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The method of tight binding is used to calculate the energy band structure of the diamond,
silicon, and sodium crystals. The wave functions of the valence and conduction bands of
diamond are expanded in terms of Bloch sums constructed from the 1s, 2s, and 2p Hartree-
Fock atomic orbitals, and two different crystal potentials [the muffin-tin and the ovei..la, pping
atomic potential (OAP) j were used. With the muffin-tin potential, the tight-liinding and the
augmented-plane-wave (APW) method yield nearly identical valence band structure, and their
conduction bands show only minor differences. When the OAP is used, the results of the
tight-binding scheme differ appreciably from those of Bassani and Yoshimine by the method
of orthogonalized plane waves (OPW), the discrepancy being attrubuted to incomplete conver-
gence of the latter calculations. The tight-binding structures of the valence band derived
from the two different potentials agree quite well with each other, but considerable deviations
are found in the conduction band. The x-ray form factors calculated by means of the tight-
binding wave functions are in good agreement with experiment and represent a considerable
improvement over a simple superposition of atomic charges. The convergence of the tight-
binding method with respect to the higher atomic orbitals has been examined. It is found
that addition of 3s, 3p, and 3d Bloch sums to the wave functions of diamond has only small
effects on the energy of the valence and conduction bands. A similar tight-binding calcu-
lation has been performed for the band structure of silicon using OAP, and the results
are in good agreement with those of a modified scheme of the method of OPW using as basis
functions 609 QPW's as we11 as the Bloch sums of the core states. For the base of sodium,
the method of tight binding gives conduction-band energies in good agreement with the APW-
type calculations of Schlosser and Marcus. Generalization of the method of tight binding by
using single-Gaussian Bloeh sums is discussed, and the use of this scheme leads to sub-
stantial improvements for the case of diamond.

I. INTRODUCTION

A few years ago it was shown that the method
of tight binding for calculating electronic energy
band structure of crystals, which, hitherto, was
used largely for qualitative purposes, is capable
of giving energies in very good agreement with
those obtained by methods based on modified plane-
wave-type expansion. The difficulty of evaluating
the multicenter integrals, which had been the
bottleneck of any quantitative application of the
method of tight binding, was circumvented by the
use of the Gaussian transformation. In a more

recent paper, it was pointed out that if the atomic
wave functions were expressed in terms of the
Gaussian-type orbitals (instead of the Slater-type
orbitals), all the tnulticenter integrals occurring
in the band-structure calculations can be reduced
to analytic forms, and the computational procedure
is greatly simplified.

In both Refs. 1 and 2, we have seen that when
the overlap between atomic wave functions at all
sites are properly taken into consideration and the
summation over the crystal sites in the computa-
tion of matrix elements is carried out to conver-
gence, the method of tight binding is even applicable
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to the case of lithium crystals where the valence
electrons behave more like free particles than
ones specifically attached to an individual atom.
The success of the tight-binding method for even
the case of loosely bound electrons suggests that
it should certainly be applicable to the insulator-
type crystals . In order to test the applicability of
this method to wider classes of crystals and to
extend the calculations to crystals of the second-
row elements, we have used the tight-binding
method to calculate the energy band structures of
diamond, silicon, and sodium. Since the major
interest is to study the method of tight binding as
a means of accurate calculations of the energies
of a one-electron Hamiltonian with a given periodic
potential, comparison of our result is made
mainly with the results computed by other methods
using the same potential. For a critical comparison
of the theoretical band structure with experiment,
it is more appropriate to use the self -consistent-
field-type (SCF) calculations; indeed, comparisons
of this kind have been made for diamond and
silicon. 3 6 Since our calculations are not of the
SCF type and the crystal potentials used here are
based on the overlapping-atomic-potential (OAP)
model or the muffin-tin type, no attempt is made
to conduct a systematic comparison of our calcu-
lated band structure with experiments. In this
paper we conf ine ourselves to discussions of the
general utility of the tight -binding method for
solving one -electron periodic -potential problems .
A logical extension is to incorporate the ScF
scheme into the tight-binding method.

At this point it may be advisable to say a few
words about the terminology used in this paper,
since some confusions appear to exist as to the
precise meaning of the ter m tight binding. The
method of tight binding as used in this work, as
well as in Refs. 1 and 2, refers to the scheme of
calculating electronic energy bands of crystals by
the use of Bloch sums, e. g. , those given in Eq .
(4) of Ref. 1, as basis functions. The results of
Refs. 1 and 2, however, have demonstrated that
the method of tight binding is applicable even to
loosely bound electrons. Thus the name of the
tight-binding method may be somewhat misleading,
and the method of linear combination of atomic
orbitals (LCAO) may be a more appropriate desig-
nation. Nevertheless we continue to use the term
"method of tight binding" interchangeably with the
term "method of LCAO " (the latter being more
preferable when one wishes to emphasize the
special feature of expressing the wave functions of
electrons in crystals in terms of the electron
wave functions of the constituent atoms}. The so-
called "tight-binding aPproximation" sometimes is
taken to mean the approximation of neglecting all
the multicenter integral s except those involving

atomic orbitals situated at two nearest-neighbor
sites in calculations using the method of tight
binding. This "tight-binding approximation" was
never used here or in our earlier works, and, in
fact, it would have led to unsatisfactory results
for lithium as we have demonstrated in Refs. 1 and
2.

For tight -binding calculations one can use atomic
wave functions expressed in terms of either the
Slater-type orbitals (STO) or the Gaussian-type
orbitals (GTO). The latter, however, offers a
very substantial reduction of the computational
procedure especially when the number of basis
functions becomes larger. All the calculations
reported in this paper, with the exception of those
described in Secs. II E and V, were performed
using the STQ. Development of special techniques
to achieve higher accuracy of the energy calcula-
tions for the Gaussian-basis scheme is under way,
and a detailed report will be published elsewhere.

