 are obtained. Choosing &N(~&), &M(u&&) to
represent the normalized population differentials
of the two subsystems at the (d, transition fre-
quency, we plot the quantity

4L& ———[4N(&&)+ 4M(v&)]/[&N (e«)+ &M (&o~)],

which is proportional to the usual ESR resonance
strength for the v, transition; for example, for
the transition at frequency e, , we have

+L1 (N2 N1 ™3™2)/(N1 N2 ™2MS) '

For all choices of parameters the perturbed tran-
sition» shows typical bottleneck behavior. How-
ever, the other transitions never do pass through
saturation and the normal relaxation rates are un-
determined. The phonons Y1 show a large peak
early in time while Y» Y3-0 with Y&&0& Ys. In
all cases ~& is obtained when the &I.1 transition



W. J. BRYA

2
1

I I I

n) t
cal3

np I
1

n3
4I1

1
4)1
~ mp

t 3
la)3

& mo
2

0—

Y1 0. 2- 5

C)

2

I 1

I
I I I

0 10 20 30 40' 0. 25 0. 5 0. 75 1.0
TIME (nsec) TIME (@sec)

FIG. 7 ~ Relaxation profiles for spin and phonon sys-
tems following sequential inversion of ~3 and cu& transi-
tions as shown in insert. Parameters are the same as
for Figs. 2 and 6 except 0.~=10 .

passes through saturation.
The decay profiles of greatest interest are ob-

tained for the initial spin configuration shown in
the insert of Fig. 7. Using the rapid-passage
scheme, the transitions ~3 and» are inverted
sequentially in time and the spin decay is monitored
at one frequency &;. For equal o;, all the &L;
transitions show the usual initial fast decay: &L&

and &L& drop rapidly from the inverted state to
saturation; &L3, on the other hand, starts with its
equilibrium value and rises rapidly to saturation.
At very long ™s,&L3 and the other &L,. return
again to equilibrium at the asymptotic rate. As
seen from the phonon curves, the initial spin be-
havior is associated with rapid increases in Y& and
Y2, while Y, increases slowly over a much longer
time. All the &L, essentially pass through satura-
tion together but, even though the M3 phonons do
not participate in the fast decay, this does not nec-
essarily prevent a determination of the normal re-
laxation rates. With the» and ~2 transitions ini-
tially inverted, their rapid decay to saturation and
the attendant buildups in Y& and Y2 might, in certain
instances, produce equal populations in all the spin
levels. This would be expected to occur for
o, -o~ and one could then obtain the unbottlenecked
rates. In general, however, the decay at satura-
tion will not be the desired normal rate with equal
o, . The decay of Y& after peaking occurs with the
rate 7'&', while the &, for the other Y, are unavail-
able.
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FIG. 8. Spin-phonon decay curves obtained from
Eqs. (9); initial spin configuration shown in insert.
Properties same as Fig. 7with01=tT3 ~0 and 02 ~0 ~

For the same initial spin configuration, the re-
laxation characteristics for o&» o~ are very similar
to the preceding example; the only qualitative dif-
ference is a Y2 behavior comparable to that of Y, ~

The unbottlenecked rates are undetermined and Y&

decays with its intrinsic rate.
The unique profiles of Fig. 8 occur for the case

oz» o& ~ On their approach to saturation, the &L&

and M~ transitions display two rapid decays which
coincide with the generation of large numbers of
phonons at the frequencies z& and i&~. Particularly
noteworthy is the ~L3 decay with its many changes
in spin temperature before it finally returns to
equilibrium. The spin decay rates at saturation
are uninformative since the sequential generation
of phonons at » and iz~ cannot produce equal level
populations. The behavior of Y2 is also quite in-
teresting. After its initial increase, Y~ begins its
decay to equilibrium at the rate 72 . As Yq in-
creases, however, the Y& excitation very quickly
drops to near equilibrium and remains there. Y,
reaches its maximum value and then decays away
with v& ~ The rapid decay of Y2 has its basis in
the competition between the && and &3 transitions:
The initial large excitation of Y2 arises when the
bottleneck drives the ~2 transitions to saturation.
However, as Y& increases and the ~& transitions
are driven to saturation, the cgz transitions are
thereby forced toward their equilibrium values.
Since a large bottleneck factor favors a transition
in a saturated condition, ~z phonons are reabsorbed
to keep the uppermost levels at the same popula-
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tions as the lowest levels and Fz drops. A further
indication of this competition is aptly demonstrated
in the decay curve for ~L3 which shows a slight
dip toward equilibrium at the time when Y& and F&

are exchanging excitations.

IV. DISCUSSION

In a number of 8=1 spin systems, the EPR line
attributed to ~& = + 1 transitions is inhomoge-
neously broadened by random lattice strains. As
a result, only at the center of the resonance is the
system describable by the equally spaced level
scheme. In the wings of the resonance, the &M& = 1
transitions are well resolved and the situation is
more aptly characterized by the nearly equally
spaced configuration just described.

