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A six-parameter shell model which takes into account anion polarizability, noncentral
nearest-neighbor interactions, central second-neighbor interactions, and the effective charge
of the core and shell of the anion has been utilized for the determination of the lattice dyna-
mics of LiF, NaCl, KCl, and RbI. The model parameters are determined from experimental
data on the long-wavelength optical-mode phonon frequencies, the three elastic constants, and
the high- and low-frequency dielectric constants. By the incorporation of the pressure deri-
vatives of these quantities into the lattice-dynamical model, the individual-mode Gruneisen
parameters and the temperature dependence of the thermal-expansion coefficient are calcu-
lated. Reasonable agreement is found between the calculated values and the available experi-
mental data on these quantities.

I. INTRODUCTION

The first complete lattice-dynamical treatment of
alkali halides was done by Kellermann' in 1940 for
NaCl using a rigid-ion model with full formal ionic
charge. Since then a large number of treatments
have appeared on diatomic cubic crystals using
more complicated models, viz. , the shell model,
deformation-dipole model, ' breathing-shell model,
and othe». Many of these models employ a largev

number of parameters obtained from a fit of exten-
sive phonon-dispersion data measured by neutron-
scattering techniques. The use of a large number
of fitting parameters sometimes yields physically
unrealistic values for some of the model parame-
ters, thus reducing the lattice-dynamical treatment
to a mere curve-fitting procedure. Such models

are thus unsuitable for crystals for which extensive
data on phonon dispersion do not exist. Further-
more, these models are not easily adaptable to the
calculation of other thermodynamical properties,
such as the thermal expansion, without invoking
additional model parameters. For example, in
some calculations of the coefficient of thermal ex-
pansion, additional anharmonic parameters had to
be invoked, which in turn were evaluated by fitting
the thermal-expansion data, thus rendering the so-
called agreement between calculated and experimen-
tal values relatively insignificant.

In the present work, a simple shell model is used
in which all the model parameters are obtained
without .recourse to phonon-dispersion data. The
model takes into account short-range first- and sec-
ond-neighbor interactions and assumes the anion to
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TABLE I. Elastic constants, infrared eigenfrequency, high- and low-frequency dielectric constants, and their
pressure derivatives for a number of alkali halides.

c„ C&2

(10 dyn/cm ) 0.0 dyn/cm ) (10 dyn/cm ) 0

LiF
NaCl
KC1
BbI

11.37
4.90
4.05
2. 58

4.76
l. 26
0.70
0.37

6.37
l.27
0.63
0.28

8.42
5.91
4. 68
4.69

1.90
2.31
2.13
2.63

5.73
3.09
2.71
1.42

LiF
NaCl
Kcl
BbI
n

dC~~
dP

9.92
11.71
12.77
13.51

dC(2
dI'

2.72
2.06
1.61
1.32

dC44
dI'

1.38
0.37

—0. 39
—0. 50

1 dEO

10 cm
dyn

—4.87
-10.10
—10.57
—13.20

B dg
g dI'

0.13
0.28
0.33
0.45

2.15
2.26
2.46
2.37

be polarizable with effective core and the shell
charges, and is used for studying the lattice dynam-
ics of LiF, NaCl, KCl, and RbI. This model is es-
sentially of the same form as the shell model used
by Peckham for MgO, with the exception that an ef-
fective ionic charge is employed rather than a full
formal charge. Since the polarizability of the anion
is much larger than that of the cation in the alkali
halides studied here, the latter is neglected in the
calculation. This approximation is used here for
the explicit purpose of keeying the number of model
parameters relatively low. These were determined
from the long-wavelength optic-mode frequencies,
elastic constants, and high- and low-frequency di-
electric constants. This model is also shown to be
easily adaptable to the calculation of lattice dynam-
ics of the crystal at higher hydrostatic pressures.
Mode Gruneisen parameters, the macroscopic
Gruneisen constant, and the coefficient of linear ex-

pansion can be calculated with the knowledge of only
the pressure derivatives of the above-mentioned
quantities at room temperature.

It may be emphasized here that the aim of the
present work is not to present yet another lattice-
dynamical model that claims a better agreement
with experimental data on yhonon dispersion, but to
suitably adapt one of the existing models for the cal-
culation of mode Gruneisen parameters and the
other derived quantities, the parameters of which
are obtained from such experimental data for which
pressure derivatives are available.

