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the present purpose.
f8W. L. McMillan and J. M. Rowell, in Super'condgc-

tivity, edited by R. D. Parks (Dekker, New York, 1969),
pp. 609 and 610.
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An electron near the surface of liquid or solid He, Ne, or H2 is excluded from the interior
of the medium because of a net repulsive interaction with the atom«r molecules composing it.
If a layer of such a material is situated on a conductor these electrons may become localized
near the insulator-vapor interface, bound there by polarization forces. We discuss the proper-
ties of these states and determine their lifetime prior to electron tunneling through the insula-
tor to the metal.

I. INTRODUCTION

It has been known for several years' that the
strongly repulsive interaction between an electron
and certain closed-shell atoms or molecules (spe-
cifically He, Ne, and H2) causes an effective exclu-
sion of an excess electron from the interior of a
condensed medium composed of such units. On the
other hand, when outside the medium, the electron
is pulled toward its surface by attractive polariza-
tion forces. In view of these considerations, Cohen
and the author recently proposed ' that there exist
states of excess electrons localized near, but pri-
marily external to, the surface of liquid and solid
He, Ne, and H2.

In this paper a related phenomenon is described.
We consider a configuration of a dielectric layer,
or film, lying on a metal substrate, as shown in
Fig. 1. An electron in the vapor region will be at-
tracted toward the dielectric surface. However,
the polarization force will be enhanced relative to
the case of an infinitely thick dielectric treated in
I. Exclusion from the bulk of the dielectric will
occur as it does in that problem. The net result is
localization of the extra electron near the medi-
um's surface, but with considerably larger binding
energy than occurs in the absence of the metal.
These electronic states, however, are not true
eigenstates of the system in that the electrons can
tunnel quantum mechanically through the insulator
to the metal. The lifetime associated with this
process must be calculated as well.

Section II utilizes the appropriate electrostatic
potential, derived in Appendix A, to obtain the wave
equation in a form similar to that of the author' s
previous treatment. In Sec. III, we discuss the
eigenvalues of the most strongly bound states as
well as the lifetimes for the tunneling process.
Section IV provides further discussion and conclu-
sions.

II. EFFECTIVE POTENTIAL AND

RESULTING EIGENFUNCTION

Figure 1 illustrates the experimental configura-
tion of interest. The previous studies of image-po-
tential induced surface states ' concern the case
of an infinite dielectric to which the present prob-
lem reduces when t tends to infinity.

Experimental and theoretical' evidence indicates
that the insulators studied here have a negative
electron affinity, owing to their filled, tightly bound

electronic shells. The repulsive electron-medium
interaction causes the conduction band minimum to
lie at an energy Vo which is positive with respect
to the vacuum level, which we take to be zero. An

energy E & Vo lies in the energy gap so that an elec-
tron wave function at that energy decays exponen-
tially with distance into the medium. Outside of
the medium, the electron is attracted toward the
insulator. At a distance x from the surface large
enough for classical electrostatics to apply, the in-
teraction between the electron and an infinite di-
electric is'

where b is a cutoff parameter we employ because
(1) loses its validity for close approach, and e is
the static dielectric constant of the insulator.

In Appendix A, we solve the classical electrostat-
ic problem corresponding to the configuration of
Fig. 1 and obtain a generalization of Eq. (1) that
includes the influence of the metal. The resulting
form for the potential in the vacuum region is a sum
of (1) and an infinite series that converges uniform-

ly since P&1:

x&b&0.
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the range 0 & x & b . The cutoff parameter b will be
arbitrarily taken as 3 A for the present calculation,
but the results are rather insensitive to this choice.

The solution to Eqs. (4) and (6) which is continu-
ous and has continuous first derivative at x = 0 is

SULAT y (x) = s'~", x & 0

= cosKsx+ (Kq /Ks)sinK~, 0 & x & b;

K, = (2m/K 3)[Vo(l —s) —E],
K', = (2m/m ')[E —V(h, t)] .

(7a)

(7b)

FIG. 1. The geometrical configuration under investi-
gation. The metal is semi-infinite and all interfaces are
of infinite extent.

As in I, we will calculate an envelope function
g( r) in the effective mass approximatione'~ for the
electron wave function. g(r) is free-electron-like
for motion paral lel to the surface but localized in
the direction normal to the surf ace:

The eigenfunc tions and eigenvalues of the local-
ized state are obtained by equating the logarithmic
derivative of this solution to that of the correspond-
ing solution for x & b which vanishes at infinity. We
have obtained the latter by numerical integration of
the Schrodinger equation using the method of Num-
erov. " The asymptotic form used as a starting
point is the regular Whittaker function. '~ The rele-
vant properties of this function are derived in I.

III. RESULTS FOR EIGENVALUES AND LIFETIMES

6(r)=& "' s'"'P(x),

q„s+ ~ (~)) 4(~) =~0(*),

where the total energy is

Er=E+h s /2m.

