3 CHARGE DISTRIBTUION PRODUCED BY 4- TO 24-MeV... 583

t6p, Tabata, R. Ito, andS. Gkabe, Ann. Rep. Rad. Center
Osaka Prefect, 9, 34 (1968),

YT, Tabata, R. Ito, S. Okabe, and Y. Fujita, Ann.

Rep. Rad. Center Osaka Prefect. 10, 34 (1969).

By, g, Berger and S. M, Seltzer (private communica-
tion); calculation carried out with program ETRAN developed
at the National Bureau of Standards. The basic features
of this program are described in Refs. 5, 8, and 10,

97, Tabata, Phys. Rev. 162, 336 (1967).

®p, Harder and H. Metzger, Z. Naturforsch. 23a,

1675 (1968).

Up, J. Ebert, A. F. Lauzon, and E. M. Lent, Phys,
Rev. 183, 422 (1969).

M, J, Berger and S. M. Seltzer, National Aeronautics
and Space Administration Report No, NASA SP-3012,
1964 (unpublished).

20, Blunck, Z. Physik 131, 354 (1952).

23, A. Lonergan, C. P. Jupiter, and G. Merkel, J.
Appl. Phys. 41, 678 (1970).

PHYSICAL REVIEW B VOLUME 3,

NUMBER 3

1 FEBRUARY 1971

Stochastic Theory of Line Shape: Off-Diagonal Effects in Fine and Hyperfine Structure*

M. J. Clauser
Sandia Labovatories, Albuquevque, New Mexico 87115

and

M. Blume )
Physics Department, Brookhaven National Laboratovy, Upton, New York 11973
(Received 14 September 1970)

An extension of the stochastic model of relaxation effects is used to derive a theory of the

line shape of fine and hyperfine structure.

The theory is developed for Mdssbauer spectra,

but can be readily applied in related fields such as perturbed angular correlations, electron
and nuclear spin resonance, and optical spectroscopy. Previous stochastic-model theories
of hyperfine spectra have used a semiclassical fluctuating-field approach which inherently
restricts the hyperfine Hamiltonian to matrix elements which are diagonal with respect to the

electronic states.

In the present theory, these restrictions are removed by using a quantum-

mechanical treatment of the combined electronic-nuclear system, wherein the relaxation en-

ters as random instantaneous transitions between electronic states.

This allows inclusion

of the effects of off-diagonal electronic hyperfine matrix elements (e.g., the pseudoquadrupole

interaction).

A model for the relaxation is presented which allows all the transition rates to
be specified independently, as is necessary to treat finite temperatures.

Two examples are

used to illustrate the the theory and to compare it with other theories.

I. INTRODUCTION

Numerous stochastic'~® and ab initio®° treatments
of the effects of time-dependent perturbations on
Mo0ssbauer line shapes have appeared in recent
years. Many of these theories are derived from
similar developments in magnetic resonance!!~*
or perturbed angular correlations, **~!® and they
are applicable in many other line-shape problems
as well. In this paper, we present a generalization
of the stochastic theories to cover a class of situa-
tions not previously discussed, !

A simple illustration shows the type of extension
made. In stochastic treatments of Mdssbauer line
shape, the hyperfine interaction between the nuclear
spin and the electronic spin is replaced by an inter-
action between the nuclear spin and randomly vary-
ing external magnetic and electric fields.!® The
randomly varying fields represent the effect of a
relaxing electronic spin on the nucleus, This type
of treatment is only valid, however, if the elec-
tronic part of the hyperfine interaction has no off-

diagonal matrix elements, since an external mag-
netic field has no such elements. Thus, such a
treatment is reasonable for a hyperfine interaction
of the form al,S,, since the electronic relaxation
causes a time dependence to be induced in S,, which
is a diagonal operator. If the interaction is of the
form al- §, however, we may not replace § by a
varying external field. The appropriate time-vary-
ing field would be of the form h(#) =a{y(t) 1§19(2)).
Since, in the stochastic model, ¥(#) jumps instan-
taneously from one electronic state to another,

f(t) only takes on the values &iISli), and the off-
diagonal matrix elements {IS1j) would be ignored.
These matrix elements are important when the
splitting of the electronic levels is not large com-
pared with the hyperfine splitting. Our approach
here is to treat the entire nucleus-electron sys-
tem quantum mechanically. The effects of elec-
tronic relaxation are then introduced by additional
terms in the Hamiltonian which have random prop-
erties and which are capable of inducing transitions
between the different electronic levels. Previous
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stochastic treatments are recovered in the cases
where the electronic part of the hyperfine interac-
tion is diagonal. The results derived here are
similar to those found in the ab initio calculations
of Afanas’ev and Kagan® and Gabriel, Bosse, and
Rander, ® and it is of interest to note that the same
formal expressions are obtained in the stochastic
and the ab initio treatments. Stochastic theories
have the advantage, in some cases, of greater phys-
ical clarity and the insight which they afford into
the broadening mechanisms. Our theory is, in
essence, a quantum-mechanical version of Brown-
ian motion® or shot-noise® phenomena, with the
emitting atom or nucleus acting as the detector.

