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Becent Mossbauer-effect experiments on iron in copper and iron in gold indicate that the line
broadening due to diffusion is about a factor of 2 smaller than the value predicted by the inde-
pendent-jump model of Singwi and Sjmander. A model for vacancy diffusion is advanced vyhich
results in Mossbauer spectra that are Lorentzian in shape vrith a broadening 4& that is propor-
tional to the average diffusive jump rate v'z, as is also the case for the independent-jump model.
The slope of && vs v'& is related to the probability for a vacancy to dissociate completely from
a Mossbauer atom and can be inferred from the correlation factor. The model indicates that
the broadening can range from 0 in the highly correlated limit to a value less than 21vz in the
uncorrelated limit.

I. INTRODUCTION

The effect of atomic motion on the resonant ab-
sorption of nuclear y radiation can be succinctly
described by the self-correlation function formal-
ism' of Singwi and Sjolander. According to these
authors the cross section for absorption of a y ray
having momentum O'k and energy O'g is given by

v(i, ~)=(o,l'„/4a) f drdf e "f

where o'0 is the on-resonance ((u „=(uo) cross sec-
tion, O' F„is the natural width of the excited nuclear
state, and (0 ls (dy- &0. In general G~( r, f), the
self-correlation function, is a complex quantity due
to quantum effects. However, if the region of in-
terest in (1) is such that 5& «ksT, where T is the
absolute temperature of the sample, then to a very
good degree of approximation G,(r, f) is a real
function describing hom often on the average an
atom is at position r at time t, having begun its
motion from r = 0 at t = 0.

In the last two decades there has been increased
interest in the problem of understanding the funda-
mental mechanisms responsible for mass transport
in solids. The widely used tracer-sectioning tech-
nique provides sufficient experimental accuracy to
measure thermodynamic parameters, such as the
activation energy, so that meaningful correlation
with theory is possible. However, the results of

these experiments reflect long-term averages over
the detailed motions constituting the diffusion pro-
cess. By contrast, the Mossbauer effect can pro-
vide resolving times (of order I'„) that are in prin-
ciple sufficiently short to enable determining the
behavior of the system on a time scale of order va,
the mean time between jumps of a given atom.

In order to illustrate the connection between
Mossbauer absorption and diffusion in solids,
gngwi and Sjolander proposed a model" in which
an atom was seen to make sudden jumps between
identical vibrational states centered at different
positions in the lattice. Employing the stochastic
assumption that the relaxation of an atom from a
given vibrational state can be described as e '~'D,

they predicted that the Mossbauer absorption cross
section mould have I orentzian shape with line broad-
ening given by (ln energy units)

he = 2krni [1—n(%)],
where a(R) is the Fourier transform of the one-
jump distribution function h( r), and is essentially
0 for most cases of interest.

Recent experiments on iron dlffusloD ln copper
and in gold indicate that although the Mossbauer
spectra are I orentzian within experimental errors,
the broadening is more nearly given by

he =- OT'g

It was suggested ~ that this reduced broadening
might be a manifestation of the short-term effects
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of the vacancy-diffusion mechanism. Since diffusion
in this case represents a process in which atomic
jumps are not statistically independent of one an-
other on a time scale of order v'D, the stochastic as-
sumption employed in the independent-jump model
may not be an accurate representation. In fact, the
characterization of the atomic motion by a single
parameter &~ has meaning only if s~ represents
the average jump rate

&&' = lim [N(t)/t] as I

where N(t) is the average number of jumps of a
given atom that occur in a time interval of length
t. In order to understand the results of diffusion-
broadening experiments on systems in which the
vacancy mechanism is dominant, it is necessary
to specify other parameters which reflect the dy-
namics of the vacancy-atom system on a time scale
of order Tg.

In contrast to the cases above, recent experi-
ments have been done on the iron-silicon system
in which the investigators report that the broadening
is more nearly 2k''~', as expected from the inde-
pendent-jump model. This may be a consequence
of the fact that in bcc structures the dominant dif-
fusion mechanism may be one in which atoms jump
independently of one another, such as the intersti-
tial or the ring mechanism.

It is the purpose of this paper to show that for
the vacancy mechanism the time constant measured
by diffusive line-broadening experiments is not in
general the same as inferred from macroscopic
diffusion experiments. A model is advanced to il-
lustrate the effect of correlated diffusion on the line
broadening for the fcc lattice. The results of the
calculation show that the broadening ranges from 0
in the highly correlated limit to a value less than
2hwD' in the uncorrelated case, and points out the
usefulness of the Mossbauer effect in identifying the
mechanism of diffusion.