II. SIMPLE SHELL MODEL

The calculations for the lattice dynamics are
based on a shell model first proposed by Dick and
Overhauser and later elaborated by Woods et al.3

and Cowley. 4 Under the adiabatic assumption, the
equations of motion can be written as

Model parameters at normal pressure and high pressure.

LiF
NaC1
KCl
RbI

A

118.505
64. 263
48. 607
35.650

]03

—14.096
7.487
4.734
3.504

All

103 dVn

Normal pressure

3.521
-3.708
—l.956
—2. 819

K

103 d

427.427
238.981
550.617
189.579

1.384
1.801
3.155
2.594

z
(in units

of e}

1.030
l.117
l.124
1.078

LiF
NaCl
KC1
RbI

118.740
64.767
49.339
37.419

—14.124
7.535
4.800
3.635

High pressure

3.665
—3.590
-1.891
—2.726

428. &69
242. 583
559.409
212.615

1.387
1.815
3.180
2.751

l.029
1.115
1.122
1.073

High pressure is 1 kbar for all crystals except for BbI where it is 2 kbar.
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FIG. 1. Phonon dispersion in KC1. Experimental
points are from Bef. 11.

llool [iso]
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~ and m are the column matrices giving positions of
the cores and displacements of the shells relative
to the cores, respectively, and

A=B+Z. C Z,
B=T+Z C

D=S +F C T+E,
where the matrices 8, T, and S describe short-
range core-core, core-shell, and shell-shell intex-
actions and C describes the Coulomb coefficients.
Z, F, E, and M are the diagonal matrices represent-
ing the effective ionic charge, the shell charge, the
interaction of the core with its own shell, and the
mass of the cores, respectively. Under the assump-
tion that the short-range forces act through the
shell,

FIG. 3. Phonon dispersion in LiF. Experimental
points are from G. Dolling, H. G. Smith, B. ¹icklow,
P. B. Vijayaraghavan, and M. K. Vhlkinson f,Phys.
Bev. 168, 974 h968)].

the solution of this secular equation for different
values of the wave vector in the first Brillouin zone
gives the yhonon dispersion.

In the alkali halides studied here, the yolarizabil-
ity of the yositive ion is much smaller than that of
the negative ion, hence the former is neglected.
The first-neighbor forces are assumed to be non-

central which gives rise to two force constants A

and B. The second-neighbor anion-anion interac-
tion is assumed to be central, giving rise to one
force constant A". (Our central second-neighbor
force-constant matrix differs from that of Peckhame
which has two independent parameters. ) Second-
neighbor cation-cation interaction is neglected. In

and the following secular equation results:

~M &o -A. -& D ~ &~~ =0 .
Since A, 8, and D are functions of the wave vector,

Rb[
0 I 2 5 4 5 0 4 — 8 l2

Rbl KCl

g I
0

C [)oo] folio]
%AVE VECTOR

r [t'ai]

FIG. 2. Phonon dispersion in BbI. Experimental
points are from G. Baunio and S. Bolandson [Phys.
Status Solidi 40, 749 (197G)j.

0 .5 I.5 20 0 .8 t6 24 + 4.0
u {i0 sec )

FIG. 4. Phonon density of states.
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C»= (A+A" )/2a —2. 55604(eZ)'/a V, ,

C~z ——(A" —2B)/4a+0. 11298(eZ)2/a V, ,

C«-—(A" + 2B)/4a+ 1.27802(eZ) /a V,

(4)

addition to these model parameters, one uses the
core-shell interaction for the anion E, the shell
charge for anion F, and the effective ionic charge Z.

The model parameters are determined from the
three elastic constants C», C&2, and C44, the high-
and low-frequency dielectric constants e„and eo,
respectively, and the long-wavelength TQ mode fre-
quency +TO with the help of the following relations:

tions. However, it is likely that a simple shell
model, such as the one presented here, may pre-
dict the over-all phonon spectrum of a solid, albeit
approximate, and may yield reasonable values for
various derived thermodynamic properties.

Figure 4 shows the calculated phonon density of
states for some representative alkali halides. The
temperature dependence of the Debye characteristic
temperature is shown in Fig. 5. The over-all
agreement may be considered satisfactory. The
results of an elaborate shell model for RbI are also
shown in Fig. 5.