Effects of the type discussed here are ordinarily
not found in magnetic resonance problems, since
an external magnetic field which “quenches” the
off-diagonal matrix elements of the hyperfine in-
teraction is usually present in such experiments.
There are, however, occasions in MGssbauer ef-
fect, perturbed angular correlation, and light-scat-
tering experiments when the results derived here
are of practical value.

The central result of the paper is contained in
Eqgs. (24) and (27), which give an expression for
the line shape of radiation emitted by a system
governed by a Hamiltonian such as Eq. (1). In Sec.
II, we derive these expressions and enumerate the
assumptions used in the derivation. In Secs. III
and IV, we illustrate the utility of the results with
some simple examples, and we discuss the form
of the transition operator which appears in the
formula. In a later paper we will apply the for-
malism to the analysis of experimental Méssbauer
data.

II. FORMAL SOLUTION

We adopt a physical picture in which the system
(consider for concreteness a nucleus coupled to an
atomic spin) is subject to sudden pulses at random
instants of time. The effect of these pulses is to
cause transitions between the levels of the system.
A simple example is that of electronic spin-lattice
relaxation. At random instants of time the sys-
tem is “hit” by phonons, some of which cause
transitions between different states of the system.
In the stochastic model the pulses are assumed to
occur instantaneously, and in between pulses the
system is assumed unperturbed. In accordance
with this picture the Hamiltonian is taken in the
form

3C=3Co+20; V,0(t—1t;) . (1)

The instants #; are assumed random with a Poisson
distribution, and the V; are quantum-mechanical
operators which we assume uncorrelated from one
instant to the next. In our example we would have
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3y =al- §, and V; =ﬁ¢ . §, where l-;, is a magnetic
field which varies in magnitude and direction from
one instant to the next.

We want to calculate the line shape of radiation
emitted by a system governed by a Hamiltonian
of the form of Eq. (1). This may be expressed as
the Fourier or Laplace transform of a correlation
function, ® so we consider the evaluation of

Fp) = ["ate (ANOAWD)), (2)

where A is an operator for emission or absorption
of radiation, p=3I' - iw, with I" the natural line-
width of the nuclear excited state. The angular
brackets (- - -) denote an average over the initial
states of the emitter, and the round brackets (- - - ),,
denote an average over the stochastic properties
of the Hamiltonian, Eq. (1).

The time dependence of a wave function governed
by Eq. (1) is given by

¥(t) = U(2)9(0), (3
where
Ut) = Uglt=t,)Ty* o Ty Uplta— 1) Ty Up(ty),  (4)
Uy(t) = ™%t | (5)
Ti=e Vi, (6)

It has been assumed that there are exactly » pulses
in time £. Of course, » is a random variable and
must be averaged over in the final expression for
the line shape. The transition operators T'; have
a significance of their own: If the state of the sys-
tem immediately prior to a pulse is ¢ the pulse
causes the system to jump to the state (T9). Taking
the V; in Eq. (1) to be Hermitian implies that the
transitions induced by them between states |a) and
|b) are equally probable in either direction. This
does occur at infinite temperature, but at a finite
temperature the ratio of transition probabilities is
given by a Boltzmann factor. It is thus necessary
to allow, in general, non-Hermitian terms in the
Hamiltonian to provide detailed balance at finite
temperatures. These terms are required because
of the nature of the model. We are replacing the
effects of a “heat bath” by a single term in the
Hamiltonian, so that the irreversibility must be
introduced explicitly.