II. GENERAL FORMULATION

Assuming that the motion of an atom undergoing
diffusion in a solid can be represented as a suc-
cession of vibrational states centered about different
lattice sites, the self-correlation function can be
written as'

G,(r, I) = f dr' gv(r r', f)F(—r', I), (2)

in whichgv(r, f) is the self-correlation function for
the vibrational motion and F(r', f) is the average
(fractional) number of times that an atom is at a
position r' at time f given that r'(0) =0. In Eq. (2)
it is assumed that there is no correlation between
the vibrational motion and the diffusive motion.
Using the convolution theorem for Fourier trans-
forms, the cross section for resonant absorption,
Eq. (I), becomes

g (k &) (g I' /4g) e 2w f df chat e(1 2/) rt tl

x [f dr e'f'~F(r, f)] (4)

where 2%" is the Debye-%)aller factor found from

e ' =lim f dr e' ~g„(r, f) as I-~
In the sudden-jump approximation, F(r, f) can be

obtained from the theory of random flights. The
probability that an atom is at a position r after n

jumps is given by

P„(r) = f dr e '"'[n(R)]", (6)

where

n(k) = f dr e'"'P, (r)
The quantity n(k) also appears in the formulation
of Singwi and Sjolander in which P&(r) is the prob-
ability distribution for one jump, h(r). The time
dependence is introduced with W„(t), the average
fractional number of times that an atom will make
n jumps in a time interval of length t. F(r, I) is
then given by

F(r, f)=L P„(r)W„(f)
n=o

The cross section for Mossbauer absorption is
computed using Eqs. (4)-(6):

g (k (g) 0 e-&N' df e-& t e-&&/2&ro 1"
Af

(6)

x 5~ W (f)[n(k)]~
n=O

This is the general expression for the cross section
in terms of n(k) and W„(t). If the wavelength of the
p ray is much smaller than the distance of one
atomic jump, tiie'i for polycrystalline samples'
n(k) =0 and Eq. (7) reduces to

g (k ~) =(g I'/4h)e '~ j dte '~'e " ""~'"P(t)

where P(f) =—Wo(t). According to Eq. (8), the Moss-
bauer cross section is found from the time Fourier
transform of P(f), the relaxation function which

g(k ~) —(gol' /4g) f df e-«e-0/2)r„Itt

x [ f dr e'"'g„(r, I)][f dr e'"'F(r, t)]
(8)

Owing to the oscillatory behavior of g„(r, f) with
time, the cross section (3) will exhibit peaks in
frequency, with the zero-phonon or Mossbauer peak
centered at &=0. Therefore it is necessary only to
consider the long-time behavior of gv(r, f) to obtain
that region of the frequency spectrum of interest
for the Mossbauer effect:
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describes how often on the average an atom remains
at a given lattice site for a time interval of length
t. Since diffusion processes are stationary in time,
P(t) can be calculated from a consideration of the
average number of atoms in an ensemble which do
not jump for any time interval 0- t.

The effect of diffusive motions is to broaden the
frequency spectrum through the relaxation P(t).
This can be seen from a different point of view by
considering an alternate expression for the cross
section, '

o( k, (0) = (o,i' /4It) e 'w f dt e '"' e "~"rr' "K(f)

where

K(f) (e-(Lr(0&et(( r(tl)

The angle brackets indicate that both quantum-me-
chanical and statistical averages are to be taken.
In the absence of diffusive motions K(f) approaches
the value e for t &10 sec. If diffusion is pres-
ent and the vibrational motion at a new site is un-
correlated with the motion at the original site, then
on the average K(t) will be reduced to

K(t) =e P(t), f ~10 ' sec

Thus P(f) represents how often on the average the
function e'"' remains correlated during the interval
0 t.

Since in the sudden-jump approximation an atom
is always in a vibrational state of motion, the re-
coil-free fraction will be the same as if no jump
motion occurs. This can be seen by calculating the
area under (t„(k, (tl) using Eq. (8):

S =- f d(tt 0'tt( k, &)

(O F /4II) S-2W f d(tl f df -Sa)tt e(1/2) rlrtl P(f)

Since P(t) -0 as ]t ] ~, the order of integration
can be interchanged with the result

S= "e 2(( f dt e "~ ' r'" 5(t)P(t)
o l'
4$

ar0 r e-2W2WP(0)
4h

Because P(0) —= 1, independent of the parameters
specifying the diffusion process, the area will be
proportional to the recoil-free fraction for vibra-
tional motion alone, e"

III. EFFECT OF DIFFUSION MECHANISM ON Pf t)

For the (2(k) = 0, the cross section in the inde-
pendent-jump model of Singwi and Sjolander~, s takes
the same form as Eq. (&), except that P(t) is re-
placed by the agviori probability e ' 'D inferred
from the long-term-average behavior of the system.
The time constant v'~, which represents the mean

time between jumps of a given atom, is obtained
from macroscopic diffusion measurements through
the relation (for cubic crystals)

D =+ofc/8m

where D is the diffusion constant, ro is the nearest-
neighbor distance, and fc is the Bardeen-Herring
correlation factor. If all atoms in the sample can
participate in the diffusion process on a time scale
of order vtt, the relaxation P(t) is given by the prob-
ability e '~'tl, and the results of Singwi and Sjolander
are obtained.