With cw saturation at or sufficiently removed
from line center, the phonon heating is readily
obtained using the general expressions Eqs. (5) and
(11). Since the excitation at line center will be at
least twice as large as that experienced in the
wings of the line, even with equal numbers of spins
present, a profile of phonon heating, as a function
of that portion of the EPH line undergoing satura-
tion, will display a line shape of width noticeably
less than the EPR bandwidth. By comparison, a
bottlenecked two-level system with an inhomoge-
neous resonance will show a phonon profile quite
similar to the EPR line.

The situation is considerably different for those
phonons generated by ~M& =a 2 spin transitions.
With saturation of the 4M& = 1 transitions at energy
5, significant phonon heating at 25 is only possible
at line center where the exchange of energy between
spin levels is relatively easy. As a result, the
phonon bandwidth will be significantly less than
either the EPR or 5-phonon linewidth.

In truth, the phonon properties will be further
influenced by other processes not considered here:
spin diffusion, internal cross-relaxation, 3 spin
transition and phonon-excitation overlap, double-
quantum transitions, ' etc. Generally these
will lead to a lessening of the phonon excitation and
further broadening of the phonon bandwidth. Quan-
titative estimates as to the importance of these
effects are not readily available; however, direct
measurements of the phonon profiles obtained with
saturation of selected portions of the resonance
should show the significance of such processes in
any particular case.

As noted earlier, the expressions for the phonon
excitation can be easily specialized to any given
phonon providing the bottleneck factor o is appro-
priately evaluated. This feature should be of par-
ticular interest in a material of high crystal sym-

. metry where strong selection rules govern the
spin-lattice coupling in the presence of an applied
magnetic field. Studies of phonon heating as a

function of magnetic field orientation and phonon
polarization and propagation should provide further
useful information about the spin-phonon coupling
formalism in the S=1 system and other more gen-
eral systems.

The phonon conservation condition of Eq. (12b)
obtained for the nearly equally spaced spin system
also has far-reaching implications. For a multi-
level spin system in which one or more transitions
are undergoing rf saturation, the excitations of res-
onant phonons of frequencies different from the rf
field frequency are uniquely inter related through
expressions of the type Eq. (12b). In fact, these
relationships are valid for any degree of rf satura-
tion provided only that the coupled spin-phonon
system is in a steady-state configuration; the de-
gree of saturation only influences the absolute ex-
citations of the phonons and not their relative values.

As indicated in our calculations, further infor-
mation on the spin-phonon-system parameters is
obtained when the rf field is removed. Spin-lattice
relaxation measurements at the center of the res-
onance show the decay to begin with the normal un-
bottlenecked relaxation rate, a feature which is
typical of any multilevel spin system provided all
transitions are initially saturated; measurements
of the phonon decays at early times yield the in-
trinsic phonon-relaxation rates when the bottleneck
factors are large and could prove useful in studies
of phonon-lifetime phenomena. At long times the
coupled system returns' to equilibrium at the asymp-
totic rate derived earlier, a rate which is charac-
terized by an inverse dependence on the number of
spins, a linear relationship to sample size when
boundary scattering is dominant, and quite often
by a distinctive T temperature dependence.

The relaxation behavior following an initial spin
inversion yields similar quantitative results, often
with increased experimental accuracy; determina-
tions of the normal relaxation rate, intrinsic phonon
decay times, and the asymptotic decay rate are
usually possible at some period in the return to
equilibrium. In addition, the qualitative behavior
of the decays for various choices of the bottleneck
factors and the initial spin configuration are also
of some interest, since the rather distinctive pro-
files often provide added information as to the
relative importance of the different phonons in the
decay process. One notes, for example, the cor-
respondence between a number of our theoretical
curves and experimental results" obtained for the
MgO:Ni ' spin system with o~ & o'» o'3.

Admittedly, a model of a coupled spin-phonon
system based on simple rate equations for the spin
populations and phonon excitations (with the as-
sumed linear phonon loss) is naive. Phenomena
related to spatial variations within the sample,
coherence effects in the phonon system, ' anisot-
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ropy in the acoustic phonon characteristics, cross-
relaxation and double-quantum effects, to name a
few, have purposely been avoided. Nevertheless,
a similar approach to the simpler two-level sys-
tem has provided rather good qualitative and rea-
sonable quantitative agreement in a number of
physical systems. In addition, the existing
data"o'4 on a number of S= 1 systems (Fes' and
¹

' in MgO) are not in opposition to our results;
further data to be published on the phonon char-

acteristics in Mgo: Ni ', such as phonon bandwidths
and decays, also appear initially to be in reasonable
accord with the simple model.
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