II. DIAMOND

A. Crystal Potential

The diamond lattice can be thought of as being
constructed from two interpenetrating sublattices
of face-centered cubic (fcc) structure which we
will designate here as sublattic es 1 and 2. Each
lattice site of the second sublattice is separated
from the corresponding member of the first by the
nonprimitive translation T directed, along the body
diagonal of the face- centered cube of the first
sublattice and of magnitude 4 ~o where a o is
the lattice constant of the sublattice. We will place
the origin of our coordinate system at a point mid-
way between these sub lattice s and with axes par-
allel to the edges of the face -centered cubes. The
Wigne r -Seitz cell situated about the origin has a
volume 0 = ~ ao and contains two atoms at locations
given by

2 T= —
8 ap(1, 1, 1)= —t2 (1)

for sublattices 1 and 2, respectively. The atoms
in adjacent cells are given by R„+a T, where R„
is the set of symmetry translations for the fcc
lattice. The corresponding reciprocal lattice is
generated by K„and is seen to be body- centered
cubic. The crystal potential of diamond is in-
variant under inversion about the above origin and
can thus be represented by the Fourier series

V„~(r)=Z„V~„(K„)cosK„~ r . (2)

Alternatively, the crystal potential can be expressed
mathematically as a superposition of functions
'U(r) centered about the atomic sites of the crystals,
l. e. ,

Vcr~(r) =~u 1&l& (&p+t g) J+U[- r+(R„+t,)J) . (3)
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Taking the Q (r) as spherically symmetrical, the
Fourier coefficients of the potential are given by

V8r.(K.) = —82K„' & ' cos(K„ t,)

V„,(K„)= (Nfl) ' f V,(r) cosk„r dr 2 —K„ f 42rp(r) sin(K„y) dy

cosQ ' 71 f 'U (r) cosK„~ r dr, (4)

where N represents symbolically the number of
unit cells of the crystal. We have calculated the
band structure of diamond with two choices of po-
tential, each of which will be described briefly.

The first choice is that of a muffin-tin potential
as reported for diamond by Keown. In this partic-
ular muffin version developed by Mattheiss, the
crystal is divided into regions by spheres of radius
Rrg = l~g t centered about each of the carbon atoms.
Within each sphere, an atomiclike potential V'(r)
is constructed by approximating the crystal charge
density with a spherically averaged sum of over-
lapping free-atom charge distributions and by
applying the Slater approximation for exchange.
In the region between the spheres, the potential is
treated as a constant V whose value is either de-
termined by an averaging process or is treated as
a disposable parameter. ' In the potential of Keown,
V was treated as a parameter and set equal to
—1.3928 Ry. For such a potential, U (r) can be ex-
pressed mathematically as the sum of two con-
tributions

3p(r)+K„-'y sin(K„r) dr"0
(8)

where Z is the atomic number. To carry out the
above integration, we curve fit rp(r) andr[p(r)] ~

to a three-term and a five-term linear combination
of the type r"e "", respectively, by a nonlinear
least-squaresprocess. The value of uo for this po-
tential was chosen to be 6. 728 a. u. to facilitate
comparison with the calculation of Bassani and
Yoshimine' by the method of orthogonalized plane
waves (OPW).

One may, of course, question the validity of
using a muffin-tin potential for covalent crystals.
This point has been discussed by Keown and Wood. '
Nevertheless, both types of potential have been
investigated here by tight binding in order to per-
form a comprehensive comparison between the
band structures calculated by different methods,
e.g. , the method of augmented plane waves (APW)
with the muffin-tin potential and OPW with the
OAP model. '

B.Tight-Binding Calculations

g'"(r)= V'(r) —7 for r R&2

=0

g'21(r) = ,' V/N . -
for r &R&z,

'U(r) = & "'(r) + % a'(r),
where

(5)

(8)

The Hartree-Fock SCF atomic wave functions of
the 1s, 2s, and 2p states of carbon are obtained by
fitting the tabulated functions of Jucys'7 for the
8$ state of the (1s) (2s)(2p)2 configuration as

y„=1.793 82e-'"' + 6.00411e ' '"""
=1.71115e '" 8 —1.287 79re" (9)

«(1 898 Q8e-2.882 12r+
Q 84Q 288 e-1.288 Sir)

The value of ao used in connection with this po-
tential is 6. 7406 a. u.

The second choice of potential, sometimes
called the overlapping-atomic-potential (OAP)
model, "'~ approximates the crystal potential by
a sum of free-atom potentials using the 8later
approximation for exchange on each atomic charge
distribution separately. It is convenient to intro-
duce the free-atom charge density p(r) which is
obtained from the Hartree-Fock SCF solution of
Jucys' for the (1s)2(2s) (2p)2 ground state' of
carbon by the relation

4vp(r) =2[R„(r)] +2[R»(r)] +2[R»(r)] . (7)

We can decompose W(r) into the part due to the
Coulomb interaction of the nucleus and the elec-
trons plus the exchange contribution which is ap-
proximated by ——,'[3p(r)/v]1~8 in Hartree atomic
units. The Fourier coefficients then become

where

and

+ 4.(r —R„-t,)],

0'=1s, 2s, 2px, 2py, 2pz,

(1Q)

I'(a) = —if (a) =1, a =ns

=i, & =npx, npy, npz .

etc.
The five Bloch sums corresponding to 1s, 2s, 2px,
2py, 2pz can then be constructed for each of the
two sublattices making a total of ten basis functions
in all. However, rather than employing these
Bloch sums directly, we find it convenient to form
linear combinations analogous to "bonding" and
"antibonding" at the I point, i.e. ,

b', (k r) = P(a) N '12K„e' "[P (r 'R„—t,)-
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This step is not essential but does serve to simpli-
fy the calculation of the energy at the I' point and

to make the matrix elements of the secular equa-
tion formed from these ten Bloch sums real.

For a general point in the Brillouin zone, the
ten basis functions in Eq. (10) lead to the usual
10X10 secular equation. Analogous to Ref. 1, the
elements of the secular determinant IH -ES l con-
sist of the overlap, kinetic-energy, and potential-
energy integrals which can be decomposed into a
number of multicenter integrals and evaluated in
a manner similar to that described for the case of
lithium. ' The only significant exception is that the
point C in Ref. 1, which represents the origin of
the Fourier expansion of potential, no longer coin-
cides with an atomic position but specifies a point
midway between two carbon atoms. The resultant
Fourier frequency integrals which must be evalu-
ated are

with g'(A) and g'(B) being unnormalized STO
situated at points A and I3, respectively, whereas
the corresponding integrals in Ref. 1 are of the
form

Following the procedure described in Ref. 1, we
obtain

(g'(A)lcosK„rcl p'(8)) =2vZ, p, f y~(u)

where

(h, ,, cos[K„(res -ur»)]

+ $» z sin[K„(res —urges) j}du, (12)

f= u(1 —u)r~e,

g=K„'+ng(1-u)+a]/u,
and the coefficients P„y,(u), p, „, and $, &

are given

in Table I of Ref. 1. The overlap and kinetic-
energy integrals can be obtained directly from Eqs.
(19) and (20) of Ref. 1.