The vacancy mechanism, however, represents a
diffusion process in which only a limited number of
atoms can engage in jump motion on a time scale of
order 7'~. In general, the relaxation will be slower
than e ' '&, since not all atoms in the lattice will
have had an opportunity to contribute to mass trans-
port. For example, if the motion of an atom is
highly correlated, as is the case when a vacancy is
tightly bound to an impurity, only a small fraction
of the N~ Mossbauer atoms will jump in time 7'~

(-N„/N~, where N„ is the number of vacancies
present), giving P(7c) =- 1. Similar results obtain
even if the motion is not highly correlated. Thus
the Mossbauer effect provides a sensitive technique
for the determination of the extent to which the dif-
fusive motion of atoms is correlated when combined
with the results of macroscopic experiments.

It might be argued that although a large fraction
of the Mossbauer atoms do not diffuse during a time
interval of length 7'~ I',', the spectrum is never-
theless broadened by an amount 25'7'~, since those
atoms that do diffuse do so at a rate greater than
I'„. According to Eq. (8), however, the spectrum
is given by the transform of P(f), the function which
describes how many atoms do not jump during the
time interval 0 t. Thus, within the context of the
self-correlation-function formulation, repeated
jumps of one group of atoms cannot be considered
to compensate directly for lack of diffusive motion
of the other atoms in the lattice. In the extreme
limit of highly correlated diffusion, in which only
N„( «N„) Mossbauer atoms jump during the life-
time of the excited nuclear state, the broadening
will be essentially nonexistant, "even if the average
diffusive jump rate is of order I'„.

IV. P(t) FOR VACANCY DIFFUSION

An exact calculation of P(f) could require follow-
ing the detailed motions of vacancies through the
lattice in a manner similar to the computation of
the correlation factor and will not be attempted
here. Instead we present a model for the relaxation
based on a consideration of the average behavior of
the vacancy system and its effect on the jump motion
of Mossbauer atoms.

Consider a lattice containing N„Mossbauer atoms.
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At time t the number of such atoms that still remain
at their initial lattice sites is N(t). In time t- t+dt,
N(t) will change to the value N(t+dt) according to
the equation

N(t + dt) =N(t)(1 —P dt) (9)

where P is the jump probability for those atoms
which have survived the interval 0- t. If the jump
probability for atoms which survive is the same as
for atoms which have previously jumped, P takes
the value rD' T.he solution of Eq. (9) in this case
1S

N(t) = Nge -D or P(t) =e ' '& .
It can be seen that the relaxation function for the
independent-jump model is obtained if for any time
interval each Mossbauer atom has an equal a ~ioxi
probability to jump, whether or not a previous jump
has occurred.

The situation, however, is different for vacancy
diffusion. For an atom to jump during the interval
t-t+dt two events must occur in sequence: (a) A
vacancy must occupy one of the nearest-neighbor
(nn) sites of the atom and (b) the atom must exchange
positions with the vacancy in time dt. If Pv is the
probability that any one of the 12 nn sites of an atom
is vacant (for a fcc lattice) and w dt is the probabil-
ity that the atom will jump into the vacant site, then
the average diffusive jump rate can be written as

12kPvw =k7'

where k is the fraction of vacancies which diffuse
away from an initial Mossbauer atom. This repre-
sents only the first term in a sequence which de-

dt =12Pvn) dt

Consider two distinct Mossbauer atoms in the lat-
tice, labeled A and B. Atom A has just exchanged
with a vacancy which is presently located at a nn

site of A, whereas atom B has not yet jumped dur-
in the time interval 0-t. In the next increment of
time l - t+dt, the probability that atom B jumps,
f~ dl, will depend on whether the vacancy atA diffuses
away or remains in the nn shell of A. If the vacancy
diffuses away and does not immediately return, the
probability that it will occupy a nn site of B is 12P v.