The time dependence of the operator A is given

by
A(t)=U"t)A Ut) , ("

where the appearance of the adjoint, »no¢ the inverse,
of U is the only noteworthy feature. In the calcu-
lation of line shapes in Ref. 18, use was made of
the Liouville operator to write e B ¢"=¢<*B,
where C*B=[C,B]. The definition of the Liouville
operator must be generalized slightly for non-
Hermitian operators. Essentially, Zwanzig? de-
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fines the Liouville operator such that the time de-
pendence of an operator is given by

B(t) =e'*™ B (8)

for time-independent Hamiltonians. For Eq. (8)
to hold for non-Hermitain Hamiltonians, the Liou-
ville operator must be given by the relation

C*B=C'B-BC, (9)

which reduces to the usual commutator when C is
Hermitian, From Eq. (9), we may easily derive,
following the discussion in the Appendix of Ref. 18,
the relation

'°'BeiC=¢' "B, (10)
Using Eqgs. (4)-(6) and (10) we may rewrite Eq. (7),
Alt) =u(t)A
=Wt )T Uty = ty)e o Tou(E=2,)A, (11)
where the superoperators U, and 7 are defined by
WA = UJA U, (12)
TA=T'AT, (13)

for any operator A. From Eqs. (5), (6), and (10),
we see that Uy and 7 are also given by

U, (2) =t | (14)
T‘=e“,)¢( . (15)

]

() =EOP,,(t)fo'dt,, S dtyy - f2dt, W, (2, o
-

where P, (t) is the probability that exactly » pulses
occur in time £, For random occurrences of the
pulses, this is given by the Poisson distribution

P, () =[(8)" /nl]e™, (21)
where 1! is the mean time between pulses; X is the
1

Using Eq. (11) we may rewrite Eq. (2)
F(p) =(A" [“dte™(U(t))o A, (16)

and our task is to evaluate the matrix elements of
the transform

Up) = f"dte (u(t)),, . (17)

The average which must now be performed con-
sists of two separate parts: one over the instants
of time at which the pulse occurs, and the other over
the type of pulse (e.g., the value of h; in the example
cited above). We assume that these two averages
are independent and further that the types of succes-
sive pulses are uncorrelated (e.g., B; is indepen-
dent of fi;.;). These assumptions can be made some-
what less restrictive (e.g., B; can be dependent on
t; = t;.;, the time from the previous pulse) without
much greater difficulty, but we do not consider this
situation here. We thus have

(W(E)) gy = (Ug(t)) Ty Uolta= ) Tay+* * Tay Uo(t= £, ay

(18)
where we have performed the average over the type
of pulse

7‘av:(e”,;()av; (19)

and the remaining average on the right-hand side of
Eq. (18) is over the instants #;. From this we de-
duce

Ins t) ‘uO(tI)Tav ° 'Tav ‘uo(t_ tn), (20)

r

mean frequency of the pulses. Also W,(t,--,t,;¢)
X dt,** dt, is the probability that, given that n pulses
occur in time ¢, these occur at ¢, in d¢,, ..., ¢, in
dt,, respectively. Since the points are randomly
distributed, W,=n!{"". Substituting these in Eq.
(20) yields

© t t
(‘u(t))av =Z dt, f zdtl e(tacg-x)tl ()(Ta,,)e(mg'““?'tl) ( 7-”). .o e(iscg-x)(t-t") . (22
0

n=0.J0o

For U(p) in Eq. (17), we require the Laplace transform of Eq. (22). The Laplace transform of the
convolution in Eq. (22) is just the product of Laplace transforms, so that

= 1 1 1

U(p) =1 T cee —_—

) J”ZJOPM_?BCE 0T o) 5 mer O w) o+ 0T ) g

1 = 1 " 1 1

=— T =
p+A—13Cg ,,E,o (7‘ “"p+x-i:«:3) pPHA=i%y 174 (p+1—-isy)™ (23)
|
or, finally, where all the relaxation effects are contained in the
wp) =(p-w-isey)? , (24) superoperator W:
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W=ATy-1). (25)

Substituting Eqs. (24) and (17) into Eq. (16), we ob-
tain the line-shape function

Fip)=(AT(p-w —i3C5) ™ A),
or in matrix elements,

Fp)=2 pAv|ATw (uv|u@)|uv Ku'|Alv'),

v
u’,

(26)

(27)

where p, is the Boltzmann factor for the initial state
1) . The matrix elements of A are essentially
Clebsch-Gordan coefficients. The matrix elements
of U(p) are calculated by inverting the matrix in
Eq. (24). This matrix has dimensions (25+1)2
x(2I,+1) (2I,+1), where S is the (effective) electron-
ic spin; I, and I, are the spins of the excited and
ground nuclear levels. The matrix elements of
3¢y are given by'®

(“VIZC;I p'v') =5WI<IJ-!GC0] p'y- Ouue <VI,3CO' .