With these methods of decomposition into multi-
center integrals, the secular equation for a given
k can be constructed and solved. The two lowest
roots correspond to "core" states, the remaining
eight roots are separated equally into valence and
conduction states. Some of the band energies ob-
tained in this manner are presented in Table I for
both the muffin-tin potential and OAP. The atomic
multicenter integrals mentioned above need be
evaluated only once for each crystal problem as
they are independent of the choice of k. Thus, once
these integrals have been determined, the energies
associated with any given point in the Brillouin
zone are easily obtained.

As would be expected from the relatively open
nature of the diamond lattice, the convergence of
the energy matrix elements for diamond, with
respect to the inclusion of more and more sets of
nearest neighbors, was a great deal more rapid
than was the case for lithium. Indeed, all ten
eigenvalues of the secular equation were found to
stabilize after all sets of neighbor atoms were

TABLE I. Comparison of band structure of diamond calculated by different methods with different potentials
(in a.u. ).

TB OAPb

10 x10 20 x 20
OPW

SCF-PERT
OPW
OAP

APW
Muffin-tin

TB Muffin-tin~
10 x10 20 x20

r,
I'2'5

I'is
r,'
X)
X4
Xg

X3
L2
L)
L4

L3
L2

—0. 740
0.0
0.230
0.494

-0.435
—0.204

0.311
0.595

—0.549
—0.424
—D. 095

0.371
D. 371
0.658

—0.743
0.0
0.229
0.491

—0.446
-0.217

0.296
0.597

-0.553
—0.452
—0.100

0.368
0.368
0.653

—0.772
0.0
0, 254
Q. 518

—0.460
—0.206

0.221
0.768

—0.562
—0.456
—D. 074

0.357
0.390
0.684

-0.845
0.0

0.203
Q. 496

—Q. 515
—0.255

0.146

-0.637
-0.530
—0.197

0.296
0, 173
0.296

—0.720
0.0
0.215
0.392

—0.422
—0, 191

0.219
0.524

—0.528
—0.426
—0.QS7

0.291
0.316
0.525

—0.709
0.0
0.198
0.389

-0.409
—0.178

0.253
0.507

-0.518
—0.401
—0.082

0.301
0.318
0.558

—0.704
0.0
0.212
0.406

—0.418
—0.199

0.259
0.520

-0.519
—0.429
—0.091

0.311
0.332
0.563

~In this table the energy of &2& is set to zero. The energy values of &2'~ calculated by the tight-binding method are
—0.503 (10 x10) and —0.505 (20x20) using the OAP model, and are -0.417 (10 x10) and -0.431 (20x20) with the
muffin-tin potential.

7B refers to tight binding.
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included which lay within a sphere of radius 2. 5ao
about the origin. The corresponding number for
lithium is 6ao.

In Eq. (9) we express each atomic SCF wave
function as a linear combination of two STO. The
relative weighting coefficients were determined
by solving the atomic SCF problem. In a crystal,
these weighting coefficients are expected to change;
hence we may treat them as unknown coefficients
to be fixed by the variational principle and thereby
improve the accuracy of the energy values. The
band structures resulting from this extension are
plotted in Figs. 1 and 2 for the muffin-tin poten-
tial and OAP, respectively, and numerical values
of the energy for selected points in the Brillouin
zone are included in Table I. The crystal energies
derived from this 20' 20 secular equation are all
slightly lower than those from the original 10~ 10.
This procedure of extending the basis functions
does not require any new integrals, and in fact,
the computational scheme is no more complicated
than the case of fixed weighting coefficients except
for an increase in size of the energy matrix.

With the OAP model, the resultant indirect band

gap is calculated to be of magnitude 5. 3 eV in good
agreement with the experimental value of 5. 47 eV,
while the associated minimum of the conduction band
is calculated to lie at k = (2v/ao)(0. 58, 0, 0) com-
pared with an experimental value of (2v/aa)(0. V5,

0, 0}.' As can be seen in Fig. 2, the minimum
of the conduction band is a very shallow one and
thus very accurate calculations are needed to
locate it.

C. Comparison of Different Calculations

In order to compare the accuracy of the various
methods for solving the problem of periodic po-
tential, it is important that the same crystal po-
tential be used in all cases. In comparing the
accuracy, one may keep in mind that since our
tight-binding calculation is based on the linear

v).0 4
0

Ci
s-oe.

Z -12

K

FIG. l. Energy band structure of diamond with muf-
fin-tin potential. Solid curves were calculated by the
tight-binding method and the dashed curves by APW.

Z -12

g P

r

0 14

X K

FIG. 2. Energy band structure of diamond with the
GAP. Solid curves were calculated by the tight-binding
method and the dashed curves by OPW.

variation method, the calculated energies constitute
the upper limit of the corresponding true eigen-
values for the given periodic-potential problem.
Figure 1 shows a comparison between the APW
and the tight-binding calculation (20x 20 secular
equation) using the same muffin-tin potential. The
two sets of results agree well in the valence band,
but a somewhat larger discrepancy is seen in the
conduction band. In view of the high precision of
the APW calculation, this discrepancy can be taken
as a measure of the accuracy of our tight-binding
energies. In Sec. V we will show how to improve
tight-binding results and indeed reduce the dis-
agreement with the APW work.

In Fig. 2 we include both the tight-binding and
OPW energies" which result from the OAP model.
At almost every point in the Brillouin zone the
tight-binding energies are substantially below the
OPW results, indicating the higher accuracy of the
former. The major discrepancy between the two
sets of energies is most probably due to incom-
plete convergence of the OPW expansion.