(4)

(6)

We will perform this calculation for the liquids
He, Ne, and H2 . The quantity Vo is taken from I
where it was calculated with the method of Springett
et al . ' The specific values used are given in Table
I; The results for the solid will differ only because
a somewhat different density would change Vo and P .

Here & is the wave vector for motion parallel to the
surface plane of area A and p is the component in
the plane of electron position vector r. The one-
dimensional model potential for motion perpendicu-
lar to this plane is depicted schematically in Fig.
2

V„(Q

= V(b, t),

= V(x, t),

The quantity

s = s'/(4~t V,)

0& x& 5

b & x.

V„(x)= Vo(l —s), x& 0 (6a)

(6b)

(6c)

Yo {I-S)

is approximately (to order P ) the fractional reduc-
tion, due to the metal, of the barrier potential at
x= 0.

In the spirit of the usual treatments of quasista-
tionary (QS) states, "owe have chosen V„as a
lowest- order approximation to the potential, which
will determine a set of eigens tates . We then con-
sider the necessary corrections to V& which gener-
ate an additional se t of states, namely, the Bloch
states of the metal. States of the first kind are then
truly QS only if they decay slowly to those of the
second kind. Later w e will investigate the app 1ica-
bility of this approach to the present problem.

Note that we have chosen V& to be a constant for

Eo

FIG. 2. The one -dimensional model potential V~ (g)
depic ted schematically . The two lowest eigenv alue s @p

and S~ are included. The curves terminate at a thickness
Qgi given in Table I and calculated in the text.
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tion of V in the barrier region" associated with the
metal-induced potential. The result is expressed
in the form

y '=e '/T, g

where T,I is the classical period of oscillation in
the quasistationary state, given in (B3), and the ex-
ponential is a tunneling probability factor. The
quantity J has the value

Z= [Bmt'(&o-E)/&']"' 01-y ')"'
-y 'ln[y+ (y' —1)'t']), (B2')

where

y =4&t(Vo —E)/e =s ',
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FIG. 3. Binding energy of the ground state for motion
perpendicular to the surface as a function of the inverse
of the insulator's thickness.

since Vo»E. For the case of sufficiently thin di-
electric, we will have y & 1 so that the insulating
"barrier" vanishes completely and the state decays
almost immediately. In fact, the QS state method
requires for its validity that y be somewhat greater
than unity. If we arbitrarily choose y = 2 to be the min-
imum value imposed by this requirement, this cor-
responds to a minimum thickness t &, amenable to
treatment by this approach. Table I includes this
value, computed for the ground state of the system,
as well as the energy broadening &E(t,„) that cor-
responds to v according to the uncertainty princi-
ple. We observe that these values of &E (= 1 meV)

Figure 3 shows the binding energy —Eo of the
ground state of the system for the three insulators
of interest, as a function of t. In Fig. 4 we give the
energy &E of excitation to the first excited state.
We observe, as predicted, that the presence of the

metal considerably strengthens the binding to the
surface region. Although we have not calculated the
normalization integral for (It), we have estimated it
and determined the fractional penetration of the
wave function into the insulator. As in I this is of
order 1/o for all cases studied, which means that
the electron remains primarily outside of the me-
dium.

As mentioned earlier, these states are unstable
with respect to tunneling through the insulating bar-
rier to the metal. The lifetime 7 associated with
this process is calculated in Appendix B using the
WEB approximation, taking into account the "varia-
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TABLE I. Parameters for liquid insulators under

investigation.

He
Ne

H2

10 xdensity
(cm-')

2.18
3.72
2.17

Vp
Cion

(eV} 10'P (A)

1.30 0.27 10.5
0.47 0.88 26. 1
2.20 1.04 5.5

uE(& „)
(eV)

1.0 xl0 4

2. 5 x10-4
1.1 x10 3

IO 0
I I I

50 IOO ISO

INVERSE INSULATOR THICKNESS( IO 3A ')

FIG. 4. Energy of excitation from the ground state to
the first excited state as a function of the inverse of the
insulator's thickness.
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are small in comparison to the energy differences
between levels for t = t &„. Hence, we may regard
the t;, chosen to be a reasonable limit of the re-
gime of validity of the QS state method used here.

IV. DISCUSSION

In this Appendix, we derive the attractive poten-
tial V(x, t) associated with a charge q situated at
position ( p = 0, x & 0) in the vacuum region shown in
Fig. 1. We let r=(p, d) denote the radius vector
to a general point in space. The electrostatic po-
tential U(r) satisfies Laplace's equation, appropri-
ate continuity conditions at the interfaces, and has
cylindrical symmetry. We separate the solution in
vacuum (region I) into Uo, the potential which q
would produce in the absence of dielectric and met-
al' and &U, the induced potential which we deter-
mine,

(A1)

(A2)

(AS)

Ur= Uo+ &U, x&0

Uo(Tt, d)=qf dk Jo(kp)e """
5U(p, d)=q f dk Jo(kp)e s(k),

where Joie the zero-order Bessel function, ands(k)
will be determined. In the dielectric (region II),
we choose expansion coefficients for U~& which
guarantee that it goes continuously at x= —t to the
potential of the perfect conductor, U&&& = 0:

U»(. p, d) =q f dk Jo(kp) (e ~ —e~'~'3")a(k).