III. MODE GRUNEISEN PARAMETERS AND THERMAL-

EXPANSION COEFFICIENT

and

c„-1 4me~ Y~

e „+2 3 V, %+A+ 2B

eo —1 4ve'( Z' (Y+Z')
so+2 3VQ+2B K

(A+m)K

4ve~[Z+(A+2B) Y/(K+A+ 2B)] e„+2
3V, 3

Since all the model parameters of the present
simple shell model can be obtained from Eqs. (4)-
(6) it is possible to calculate the lattice dynamics
of a crystal as a function of pressure, provided the
pressure dependence of the required input data is
also available. The mode Gruneisen parameters

'i

650-

(6)

where a is the nearest-neighbor distance, p. is the
reuuced mass, and V, (= 2a') is the unit cell volume.

The experimental values of the input data and the
calculated model parameters at atmospheric pres-
sure are given in Tables I and II. The calculated
phonon dispersion along the symmetry directions is
presented in Figs. 1-3 for KCl, RbI, and LiF. The
agreement for KCl is remarkably good in spite of
the fact that experimental neutron data ' were ob-
tained at 115 'K, while the input data for the calcu-
lations were at 300'K. For Rbl and NaCl (not pre-
sented), results are moderately successful. Ex-
cept for a slight discrepancy for the longitudinal
and transverse. acoustic branches near the X criti-
cal point, the over-all agreement may be regarded
as good. By far the worst agreement was obtained
for LiF. The longitudinal branches, in particular,
show poor agreement. However, even for this case,
considering the fact that all the model parameters
were obtained from macroscopic data, the predicted
phonon dispersion may be regarded as a reasonably
approximate description. It is believed that the
agreement between the calculated and the experi-
mental phonon dispersion in a general direction, if
such is available, would not be any worse than that
shown in Fig. 3. For an elaborate shell model in
which the model parameters are obtained by fitting
neutron data in symmetry directions, the agreement
is not necessarily guaranteed in the other direc-

550-
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(b) KCI

0 260-
+225

215 (c) No Cl

205-

I I 0
IOO

90

0 0
~J

0 0
0

0 (d) RbI

I op IIOO, 200
T ('K)

I

500

FIG. 5. Temperature dependence of Debye-charac-
teristic temperature. Solid lines represent present
calculations. Dashed lines in (a), (b), and (c) represent
experimental data from%'. T. Berg and J. A. Morrison
[Proc. Roy. Soc. (London) A242, 467 (1957)] and K.
Clusius, J. Goldman, and A. Perlick [Z. Naturforsch. 4a,
424 (1949)]. Dashed line in (d) represents calculations
of Raunio and Rolandson [Phys. Status Solidi 40, 749
(1970)]. Circles represent experimental data from
K. Clusius, J. Goldman, and A. Perlick [Z. Naturforsch.
4a, 424 (1949)].
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then can be calculated for the normal modes using
the relation

TABLE III. Transition pressures for NaCl to CsCl
phase transition and pTA(X).

d»~~ (k) & s~, (k )
dlnV ~,.(k) sJ

Material FATA(X Transition pressure
(kbar)

TA

LO

LO

where u&&(k ) is the frequency of the ith branch at a
wave vector' k, and B is the isothermal bulk modu-
lus of the crystal. Mode Gruneisen parameter can
be obtained by calculating the mode frequencies at
two different pressures, and assuming linear de-
pendence.

The pressure dependence of the elastic constants'
and the high- and low-frequency dielectric con-
stants' are available for all the four alkali-halide
crystals studied here. The pressure dependences

Tp I iF, KCl, and RbI are available
from the infrared measurements. ' No reliable ex-
perimental value of yTp is available for NaCl. It
is calculated by assuming (eZ) /V, to be indepen-
dent of pressure for this crystal. This corresponds
to ys= —dlnZ/d lnV= —0. 5 Calculation of yro under
this assumption shows a good agreement with exper-
iment for other alkali halides also. For NaCl un-

LiF
NaCI
KCl
RbI

1.62
0.19

—1.46
—2.52

300 "
20
4 c

To date no transition pressure has been reported
for LiÃ.