Table I lists the energies of diamond at a number
of high-symmetry points in the Brillouin zone as
calculated by several different methods with dif-
ferent crystal potentials (I'z, being set equal to
zero}. Because of the iterative nature of the SCF
calculations, the crystal potential which was used
to obtain Herman's results of the "perturbed SCF"
calculation ' is somewhat different from the QAP
model. The empirical adjustment of the SCF en-
ergies to fit experimental data, as made by Her-
man, further changes the energy values, typically
by an amount of 1 eV. While the close agreement
between the OAP tight-binding calculation with
Herman's work is not to be taken as a test of the
accuracy of the tight-binding method per se, the
similarity of the two sets of band structure obtained
by two different schemes of computation does add
some measures of the reliability of the calculated
band structures. In addition to the ab initio calcu-
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p -12

0

~ -160

Z

-20

FIG. 3. Energy band structure of diamond calculated
by the tight-binding method. The solid curves were ob-
tained by using the OAP model and the dashed curves
by the muffin-tin potential. The energies computed from
the muffin-tin potential were shifted by a constant amount
in order to bring the two sets of curves to coincidence
at the top of the valence band.

lations cited above, studies of the band structure
of diamond by empirical schemes have been made.
In view of the vast basic differences of motivation
and procedure between the first-principle and the
empirical schemes, detailed comparison of their
results mill not be made here.

At this point it is instructive to compare the
tight-binding band structures calculated by the two

different potentials, i.e. , muffin-tin potential and
OAP. This is illustrated in Fig. 3. The two sets
of curves agree very well in the valence band. In
the conduction band, however, one notices a much
more pronounced difference in the band shape of
the two cases as well as an over-all shift of energy

of about 0. 7 eV. It has been pointed out that the
direct band gap (&„—I'2, ) varies considerably with
the magnitude of the parameter V,

' thus the shift
of the conduction-band curves may be ascribed to
the particular value of V chosen by Keown in con-
structing his muffin-tin potential.

To compare the Fourier coefficients of the QAP
and muffin-tin potential& we show in Fig. 4 the
variations of —(K„cosK„~ t)V,(K„) versus KI for
these tmo potentials. Included in this graph are
also the Fourier amplitudes of another muffin-tin
potential in which the value of V is chosen so as to
make V „(r) continuous at the boundaries of the
inscribed sphere. This continuous muffin-tin po-
tential differs from the QAP only in the low-fre-
quency components and converges to QAP in the
high-frequency region which governs the atomic-
like potential of the core. The muffin-tin potential
of Keown, on the other hand, exhibits considerable
oscillation at high frequencies which may be
ascribed to the discontinuity at the surface of the
inscribed sphere. This oscillation has much faster
damping than what appears in Fig. 4 since the
ordinate is proportional to K„V,(K„) rather than

V~,(K„) itself.

D. Calculation of X-Ray Form Factors

In addition to the question of the accuracy of the
energy band structure produced by tight binding,
it is also desirable to obtain some indication as
to the nature of the wave functions associated with
various eigenvalues in the Brillouin zone. For
diamond we have attempted to evaluate the over-
all accuracy of the wave functions by obtaining
from them the band-structure charge density which

l.O &
I

I

I

I

l
~ I

l.s

OJ

~~ h4

So 20

~ ~

FIG. 4. Fourier coeffi-
cients of the crystal poten-
tials; dotted curve for Keown's
muffin-tin potential, solid
curve for OAP. The dashed
curve corresponds to the
muffin-tin potential which is
continuous at the boundaries
of the inscribed sphere.

2.5—
~ ~

I I I I I I I I I I I I I I I l I ~ I I I

50 loo ISO 200 250
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E. Inclusion of Higher Atomic Orbitals

To carry the method of tight binding further, one

-.48-

v) -.4o
I-
Z

0 .32
0I-
K -.24
I-
i7)z
UJo -.16-
ILJ

z
U -.08- r = —Lt-(m, ~m)20

.00 s

Q 6 3

FIG. 5. Electronic charge density along the [111]
direction of the crystal. The solid curve was obtained
from the tight-binding functions and the dashed curve by
superposition of spherical free-atom charge distribution.

can be compared directly with other calculations
and with experiment. In our investigation of the
charge density of diamond, a three-point quadra-
ture of the occupied states of the Brillouin zone
was performed using the points I, X, and I. with

a relative weighting of 1:3:4, respectively. The
details of the calculation are presented elsewhere '
and will not be repeated here. A graph of the total
electronic charge density along the [111]direction
is shown in Fig. 5 (solid line). For comparison,
the charge density which would result from simply
superposing spherical free-atom charge distribu-
tions centered about the various lattice sites in
the crystal is also presented in Fig. 5 (dashed line).
The most obvious feature of this graph is the shift
of charge into the region of the covalent bond. The
Fourier components of the contribution of the va-
lence electrons to the electronic charge density is
presented in units of electrons/atom in Table II.
Two other calculations ' as well as the experi-
mental results of Gottlicher and Wolfel are also
presented for comparison. As can be seen, the
LCAO results are in quite good agreement with
experiment and represent a considerable improve-
ment over a naive superposition of atomic charges.
Even without using SCF wave functions, over one-
half of the forbidden reflection is accounted for,
and it is hoped this agreement can be further im-
proved by carrying out the solutions of the one-
electron wave functions to self-consistency.

TABLE II. Comparison of various calculations of
Fourier components of valence charge density in diamond

(units of electrons/atom).

(2&/+g QP Tight

g ~ ) ) super- binding
position

GK RESC Expt

1,011
0.221

—0, 037
—0. 105
—0. 105

0. 029
0.084
0. 085
0.054

0.976
0. 15

—0.05
—0. 12
—0. 10

0. 02
0. 06
0.06
0.04

0.99
0, 18

—0. 04
+0. 15
—0. 14

0. 02
0. 02
0. 00
0, 00

111 0. 814 0. 93
220 0.203 0. 16
311 0. 045 —0. 02
222 0. 0 —0. 08
400 —0. 013 —0. 06
331 0. 018 0. 01
442 0. 028 0. 03
333 0. 018 0. 02
511 0. 018 0. 02

Reference 22.
Reference 23. The Fourier coefficients listed here

differ from those given in Ref. 23 in that the expansion
is performed about the inversion center midway between
the two atoms rather than about an atomic site.