(28)

Note that 3¢, is Hermitian, otherwise 3¢ would ap-
pear in the first term on the right. From Eq. (13)
the matrix elements of 7 are given by

(o 7[n"") =’ T[> T 0

In practice, Egs. (6) and (29) will prove to be more
useful for calculating the matrix elements of 7

than Eqs. (9) and (15). The average 7,, is obtained
by averaging Eq. (29) over the types of hits Vi.

The remaining problem is to determine the appro-
priate form for V;. In an abinitio calculation, one
expects W to follow from first principles, but in
practice this evaluation is very difficult. In our
stochastic theory, on the other hand, we must
specify either V or T as input information. Our
point of view is that we may as well assume a form
for the transition operator T as for the potential
V, and in Secs. III and IV we discuss the permis-
sible forms of these operators.

(29)

III. EXAMPLES

We will consider two simple examples to illustrate
the main features of the theory presented in Sec. II.
In particular, we will point out how the results dif-
fer for hyperfine interactions which are diagonal
with respect to the electronic states and for those
which are not. In these examples only two elec-
tronic states with equal populations will be consid-
ered. The more general case will be outlined in
a subsequent section,

a. Relaxation operators. We will use a spin-
Hamiltonian formalism to describe the electronic
portion of the interactions. The two electronic
states will be denoted |+) and |-) and are eigenfunc-
tions of the electronic portion of 3¢y, which is given

CLAUSER AND M. BLUME
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by
¥X.=as,.
The splitting a produced by 3C, can be a Zeeman
splitting, a crystal-field splitting, or no splitting at
all (a=0).
For a pulse of the form

(30)

V,=h,-§, (31)
the transition operator is given by
7= e-n?-s‘
=cos(7) + 2isin(2h) G- , (32)

where h®=h.H and U=H/r. By restricting R so that
h=mand h,=0, a particularly simple form of the
transition operator may be obtained:

T=i(e??s,+e'S.), (33)

where cosé =h, /h and sind = h, /h. This form of the
transition operator produces relaxation processes
equivalent to those considered in previous stochastic
treatments: FEach pulse causes electrons in the
I+) state, for example, to “flip” to the |-) state with
a phase change of 6, which we will assume to take
on random uncorrelated values at each instant #;.
It may also be seen that T causes the transition
rate for + to — transitions to be the same as for
- to + transitions, which is necessary to maintain
equal populations in both electronic states. Since
every pulse causes an electronic transition in this
model, the pulse rate X is also the relaxation rate,
i. e., the probability per unit time that the transition
+ to — occurs, given that the electrons are in the
+ state, and vice versa.

The nonzero matrix elements of 7 may be readily
obtained using Eq. (29):

(34a)
(34b)

(4|7 ]= =) == =7 [+ =1,
(+ =] 7= D= 4| 7|+ =)k=¢20,

Upon averaging over 6 the matrix elements of Eq.
(34b) vanish, leaving the two matrix elements of
Eq. (34a) as the only nonzero matrix elements of
7 . The matrix elements of w =x(7,, - 1) are
given in Table I.

As a more general case, we assume that R is
isotropic in three dimensions and put no restrictions
on its magnitude. The matrix elements of 7,, may
be calculated by using Eqs. (29) and (32) and aver-
aging over the magnitude and direction of the field
R. Since the field direction is random, we take
(#3)ay =0, and (w;ug)sy = 36,5, and we define
x =(sin*(n/2)),, and 1 - x=(cos¥%/2)),. The matrix
elements of T,, are then given by

(Lv| To| V) = (1= )5, 40 5,0

+%xz;j<ﬂlsjlﬂl><V',Sle>- (34c)
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TABLE I. Matrix of (uv|W |p’v’) for T=i(e"*%s, +¢%%.).

N’u’ +4+ —— 4= -+
++ -2 A 0 0
- A -A 0 0
+- 0 0 -A 0
-+ 0 0 0 -A

The resulting matrix of W=x(7,,~ 1) is shown in
Table II. Note that the relaxation rate, W=3x2,

is determined by the product of A, the pulse rate,
and x, the average of sin®(#/2). The factor % enters
because the pulses with fields along the z axis cause
no transitions. Since the pulse causes a precession
of the spin around i by an angle equal to &, one
pulse does not always produce a complete transition
from + to —. The factor x measures the average
effectiveness of the pulses in causing such transi-
tions.