By contrast, if the vacancy is known to remain in
the immediate region of A after an initial exchange,
the probability for it to be next to B is zero. Thus
P will reflect the fraction of vacancies which disso-
ciate completely from one atom thereby contributing
to the jump probability for atoms that have not
jumped during 0- t. For example, if the va, cancy
is bound to a given Mossbauer atom, P «rn, where-
as if the vacancy is repelled, p= v~. Within this
approximation, the relaxation time constant can be
written as

scribes how those vacancies which do not immedi-
ately diffuse away affect the relaxation at a later
time. It might be expected that the actual time
constant be larger than k7~'. The relaxation function
obtained from Eq. (9) is

g(t) e kt/1 D

which gives for the cross section Eq. (8)

00I'„-a~ I'„+2k 7~'"( '")= 4k. ' ' -'(r 2k -')' '

a Lorentzian line shape with broadening (in energy
units)

4e = 25kv'~

+E is linear in 7D as is observed experimentally,
with a slope proportional to the fraction of vacancies
which completely dissociate from their respective
Mossbauer atoms.

A vacancy can remain in the region of one atom
either by direct binding, in which case it will be
confined to the nn shell of that atom, or by executing
a random walk, the path of which is localized around
the atom. In either event the probability that other
atoms in the lattice jump will be reduced from the
value obtained by assuming that a vacancy is located
at any one of the nn sites of an impurity with equal
probability Pv, independent of the past history of
the vacancy motion. By counting only those vacan-
cies known to dissociate completely, an estimate is
made of the jump probability for other atoms in the
lattice.

The probability that a vacancy will leave the nn

shell on the first jump can be found from a consid-
eration of the jump frequencies' ~» sv2, and k, .
u» is the frequency for reexchange with the impurity
(Mossbauer atom), w, is for exchange with one of

the atoms that is a nn of both the Mossbauer atom
and the vacancy (of which there are four for a fcc
lattice), and k, is for exchange with one of the
atoms that is not a nn of the Mossbauer atom (of
which there are seven). The fraction of va.cancy
jumps to non-nearest-neighbor positions is

7k, /(u) 2+ 4so, + 7k, )

Of these a fraction R will return to a nn site of the
impurity in the next few jumps, giving for k

k = 7k, (1 —R)/(w, +4w, +7k, )

or

7(1 —R)k, rn~a= 25
Kp+ AU)+ Vkg

The fraction R can be easily computed under the
assumption of only nn vacancy-impurity attraction
or repulsion. For the fcc lattice, R =0.26 is found

by summing up to three vacancy jumps; that is, if
a vacancy requires more than three jumps to return
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or
k=(O. V4)~7=0. 43, m, =m, =k,

4e = 0. 8687'D

in reasonable agreement with the values measured
for iron in copper and iron in gold' systems for
which it is expected that the host-vacancy and

to a nn site, it is considered to be dissociated.
The effect of correlation can be taken into account

by considering the general case in which w& Cwaves, .
The correlation factor is given by

fo= (2n)q+ VFkg)/(2m~+2m, + VFk, )

where I' is the fraction of dissociating vacancies
which effectively return to the original nn site.
For 0, «w& «w„ the correlation factor approaches
zero. In this limit the broadening &e [Eq. (10)]
also approaches zero in agreement with the consid-
erations of Sec. III. If, in the other limit, the va-
cancy is strongly repelled by the impurity, kq» w&

and wm, and fo approaches unity. According to Eq.
(10) the broadening is 2I'(1-R) v'n -1.5lfr~' (for the
fcc lattice). Even in the limit of strong impurity-
vacancy repulsion there is a larger than random
chance that a vacancy will reoccupy a nn site of an
impurity. The broadening will be reduced from the
purely random value of 2hz'n' to (2krn)(1 —R) for
this case.

If all vacancy jump frequencies are equal, k takes
the value

tracer-vacancy exchange rates are nearly the same.
However, until more detailed calculations are ad-
vanced, such agreement must not be considered to
be quantitatively exact. Nevertheless, the results
of the model indicate that the broadening should be
less than 2@v~, in agreement with experiment, and
offers an understanding of the mechanism responsi-
ble for the reduced broadening observed for mate-
rials known to diffuse by the vacancy mechanism.

The above considerations indicate that the broad-
ening for the vacancy mechanism ranges from 0 in
the highly correlated limit to a value less than
217'& in the uncorrelated limit. As a consequence
the Mossbauer effect can be useful for determining
the diffusion mechanism, especially in bcc struc-
tures for which similar results can be expected as
for the fcc lattice if the vacancy mechanism is dom-
inant. Combined with macroscopic diffusion experi-
ments, Mossbauer line broadening can also provide
additional information concerning host-vacancy and
impurity-vacancy exchange rates, useful in under-
standing correlation effects.
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