'Reference 24.

can construct the Bloch sums corresponding to the
higher orbitals such as 3s, 3P, 3d, and expand
the crystal wave functions by all these Bloch sums,

g(k, r) = Q [a„',„(k)b„',„(k, r) +a„, (k) b„,„(k, r) ] .
nfl

(14)

Although no rigorous test has been performed, the
convergence of the above expansion was generally
assumed when one includes only the Bloch sums of
the atomic orbitals corresponding to the occupied
shells of the free atoms. This convergence is
borne out by the good agreement of the results of
both diamond reported here and lithium in our
previous work (in which only ls, 2s, and 2p orbitals
were used) with energy bands calculated by other
methods. It has been suggested by Parmenter
that because of the long range of the higher atomic
orbitals, the Bloch sums formed by them are
approximately identical except for a multiplicative
constant. To examine the convergence behaviors
more quantitatively, we have included the Bloch
sums of the 3s, 3P, and 3d orbitals in the expansion
of Etl. (14). The wave functions of the 3s, 3p, and
3d states of the free carbon atoms were obtained
by the Hartree-Fock-Slater SCF procedure. ~6 With
the increased number of basis functions, in order
to simplify the computational procedures, the
atomic wave functions are now expressed as linear
combinations of GTO in this calculation. The 1s
and 2s functions were taken from the nine-term
and the 2P from the five-term expansions of Huz-
inaga's work. The 3s, 3P, and 3d Hartree-Fock-
Slater functions were curve fitted to
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&f&M„„=xyZ~ P~ ~e ~", etc. ,

(15)

where ~~ are 146. 097, 42. 4974, 14. 1892, 5. 147 73,
1.96655, 1.14293, 0. 359450, 0. 153310, 0. 114600,
0.0214306, 0.0199309, 0. 0194012; the associated
P„& are 0. 127873, 0.0919759, 0. 180825,
0. 069 9163, 0. 128 500, —0. 136 868, —0.049 3034,
—0. 115833, 0. 0745720, 0. 0404171, 0, 0; the
associated P~ &

are —0.099 1902, 0.296303,
0. 00252251, 0. 319199, —0. 0563510, 0. 227016,

0. 007 258 78, 0. 071 8979, —0. 0588483, 0,
—0.00947948, 0; and the associated P~ ~ are
0. 00401002, 0. 014 3208, 0.00947481, 0.0176495,
0. 00854137, 0.0135360, 0.0174888, —0.00726030,
0. 0116090, 0, 0, —0. 00254764. TheuseofGTO
for tight-binding calculations has been discussed.
The kinetic-energy, potential-energy, and overlap
matr~ elements between s and P orbitals can be
found in Ref. 2, and those involving the d-type
orbitals can be obtained by the usual differentiation
technique. For example, following the notation of
Ref. 2, we have

(G'" " '(n„r -A) ~cosK„. r, ~G'(az, r —B))

(G '(uq, r —A)~ cosK„r,
~

G'(a
2, r —B))

'
+

s (G'(n„r —A)~cosK„r, ~G'(aa, r —B)), etc8A, BQg

With only the Bloch sums constructed from the
Huzinaga Is, 2s, and 2P Gaussian-type atomic
orbitals, we obtain the same band structure as
those resulting from the use of the Slater-type wave
functions. When the basis set is extended to include
the 3s, 3P, and 3d Bloch sums, the band energy
is suppressed slightly from the values derived
from the 1s-2s-2P set. For k=0, the energies
(with OAP model) of I'&, I'25, I'», and I'2 are -1.266,
—0. 512, —0. 280, and —0. 022 a. u. , respectively,
for the former case, and are —1.243, —0. 503,
—0. 273, and —0. 009 a. u. , respectively, for the
latter. Thus the higher orbitals, indeed, are of
very minor importance for the energies of the
valence and conduction bands. As one proceeds in
the expansion of Eq. (14) to orbitals of higher n,
the Bloch sums become nearly identical to each
other and, hence, entirely ineffective for improving
the crystal wave functions. In Sec. V we shall
discuss a different scheme for augmenting the
basis set.

III. SILICON

A. Tight-Binding Calculations

Because of the similarity in the crystal struc-
ture, the procedure for band-structure calculations
of silicon follows closely to that of diamond. For
the crystal potential me use only the OAP model
calculated from the SCF atomic wave function of
the (Is)~(2s) (2p)6(3s)2(3p)2 configuration given by
Clementi with a lattice constant co= 10. 26 a. u.
The Fourier coefficients of this potential agree
well with the corresponding ones given by Bassani
and Yoshimine. "The selection of the basis set
here is not as clear cut as in the case of the first-

row element crystals. It is obvious that one must
include the Bloch sums of the atomic states up to
3s and 3P. In fact, they constitute the minimal
basis set in that we can construct from them basis
functions of all symmetry species of the valence
band. On the other hand, it may be desirable to
use all the atomic orbitals in the occupied valence
shell which include 3d in addition to 3s and 3p. To
investigate this point we have calculated the band
structure using the minimal set as well as the one
which includes 3d. The SCF wave functions of the
1s, 2s, 2p, 3s, and 3P states of silicon have been
given in terms of the STO. ' We calculated the 3d
function by the Hartree-Fock-Slater scheme and
curve fit the radial part to the form

R (Si) =0.818899e ' ' +0.374280e

+P 208879e-&.0934~+0 197731e-i.ass~

Expressions for integrals involving the 3s, 3P, and
3d STO can be deduced again by the standard dif-
ferentiation technique which will not be presented
here. Comparisons of the energies at several
high-symmetry points of the Brillouin zone com-
puted by the two different basis sets may be found
in Table III. One may notice rather substantial dif-
ferences at the X&, L3, and L2 points. The band
structure resulting from the 1s-to-3d basis set is
illustrated in Fig. 6. We obtain the indirect band
gap of 1.8 eV in reasonable agreement with the ex-
perimental value of 1.13 eV. The calculated min-
imum of the conduction band lies at (2w/ao)(0. 8, 0,
0) as compared to (2m/ao)(0. 85, 0, 0) from experi-
ment.
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TABLE III. Comparison of the energies (in a.u. ) of
silicon calculated by the 1s-2s-2p-3s-3p and by the
1s-2s-2p-3s-3p-3d basis set under the tight-binding
scheme. Tight binding OPW (core states included)

TABLE IV. Comparison between the modified scheme
of OPW and tight-binding calculations of the I'-point en-
ergies of Si (in a. u. ).