Because of the simple form of Eq. (33) and the
consequent physical insight into the relaxation pro-
cess, we shall use the first model of relaxation in
the remainder of this section. Since the matrices
in Tables I and II are so similar, there would be
no significant difference in the results if the second
model were used.

b. “Diagonal” hypevfine intevactions. As the
first example, we consider the simple hyperfine inter-
action al,S,. For our purposes, thisis representative
of all “diagonal” hyperfine interactions, by which
we mean that the hyperfine interactions are diagonal
with respect to the electronic states. More com-
plex forms, which include nonaxially symmetric
field gradients, for example, but which are still
diagonal with respect to the electronic states, dif-
fer from this example mainly in that it is necessary
to invert a larger matrix.

Combining the hyperfine Hamiltonian and the elec-
tronic Hamiltonian, Eq. (30), 3¢, is given by

¥Ho=aS,+al,S,. (35)

The matrix elements of 3¢, may be easily calculated
from Eq. (28). The matrix elements of p —w— i3Cq
form a large matrix, in general. In the case with
which we are dealing, however, neither 3¢, nor V;
mixes states of different m;. Consequently, the
large matrix breaks up into a series of smaller

4 X4 matrices, each of which may be inverted sep-

TABLE IL. Matrix of (uy|W | ') for isotropic h.

N’y' ++ -— +— -+

+ + -w w 0 0
- - w -w 0 0
+ - 0 0 -2W 0
-+ 0 0 0 —-2W

TABLE III.  Matrix of (um,, vm,|p—W—dc|u'my, v'm,)
for T=i(e™®S,+e'%.), 3,=a S, +al,S,.

74 ++ - + - -+
N

p+A—iB
4+ +ig, o 0 0
P+A+iBy

Moo iy 0 0

+- 0 0 pHA—ia
— iBy— By 0
-+ 0 0 0 17+7\+i01
+iBo+iBy

arately. One of these matrices is given in Table
II. For convenience the notation By=3aymg, B,
=%a,;m, is used. The subscripts 0 and 1 refer to
the ground and excited states of the nucleus. These
states have different g factors, hence the different
values of a.

The matrix of Table III breaks up further into
2X2 matrices. Since the matrix elements of A in
Eq. (27) are diagonal with respect to the electronic
states, only the upper-left 2 X2 matrix of Table III
enters into the line shape. It is interesting to note
that if Blume’s?? treatment were applied to this
example, only the upper-left 2X2 matrix of Table
III would appear. The remainder of the matrix,
which is important for “nondiagonal” hyperfine in-
teractions, does not appear. The matrix elements
of 7in Eq. (34b) that vanished when averaged over
9 would have appeared in the lower right-hand cor-
ner of Table I. In this example, and generally for
“diagonal” hyperfine interactions, these matrix
elements do not affect the important matrix ele-
ments of U (p). Consequently, the value of 6 is
irrevelant in this example and we could have taken
6=0. As will be seen in the next example, how-
ever, this is not true for “nondiagonal” hyperfine
interactions.

Inverting the matrix in Table TII (which is trivial
for the 2X2 matrix of concern) the following line-
shape function is obtained:

p+2Xx
pPe2pa+(Bo-B1)2
(36)
Upon substituting p =T - iw, the line shape will
be given by the real part of Eq. (36). Not surpris-
ingly, this is the same result as obtained by An-
derson'! (with I'=0) for a similar case.

To emphasize the equivalance of Anderson’s ap-
proach and ours in the case of “diagonal” hyper-
fine interactions, we will examine the time depen-
dence of the wave function in more detail. For an
initial wave function ¥(0) = |+, m), the wave function
immediately prior to the first pulse at ¢, becomes
exp[- iGa+P) ]|+ m), with 8=%am. Immediately
after the pulse, the wave function is

Fp)= 2 |(molA|my)|?

MMy
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exp[- iz @ +B)t;+10,]l-,m), etc. In particular,
¥(¢) is either |+, m) or |-, m) (multiplied by a
phase factor), and never a mixture of the two.
After »n pulses, the wave function will be given by

zp(t)ze“”(t’[d:,m), (37

with

¢(t)=—(%a+6)ﬁf(t')dt'—i)(—1)’9,, (38)
=t

where f(¢’) = (- 1)’ when t,<¢'<¢;,,. In Egs. (37)
and (38) a resemblance to Anderson’s model begins
to appear: In computing (+, molA(t)1+, m,), the
terms involving @ and 6, in Eq. (38) drop out leaving

<+, mO'A(t)’-F, m1>

=(mo|A|my) expli(Bo—B,) [ r(t")at"], (39)
which is the same result as one obtains by having
a fluctuating magnetic field proportional to f(¢)
acting on the nuclear spin, 2 '

c. “Nondiagonal” hyperfine intevactions. In
Sec. III » we considered an example which served
to bring out the similarities between our treatment
and previous stochastic-model treatments. In this
section we consider an example where the hyperfine
interaction is not diagonal with respect to the elec-
tronic states. For reasons discussed earlier, these
off-diagnoal matrix elements are generally ignored
in previous treatments of the stochastic model.