"W. B. Bassett, Taro Takahasi, Ho-kwang Mao,
and J. S. Weaver, J. Appl. Phys. 39, 319 (1968).

'P. W. Bridgman, Proc. Am. Acad. Arts and Sci.
76, 1 (1945).

der this assumption we obtained a value of 2. 26 for
yT p, which is in very good agreement with that cal-
culated from a Born-Mayer-type potential. The
experimental values of the input data and the cal-
culated values of the model parameters are also
given in Tables I and II.

The variation of the mode Gruneisen parameters
with the wave vector along the [100] and [111]di-
rections are presented in Fig. 6. The circle in the
case of RbI represents an experimental measure-
ment' of yrz(X). It may also be noted that while
our work was underway, Barsch and Achar have
calcu1ated the zone boundary yT„'s.of certain crys-

LA

TO
TA

LO

0

T ——2
LA

LiF40—

20

KC~40—

20

O
0

TA

o
LA

E

a~L

LA

00 200 400 60000
T( K)

NaCI (b)

F00 200 500
T( K)

lh
0

TA
C9 ~T
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M Lo
O

3
20

00 ~00 200 ~Oa 0
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I I 1

l00 200 300
T( K)
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[iOO]

FIG. 6. Mode Gruneisen parameters. Circle on
lower right-hand corner is experimental value of &T~(X)
of RbI from Ref. 16.

FIG. 7. Coefficient of linear thermal expansion as
a function of temperature. Sources of experimental
data are as follows: (a) American Institute of physics
Handbook, 2nd ed. (McGraw-Hill, New York, 1957),
@.73. (b) Circles, same as (a); triangles, G. K.
White, Proc. Roy. Soc. (London) A286, 204 (1965).
(c) P. P. Meinke and G. M. Graham, Can. J. Phys.
43, 1853 (1965). (d) Circles, D. E. Schuele and C. S.
Smith, J. Phys. Chem. Sol,ids 25, 801 (1964); triangles,
G. K. White, Proc. Roy. Soc. (London) A286, 204 (1965).
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n(T) =Q Ciy;/3BV, (8)

tais in a similar manner. However, their treat-
ment differs from ours in two significant ways: (i)
They did not make use of the experimental pressure
dependence of k -Op», and (ii) they did not obtain
co, or y& as a function of k, nor did they derive the
thermal expansion of the crystals from these re-
sults.

It is of interest to note that the present model
predicts negative-mode Gruneisen parameters for
some TA modes of KC1 and Rbl (Fig. 6). A nega-
tive y» indicates a decrease in the stiffness of the
lattice under compression, predicting a first-order
transition. " It is well known that NaCl-type crys-
tals undergo a pressure-induced phase transition to
the CsCl structure. This fact is not obscured by
the present model. In Table III, the mode Gruneisen
parameter for the TA mode at the X critical point is
compared with the transition pressure for the crys-
tals under study. A perusal of the table indicates
that a definite correlation between the softening of
this particular mode and the transition pressure
exists.

Under the framework of a quasiharmonic approxi-
mation, the thermal-expansion coefficient can be
calculated as a function of temperature according
to the relation

where C& is the Einstein specific-heat function for
co&, and V is the crystal volume. The sum extends
to all normal modes. The calculations are com-
pared with the experiment in the Fig. 7. The ther-
mal-expansion coefficient is negative at low temper-
ature for RbI. The present model predicts this be-
havior well. As may be seen from Eg. (8), it is
chiefly the low-frequency mode —y&'s which contrib-
ute to the low-temperature Gruneisen constant, and
hence to the thermal expansion, and tend to make
the latter negative if the former are predominantly
negative. The over-all agreement between the ob-
served and calculated n is very good. Slight devia-
tion at high temperatures is expected. At high tem-
peratures, anharmonic effects neglected in the pres-
ent calculations become significant. Some of this
deviation may be compensated by using experimen-
tal values of C„, the specific heat at constant volume
in Eg. (8), instead of the calculated harmonic val-
ues. The agreement between the experimental and
calculated values is particularly significant when
one remembers that the thermal-expansion coeffi-
cient was calculated over a wide range of temper-
ature only from the elastic constants, long-wave-
length TO phonon frequency, high- and low-frequen-
cy dielectric constants, and their pressure depen-
dence. It may be further emphasized that no fitting
parameters were used.
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