Energies
1s3p 1s3d

Energies
1s3p 1s3d 1s3d

Extended
basis 113 459 609

0. 829
0.400
0.325
0.281
0.689
0.495
0.294

—0.829
—0.414
—0, 325
—0.294
—0. 692
—0. 501
—0.342

Xe
Lt

L4
Lg
L3
L2

0. 030
0. 757
0.636
0. 445
0.330
0. 203
0. 002

—0. 048
—0. 757
—0.643
—0. 453
—0. 346
—0. 257
—0. 040

—0. 829
—0. 414
—0. 325
—0. 294

—0. 845
—0.431
—0, 334
—0.313

—0. 837
—0, 442
—0. 292
—0. 319

—0. 455
—0. 327
—0. 334

—0. 855
—0. 457
—0.339
—0.335

B. Comparison with OP% Method

Although there have been many calculations of
band structure of Si, most of the first-principle
results are by the OPW method. Thus a detailed
comparison of the tight-binding and the OPW band

structure is made here. The potential used in the
tight-binding calculations of silicon was constructed
to be identical to that used by Bassani and Yoshimine
in their OPW work. ' Comparison between these
two calculations is shown in Fig. 6. As can be
seen, the tight-binding results lie considerably
below those of OPW, thus we judge the tight-binding
calculations to be considerably more accurate than
the OPW calculations of Bassani and Yoshamine
using some 90 OPW's.

In order to obtain a more realistic estimate of
the accuracy of the tight-binding method, we have
performed a slightly modified OPW calculation
using some 609 plane waves. In the usus OPW
formalism, the core states which are obtained by
solving the atomiclike problem in the crystal or
by the use of "core shifts, "are assumed to be
eigenstates of the Hamiltonian. If the core functions
used in forming the OPW do not accurately rep-
resent the true core eigenstates, the OPW solutions
do not converge to the exact eigenvalues of the

V) -Cvl-
Q
K
4J

8
IK

z

FIG. 6. Energy band structure of silicon with OAP.
The solid curves were calculated by the tight-binding
method with the 1s-to-3d basis set. The dashed curves
are the OPW results of Ref. 15.

crystal Hamiltonian. For our calculation the
"approximate core functions" were taken as Bloch
sums formed from the 1s, 2s, and 2P wave func-
tions of the free atoms. These "approximate core
functions" were not assumed to be the solution of
the crystal Hamiltonian, consequently the matrix
elements between two OPW's have to be computed

by evaluating all integrals involving two plane
waves, involving a plane wave and a localized
atomic orbital, and involving two atomic orbitals
on the same or different centers. With this pro-
cedure it is no longer necessary to use the "core
shifts. " The crystal wave function is expanded in
terms of the basis set which consists of all the
"approximate core functions" as well as the OPW's.
The advantage of retaining all the "approximate
core functions" in the basis set is that the roots
of the secular equation now converge exactly to
the true eigenvalues of the periodic-potential prob-
lem and, like the solutions of the tight-binding
scheme, give upper limits to the energies of the
one-electron Hamiltonian. Table IV gives the
energies of the I" point calculated using different
numbers of OPW's. One may notice that with 113
OPW's, the I'2 state is above I'», but the order
is reversed when 609 OPW's are included. While
the energy of I » appears to have stabilized at
459 OPW's, the I"2 state still shows an appreciable
change of energy from 459 to 609 OPW's. Although
the I'2 energy may possibly decrease slightly be-
yond 609 OPW's, this point will not be pursued
further as a detailed study of the convergence of
this OPW calculation is beyond the scope of this
paper. The tight-binding energies (1s-to-3d basis)
lie appreciably above the results of 609 OPW's.
We have extended the tight-binding basis set by
allowing the weightings of the individual S7O in
the 1s, 2s, 2P, 3s, 3P Hartree-Fock functions to
vary (similar to the calculations of diamond de-
scribed in Sec. IIB}. The results of this extended
basis set (Table IV) are slightly higher than the
609-OPW energies, and the differences give us
some idea of the accuracy of tight-binding method
as compared to a very elaborate OPW calculation.

In addition to Bassani and Yoshamine, several
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other investigators have determined the band struc-
ture of silicon by the method of OPW. Two of these
are self-consistent calculations of Stukel and
Euwema~ and the empirically adjusted SCF work
of Herman et al. ' A comparison with these re-
sults at high-symmetry points (I 2S set equal to
zero) is given in Table V. S'mce the potentials used
in these two calculations differ considerably from
that of our OAP, only a qualitative comparison is
meaningful. All three calculations are in good
qualitative agreement and it is interesting that the
LCAO, the modified OPW given in the preceding
paragraph, and the SCF-OPW calculation of Stukel
and Euwema predict I'~ to be below I » —a result
which disagrees with the previously published
works.

IV. SODIUM

In view of the success of the application of the
method of tight binding to lithium, it is interesting
to investigate the case of sodium. Like the work
of Schlosser and Marcus, 3' we adopt a muffin-tin
crystal potential. The Wigner-Seitz cell is divided

into two regions by an inscribed sphere inside
which the Prokofjew potential was used. Between
the inscribed sphere and the Wigner-Seitz cell,
the potential is taken as a constant V equal to the
average of the Prokofjew potential in this region.
Furthermore, in calculating V, we have replaced
the Wigner-Seitz cell by the equivalent volume
sphere. This crystal potential is then expressed
as a Fourier series over the crystal lattice with
ao= 8. 0426 a. u. If the origin is chosen on an atomic
site, this Fourier series contains only terms like
cosK ~ r. The Fourier coefficients of this potential
agree very well with those given by Schlosser and
Marcus. 3~

The numerical Hartree-Fock SCF atomic wave
functions of sodium for the 1s, 2s, 2p, 3s, and

3p states have been given by Fock and Petrashen,
and that for the 3d state has been calculated by the
Hartree- Fock- Slater scheme. For convenience
of the numerical work, these wave functions are
expressed as linear combinations of eight STO
by means of curve fitting as follows:

gag = V 1801 ~g+ 12 6244 &p+ 0 038007r&3,

q~, = —1.1157898& + 5.7947 3,- 6.4714r $3 —1.472 57r34 —0. 011826r'8, +0. 001 58r',
'f)t 34}

= —0. 2416 8, + I.042 12hz —1.190 55r 43 —0. 285 416r$4 + 0. 075 0607r p ~ + 0.034 495r Ss

ygp~= x(7. 1376 &g —5. 2863 &q+ 0. 147 023 3+ 4.445 33 34+ 14. 049687),

y~~=x( —1.856436, + 2. 0223&&+0. 726378~ —0. 569136~ +0.026 24rS5 +0.014 757r 68

—2. 372 33s, +0.019 099rss)

y I,„=xy (0. 071688 65 —0. 075 850 38 + 0. 091 1904~ + 0. 052 076 8S),

(17)

where

e-0 P'

and && to &8 are, respectively, 13.1474, 9.V1542,
3.90983, 2. 6038V, 1.25944, 0. 75485, 5.49636,
0. 541 V33. Corres onding to each atomic orbital,
a Bloch sum b„, k, r} can be formed. Since there
is only one atom inaunit cell of the sodium crystal,
the Bloch sums themselves, rather than their bonding
and antibonding combinations as in the cases of dia-
mond and silicon, are used as the basis functions. The
energy band structure calculated by these fourteen
basis functions is shown in Table VI. It is necessary
to keep the 3d states in the basis set, because with
only one atom per unit cell, the d orbitals are needed
to form functions of H~z symmetry. In fact, if the
3d Bloch sums were deleted, the && band curve
would joint to the edge of the Brillouin zone at H»
Q-type symmetry) instead of H~z. As a test calcu-
lation, we have computed the tight-binding band
structure by dropping the 3d state (see Table VI).