For the hyperfine interaction in this example we
use al, S,, so that 3¢, becomes

Ho=aS,+al,S, . (40)

The same results would be obtained with the hyper-
fine interactions al, S,, al,S,, etc.; however, for
simplicity of notation, al, S, was chosen. When
a<< a, this Hamiltonian produces the pseudoquad-
rupole interaction,?* The matrix elements of

p—W — i3y may be calculated following the same
procedure as in the last example. For the same
reason, the large matrix again breaks up into 4x4
matrices, one of which is shown in Table IV. This
matrix can be inverted exactly, though the procedure
is somewhat tedious. The resulting expression for
F(p) contains a 4th order polynomial in the denom-
inator which can not be factored. As a result, this

TABLE IV. Matrix of (umg, vmylp - —43C5In'mq, v'm,)
for T=i(e"¥S, +e%%S)), 3¢,=aS,+al,S,.

N’V, ++ - +— -+
++ P+ -2 By ~1iBy
== -A p+A - By By
+— iy — B, p+A—io 0
-+ — 1By By 0 pH+A+ia
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approach yields little information on the line shape.
Instead, we have inverted the matrix numerically
and plotted the resulting spectra. Figure 1 shows

a few spectra. These particular spectra are very
similar to spectra obtained in the “diagonal” case
with the same values of A and I', but with a adjusted
to give the same splitting for A =0. This similarity,
however, does not occur in more complicated cases.
We will postpone a detailed discussion of these spec-
tra until a future paper.

In the “nondiagonal” case, the motion of the wave
function is not nearly so easy to follow. If one
starts with an eigenfunction of 3¢, at =0, then U(¢)
promptly mixes in other states. If, on the other
hand, one starts with eigenfunctions of 3¢ this prob-
lem is overcome, but the transition operator T
generally produces new wave functions which are
neither eigenfuntions of 3C, nor of 3C,.

IV. ELECTRONIC RELAXATION: GENERAL CASE

In Sec. Illa, a specific example of relaxation
was considered which contained only two electronic
states and was restricted to equal populations of the
two states. In this section we consider the general
case of N electronic states with populations not
necessarily equal. In Sec. Illa, the form of V,
was chosen so that a particular form of the transi-
tion operator T; was obtained. For this reason we
shall henceforth deal directly with the transition
operators and make no further references to the
potential V;. Indeed, we could have started directly
with Eq. (4) as a mathematical description of the
stochastic model. The result of Sec. II would then

Frequency w

FIG. 1. Partial spectra for different relaxation rates
A in the “nondiagonal” case. The values of @, B, B, and
T were chosen to correspond approximately to the
=3 my=% portion of the Mdssbauer spectrum of Tm?!6?
in TmCl3* 6H,0 (see Ref. 24), These values are o =300,
Bo=5, By=18, T=1.0.
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follow with only minor changes in notation to elim-
inate references to V.

a. Relaxation operator. The particular model we
present here has the following properties: (i)
Transitions are induced between the electronic
states without affecting the nuclear wave functions.
That is, the transition operator acts only on the
electronic portion of the wave function. (ii) The
model is specifically designed to handle different
transition rates between the electronic states.
There is no restriction that the probability for the
transition a = » must equal the probability for
b—a. Subsequently, however, “detailed balance”
will be required in these transitions to preserve
thermal equilibrium. It might also be noted that
related forms of the transition operator 7 can be
constructed to describe other forms of relaxation,
such as nuclear relaxation,

The time-independent Hamiltonian 3¢, may be
divided into three parts:

Ho=Fo+3Cop +3C, . (41)

The electronic term 3C, contains interactions in-
volving only electronic operators such as crystal-
field and Zeeman interactions. The nuclear term
3, likewise contains only nuclear operators. The
remaining term 3C,, contains the interactions be-
tween the two systems, the hyperfine interactions.
Since we will be concerned with both electronic and
nuclear states, we will adopt the convention that
Latin indices will be used for nuclear states, Greek
indices for electronic states. In particular, the
eigenfunctions of 3¢, and 3C, will be used:

3, |m)=E,|m), (42)

which will usually be eigenfunctions of I and I;
and

Kol W =E,|w . (43)

Product states of the form Im)|u) = lm, u) are eigen-
functions of 3¢, +3C, (but not necessarily of 3¢,) and
constitute a complete set of states for the electron-
nucleus system.