Continuity at x=0 of the potential and the normal
component of the electrostatic displacement vector
give

e ""+s(k) = a(k) (1- e'~'),

e '"—s(k) =ca(k) (-1—e'"'),
with solution

s(k) e-kx(l pe2ht)/(P e2kt)

One may easily verify that this solution reduces to
standard ones for the limiting cases of infinite di-

The energy spectrum associated with these sur-
face states is quasicontinuous and free-electron-
like for motion parallel to the surface and quantized
in discrete levels for perpendicular motion. We
observe that both the binding energy of the elec-
trons in these states and the separation 4E between
the discrete levels increase rapidly as the thickness
of the dielectric decreases. However the lifetime
of the states is limited by the process of tunneling,
the rate of which also increases with decreasing
thickness. These properties may be investigated
with experiments involving electromagnetic radia-
tion in the infrared or longer wavelength region, or
in mobility experiments that probe the various pos-
sible scattering mechanisms.

APPENDIX A

electric and no dielectric, respectively.
In general the attractive image potential is given

by

V(x, t) = —,
'

q &U( p = 0, x)

= —Pq'/4x ——,
' (1 —P')q' I(x),

f(x) = 2f, dk"e ""/(P+e"'),

in which the first term corresponds to the case of
an infinite dielectric and the second indicates the
metal's influence. We may evaluate I(x) by expand-
ing its denominator and integrating term by term.
There results an infinite series which converges if
P &1, yielding the final expression

V(x, t)= +---&q' q'(I P')-" (-P)"
—

4x 4P ~, x.nf,

APPENDIX B

(A4)

We calculate here the rate of tunneling through
the insulator for QS electronic surface states local-
ized primarily in the vacuum region. For elastic
tunneling the transverse wave vector T& is con-
served, and the problem reduces to one dimen-
sion. ' Except within a few atomic layers of each
interface, '4 the effective potential V,(x) of an elec-
tron in the insulator can be taken as Uo modified by
the metal's image potential

V, (x)= V, -e'/4e(x+t), x&0. (B1)

We find in the WEB approximation" that the tun-
neling rate 7. ' is a product of an "attempt rate, "
equal to the inverse of the classical period of mo-
tion T„ in the QS state, and a tunneling probability
given by the usual integral over the classically for-
bidden region, which we may evaluate immediately:

J7=T0g 8

2m V,. x -E
Xo

8m(VO —E)t
h

—y
' In[y+ (y' —I)'~']), (B2)

where xo is the classical turning point on the metal
side of the insulator,

x, = —t(1 —y '),

y2= 4te(VO E)/e2= s '.-
We note that the parameter y is the ratio of
( Vp E) to the magnitude of the metal' s contribution
to the image potential at x= 0. If y & 1, then the bar-
rier is completely eliminated and the QS-state pic-
ture becomes invalid.

The quantity T,& is given by an integral over the
classically allowed range, between x = 0 and x =x,
the classical turning point'8
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1/2

c1 2g y

Since V(x) is not of simple form we cannot calcu-
late this integral exactly by other than numerical
means. However, we can find functions V„(x) and

V, (x) which are upper (u) and lower (l) bounds for
V(x) and permit exact integration of T„:.

V„(x) & V(x) & V, (x),

V, (x) =- —e'/4x,

V„(x)=- V(x. ) —V'(x. ) (x.—x)

=E- V'(x ) (x —x),

where the prime denotes differentiation. The re-
sulting upper and lower bounds for the period are,
respectively,

[(u+M )'

((1 y/g)~~2/g&~2)j

Comparison of these quantities shows that T,'", ' is a
factor of 5-10 larger than T,',". For convenience
we will take the actual value to be

(u)
Tc& 2 Tcl

This imprecision is not significant for an order-
of-magnitude estimate since T„ is only a preex-
potential factor.
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Results of recent measurements of the infrared absorption of small NaCI crystals are com-

pared with calculated absorption spectra.

The infrared absorption in the reststrahlen re-
gion of smail crystals of NaCl has recently been
measured by Martin. ' The samples used were
rectangular in shape, with two of their sides of
length 10 p, and the third one shorter. (This size
represents, however, only the average over a wide
experimental size distribution. ) The crystallites

were embedded in polyethylene and were well
separated. The spectra observed at '7 and 290 K
are shown in Fig. 1.

As noted by Martin, ' the highest-frequency (fre-
quency here measured in wave-number units) sec-
ondary minima (at about 216 cm ' for 290 'K and at
about 232 cm ' for 7 'K) are probably due to two-