Except at the points near the zone edge H, the energy
values along 6, g, and A derived from the abridged
basis set differ from those associated with the 1s-
2s-2P-3s-3p-3d set by no more than 0. 004 a.u.

Table VI also shows the comparison between the
tight-binding results with the APW-type calculations
of Schlosser and Marcus. 3' The agreement is seen
to be quite good, i.e. , within 0. 01 a.u. except at
the I point where the tight-binding value is 0.015
a.u. above that of Schlosser and Marcus. For k
= 0, our trial function is a linear combination of the
1s, 2s, and 3s Bloch sum. In other words, we have
only two degrees of freedom in performing the
linear variation calculation leading to the secular
equation, whereas for a point on the && line, say
(0. 2, 0, 0}, there are four degrees of variational
freedom. The lack of sufficient degree of flexibility
of this trial function to reproduce the true crystal
wave function at I' point may be responsible for the
discrepancy of 0. 015 a. u. To pursue this point, we
have generated a Bloch sum from an s-type atomic
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TB OAP OP% OPW' OP%

TABLE V. Comparison of band structure of silicon
calculated by diff~rent methods with different potentials
(in a. u. ).~

TABLE VI. Energies {in a.u. ) of the conduction band
of sodium calculated by the tight-binding method with and
without the 3d basis functions and their comparison with
the results of the composite-wave method by Schlosser
and Marcus (a0=8. 0426 a. u. ).

r,
pl
~is
I'2

X,
X4
X,
X3
L2
L,
L4
L3
L)

1s 3d

—0.414
0. 0
0. 120
0. 090

—0.277
—0. 086

0. 073
0.367

—D. 342
—0. 229
—0. 038

0. 158
0. 069
0.375

OAP

-0.39
D. D

0. 11
0.25

—0.25
—0. 09

0. 07

—0.30
—0. 22
—0. 07

0. 08
0. 12
0, 32

SCF-PERT

—0. 430
D. 0
0. 107
0. 153

—0. 280
—0. 1,03

0. 046
0.395

—Q. 346
—0. 248
—0. 043

0, 140
0. 081
0.317

sCF

—0.432
0. 0
0. 103
0. 101

—0.285
—0. 100

0.047
0.360

—0.350
—0.248
—0, 043

0. 141
0. 059

a+„/2'

[Dooj r
[100)4)

0. 2
0. 5
0. 8
0. 9
1.0

[110lZ
0. 1
0. 3
0.5

—0.289 —0.289

—0. 283
—0.213
—0. 099
—0.053
—0. 009(H)2)

—0.280
—0.212
—0. 095
—0. 040
—0. 003(H)5)

—0.289
—0.235
—Q. 147

-0.287
—0.234
—0. 147

Tight binding
1s 3d 1s 3p

Corn posite
waves

{Ref. aS)

—0.304

—0.291
—0. 224
—0. 105
—Q. 056
—0. 010

—0.297
—0.246
—D. 147

ln this table the
7his work. TB

'Reference 15.
Reference 4.

'Reference 6.

energy of 1"p'~ is set to zero.
refers to tight binding.

0. 1
0.3
0. 5

—0.287
—0.207
—0. 077

—D. 283
—Q. 206
—Q. 075

—0.294
—0.218
—Q. 077

function composed of the same STO with the same
weighting as in the Hartree-Fock-Slater 3d wave
function, i.e. ,

y, = r'(0. 071 688ss —0. 075 8503, + 0. 091 190sy

+ 0. 052 076&8), (19)

and include this Bloch sum along with the 1s-2s-3s
basis to recalculate the I'-point energy. This gives
—0. 298 a.u. which is only 0. 006 a. u. higher than
the Schlosser-Marcus value. It is clear that this
discrepancy can be further reduced by using a
larger basis set for the tight-binding calculation.

A plot of the crystal wave function of the I' point
of the conduction band along the [100] line of the
crystal lattice between two adjacent atoms is dis-
played in Fig. 7. The wave function is nearly con-
stant over a Iarge portion of the graph. It is inter-
esting to note that by merely placing the atomic
wave functions (in this case 1s, 2s, and 3s) at the
proper sites, we automatically generate a crystal
wave function which exhibits the constant electron-
density property of a free particle. This occurs be-
cause of the strong overlap between the valence-
electron wave functions of the neighbor atoms so
that the valence electrons cannot be associated
with a particular atom. When this overlap behavior
is properly taken into account, the LCAO scheme
of description gives energy band structures which
agree quantitatively with those of the APW-type
calculations. The same kind of results was also
found for lithium. '

The steeply decreasing part of the wave function

0.4-

04
OO—

0.0

O.O-

0.2
I

0.4 0.6
f-(a, )

0.8 10

FIG. 7. Crystal wave function and Bloch sums at the
I' point of sodium along the [100j line of the crystal. The
solid curve is the crystal wave function, and the 3s, 4s,
Gs Bloch sums are presented by uniform dashes, long-
short dashes, and dots, respectively.

in Fig. 7 is due to the contribution of the 1s and
2s orbitals, whereas the 3s is mainly responsible
for the flat portion. Also included in the same
figure is the 3s Bloch sum which is essentially flat
over the major part of the graph and decreases only
mildly near the atomic sites. It is interesting to
note from Fig. 7 that the Bloch sums of the 4s and
5s atomic states of sodium are practically identical
to each other and are essentially constant over the
entire region. These functions are not effective
in providing variational freedom to the trial wave
functions, and therefore their inclusion in the
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basis set would not lower the energy substantially.