Using these eigenfunctions, we define the elec-
tronic operators P,, by

Puvzzmlm’ V><m’p'| (44a)
or, simply,
Puv=‘V><“'I . (44b)

This projects the electronic state |u) into |1) with-
out affecting the nuclear state, From these oper-
ators, we define the transition operator?® T,, which
produces the particular transition pu - v:

T,0)=1-P,, +e'’P,,. (45)

As can be seen, T,, acting on Iu’, m) does nothing

unless p'=p, in which case T,, causes the transi-
tion |, m) ~e'®lv,m). Using these T,,, we define
the transition operator T as

76, u, VW =T,,(6), (46)

wherein we now regard p and v, as well as 6, to be
stochastic variables. The probability for a given
pair pv to occur will be denoted w,,. That is,
during a given “hit,” w,, is the probability that the
transition u — v takes place, provided that the initial
state is lu). Since hits occur at the rate A, we see
that W,,=xw,, is the transition rate for the transi-
tion u - v given that the initial state is |u).

From the above discussion it can be seen that the
average transition operator 7, is

Tar =20 W (T v (47
hy
where the prime on the summation indicates that

the terms with p =v are to be omitted, and where
( 7., )a denotes an average over 6, but not over

K, v. The previously undefined 7',, and W,, may
now be defined as
Tuu=1, (48)
Wiu== 22 W,, . (49)
v(# )

With this notation the superoperator w defined in
Eq. (25) becomes
W= E Wuv( Tuv)av ’ (50)
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where we have made use of the relation

2Wau==22 wy, ==X (51)
n

L4

The matrix elements of W are then given by
(um, anw| Ty m', vin') = (8, Oy Wi

46,0 8,0 (1= 6, ) (W, + W) 8pme Opme «
(52)

As discussed in Sec. III, when the hyperfine Hamil-
tonian is diagonal in the electronic states, the only

relevant matrix elements are those for which p=v

and u': v'. These matrix elements are simply

. (53

In this section we have presented a particular
model for the transition operator and obtained the
necessary matrix elements. The particular transi-
tion operator described here is not unique; in fact,
the simple transition operator in Sec. III is some-
what different. However, if the reasonable assump-
tion is made that the hyperfine interactions do not
affect the relaxation processes, then all models
of the transition operator for a given set of relaxa-
tion rates should give the same result when the
hyperfine interactions are diagonal with respect to
the electronic states (i.e., when they don’t alter

(u m, HnIWI IJ., ml, ﬂlnl) = W‘“,,l 6""',1' Grm'
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the electronic wave functions). Thus, Eq. (53)
should hold for all such models. Similarly, matrix
elements of the form (u plwin’w’) or (u'p’/ Wi )
with u’# u’’ should be zero so that the matrix can
be broken up into two parts, as discussed in Sec. III.
b. Restrictions on relaxation operators. In this
section we discuss the requirements which the
transition operators must meet in order to be phys-
ically realistic. The first of these is that probabil-
ity must be conserved, by which we mean that the
total probability of finding the electrons must re-
main constant. In Sec. III, the transitions were
produced by Hermitian potentials, which, of course,
conserve probability. In Sec. IVa, we presented
a general model starting directly with transition
operators, rather than potentials. Strict conserva-
tion of probability requires that we use Hermitian
potentials. These, however, can only be used when
the rates for the transitions a—=b and b - a are
equal. For finite temperatures these rates are not
generally equal; indeed, they are related by the
Boltzmann factor, as required by detailed balance.
For the transition operators, probability conser-
vation may be expressed as the requirement

Wl w=(Ty| Ty =] T T| ) . (54)

At first glance the T, of Eq. (45) would appear to
conserve probability: T,, acting on an eigenfunc-
tion of ¥, gives back an eigenfunction of 3,, so
that as long as ¢ is restricted to be an eigenfunction
of 3¢,, Eq. (54) will hold for the T,,. In the case
of “diagonal” hyperfine interactions (those which

do not mix the states of 3¢,) one is concerned only
with eigenfunctions of 3C,, so that probability is
conserved. When the hyperfine interactions mix the
electronic states, however, T,, no longer satisfies

Eq. (54). For an arbitrary wave function ¢, Eq.
(54) requires
T'T=1. (55)

These apparent difficulties are overcome by re-
quiring only an average conservation of probability,
wherein Eqs. (54) and (55) hold when an average
over the random variables is made:

(T'T) = To-1=1, (56)
or, in matrix element form,

2uv| Tylu'u")=6,,. (57)

s

The corresponding relation for W is
Zluvlw|u'w)=0. (58)
ut

From Eqs. (49) and (52), it may be seen that our
model conserves probability on the average. In
fact, the same is true of each of the 7,, when av-
eraged over 6.