V. GENERALIZATION OF METHOD OF TIGHT BINDING

If we regard the method of tight binding as basic»-
ly a linear variation method for calculating energies
of a one-electron periodic-potential problem, an
obvious way of improving the accuracy is to employ
a trial function which resembles more closely the
true wave function or to increase the number of
basis functions used. In the calculation of diamond
with the Is-2s-2P set (10x 10), the wave function
of I ~ (and I'2) is written as a linear combination of
bonding (and antibonding) 1s and 2s Bloch sums, or
has only one degree of freedom, whereas the I'»
and I"2, functions are of 2p type having no varia-
tional freedom. It is interesting to note that even
with such a limited degree of variational freedom,
the tight-binding method is capable of giving quite
accurate results. In Sec. IIE we have seen that
augmentation of the basis set by means of the Bloch
sums of the higher atomic orbitals is not fruitful.
The Bloch sums formed by the successive higher
orbitals tend to duplicate one another to a very
large degree (Fig. 7), and do not provide the nec-
essary variational freedom to improve the energy.
Furthermore, the long range of the higher orbitals
renders the crystal-lattice summation, e. g. , Eq.
(7) of Ref. 1, very difficult, and the labor of cal-
culation increases immensely as the atomic orbitals
become more diffuse.

A more practical and rewarding approach to ac-
quire more flexibility of the trial function is to add
to the basis-set Bloch sums generated by relatively
localized atomiclike functions of ranges smaller
than or comparable to the distance between two
neighboring atoms in the crystal. By selecting a
series of atorniclike functions which vary signif-
icantly over different portions of the region be-
tween a given atomic site and its nearest neighbors,
it should be possible to reproduce quite accurately
the true crystal wave functions in terms of the
Bloch sums of such localized functions. For ex-
ample, one can use the GT0 of s-symmetry like

0f y'~e & and of P-symmetry like xe &" to form the
single-Gaussian Bloch sums as was done in Ref.
2. These singl. e-Gaussian Bloch sums may be
introduced to the basis set to supplement the regu-
lar Bloch sums of Hartree-Fock orbitals of the free
atoms. Alternatively, we can adopt a basis set
consisting entirely of single-Gaussian Bloch sums
without ever using the conventional Bloch sums of
the SCF atomic orbitals. In other words, in con-
structing the Bloch sums

fl„(k, r) =Z„e ' '""g„(r —R„),

the function y(r) is no longer restricted to the
Hartree-Fock wave functions of the free atoms;

instead, any localized functions, in principle, may
be used provided there are sufficient number of
such basis functions to give the necessary varia-
tional freedom. The choice of the analytic form
of y(r) is dictated by the ease of computation, and

our previous work indicates that the Gaussian
forms are suitable for this purpose. It is, of course,
possible to take Z(r) as the SI'0 e ~" or as any
arbitrary linear combinations of STO of different
exponents, and indeed, we have essentially done
the former in Sec. IIB in connection with augment-
ing the secular equation from 10&10 to 20& 20,
and the latter in Sec. IV when we formed the Bloch
sum corresponding to p, in Eq. (18). However,
the multicenter integrals involving the Slater-type
orbitals are more difficult to evaluate than their
Gaussian counterparts. When dealing with a large
number of Bloch-sum basis functions, the Gaussian
form is more preferable.

As a preliminary calculation along this direction,
we have added single-Gaussian Bloch sums of two
s-type GTO (n, = 5. 147 73 and 0. 49624) and of
three P-type GTO (o~= 1.14293, 0. 35945, and
0. 1146) to the usual ls, 2s, and 2P Bloch sums of
diamond. This makes a set of 32 basis functions
which along with the muffin-tin potential of diamond
gives the energies of the various points in the
Brillouin zone as follows: I „—1.148; I"zs, —0. 433;
r„, - 0. 218; r,', - 0. 026; X„-0. 856; X„-O. 631;
Xg& 0 201' X3p 0 086' L2p 0 9587 L ~~

—0. 863'
L4 0 523 L(f 0 127 L3 0 112~ L~f 0 098
a. u. Df special interest is the fact that the two
'largest discrepancies in energy (which occur at
Lz and X,) between the tight-binding and APW cal-
culation, as shown in Fig. 1, are reduced to less
than half of their values when we use the 32-basis
set. The energies obtained from this basis set are
on the average about 0. 01 a. u. higher than the
APW values. A detailed account of the methods of
calculation using augmented basis sets of single-
Gaussian Bloch sums will be reported in a later
paper.

VI. CONCLUSION

The method of tight binding has been applied to
calculate the band structures of diamond, sodium,
and silicon. In the conventional sense of this
method, we use the Hartree-Fock wave functions
of the core states and of the occupied valence shells
of the free atoms to form the Bloch sums, and ex-
pand the crystal wave function in terms of these
Bloch sums. One obvious advantage of this scheme
is that it entails a rather small number of basis
functions (compared to some of the other first-
principle methods such as OPW and APW) and at
the same time achieves reasonably good accuracy.
Furthermore, since the crystal wave functions
are expressed in tera. ~ of the wave functions of the
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constituent atoms, it is possible to make more
direct correlation between the properties of the
crystals and those of the free atoms on both quanti-
tative and qualitative level. If the atomic Hartree-
Fock functions are expressed in terms of a small
number of Slater-type orbitals, one can improve
the calculation somewhat by varying their relative
weightings to minimize the energy. For sodium,
this tight-binding procedure leads to band energies
accurate to typically 0. 02 Ry. In the case of diamond
and silicon, the average error is estimated to be
0.04 Ry.

To obtain band structure of higher accuracy, mod-
ifications and generalization of the method of tight
binding can be readily made. In generating the
Bloch sums, one may replace the atomic Hartree-
Fock functions by a series of GTQ of various
ranges. These single-Gaussian Bloch sums are then
included in the basis set for the secular equation.
Even with a modest increase of the number of basis
functions, we have improved the accuracy of the
tight-binding calculations for diamond to generally
0.02 Ry. The matrix elements of the Hamiltonian

between two single-Gaussian Bloch sums can be
expressed in analytic form and no numerical inte-
gration is needed. Qur results demonstrate that
the method of tight binding is capable of giving very
accurate results. The success of this method in

both alkali metals and group-IV crystals points
toward the possibility of application to a wide va-
riety of materials.
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