The other requirement is that on the average the
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transitions must preserve thermal equilibrium.
Following Landau and Lifshitz, % for example, the
density matrices, p and p’, before and after a par-
ticular transition are related by

po'=TopTt. (59)

Averaging over the stochastic variables, Eq. (59)
becomes, in matrix element form,
0 = 20y, (v T o'V, (60)
b,

Thermal equilibrium requires that p’=p in Eq. (60).
For W=x(T,, — 1) this condition becomes

2o (pv|w|nv)=0 . (61)

I’N4
In our general model of relaxation we have essen-
tially neglected nuclear alignment so that the den-
sity matrix is diagonal for the electronic states,
Pyu=0u0,,. Using the matrix elements of Eq. (52),
we see that the model preserves equilibrium if
detailed balance is required,

Do Wou=p, Wu.v' (62)

In the model of relaxation operators proposed in
Sec. IVa, the transition rates W,, were built into
the model from the beginning. In other models,
such as the one with isotropic R discussed in Sec.
IIla, it is necessary to determine the transition
rates after the model is built. Using Eq. (60) we
may obtain the transition rates resulting from any
model of relaxation operators: Let us suppose that
the system is in the state 11) immediately before a
transition. Then p in Eq. (60) is given by py; =1,
all other p,, =0. Immediately after an “average”
transition the density matrix is given by p',,.u.
=(1117,1e"V'). For reasons discussed earlier,
the matrix elements with u’# v’ should vanish. The
transition rate is then obtained by multiplying by
A, the pulse rate, Using W=x(7,, - 1) we obtain
the result that the rate W,, for the transition 1)
to Iv) is

Wi =(up|w|w) . (63)

By similar arguments, it can be shown that
~(uuplwl wp) is the lifetime of the state |u)., By
requiring that Eqs. (58), (61), and (63) are satis-
fied, we are assured of having a physically realistic
model for the relaxation operators.

V. CONCLUSION

The treatment of line shapes given in this paper
extends previous results to situations in which the
effects of surroudings on an emitter can not be
approximated by time-varying external fields. The
results obtained here are formally similar to those
found in ab initio calculations of line shape. In the
latter treatments a number of approximations must
be made whose physical content is obscure. The
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stochastic theory thus gives some insight into the
nature of these approximations. In our central
result, Eq. (24), a relaxation superoperator w
appears. This superoperator must, in a stochastic
treatment, be treated as input information, to be
specified as part of the physical circumstances of
the problem. In an ab initio calculation this super-
operator is in principle determined by the Hamil-

tonian, but in practice® the matrix elements are
specified.

In a future paper we will discuss the application
of our formalism to a number of specific cases in
Mdssbauer spectra, It is clear, however, that the
theory is of utility in analyzing perturbed angular-
correlation spectra and line shapes in other
branches of spectroscopy as well.
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The Mdssbauer effect of Sn!!?

has been measured in alloys of the a-brass type: Cu-Sn,

Cu-Sn-Zn, and Cu-Sn-Al. The isomer shift of the tin resonance is a function of the electron-
to-atom ratio of the alloy, and is insensitive to the valence of the solute. The change in iso-
mer shift with electron-to-atom ratio is rather small, but shows effects similar to those ob-
served by soft-x-ray spectroscopy in a-brass, and by positron annihilation in o-copper-

aluminum alloys.

I. INTRODUCTION
For many years, considerable effort has been
expended to understand better the changes in the
electronic densities of states upon alloying the
noble metals with polyvalent metals. Conflicting
experimental results, and disagreement between
experiment and theory, have left the answer to the

question still in doubt. The experimental work to
date for the whole range of the a phase, rather than
for only very dilute alloys, has been largely low-
temperature specific-heat studies, and optical-ab-
sorption measurements, ™" with a limited amount
of work using soft-x-ray spectroscopy® and posi-
tron annihilation.® Unfortunately, many of the



