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Model for OH, OD, and CN Impurities in Alkali Halide Matrices

Gopal Krishna Pandey and Dinesh Kumar Shukla
Physics Department, University of &llahabad, Allahabad, India

A model has been developed for calculating the potential barrier-hindering angular motion
and possible off-center displacement of the polar impurities in the alkali halide matrices. The
general method of the multipole expansion of the intermolecular interaction has been employed.
The calculations have been done for the OH", OD, and CN' impurities in the KCl, KBr, NaC1,
RbCl, and KI matrices. It has been found that the OH and OD impurities are displaced bv
about 0.2—0.3 ~ from the normal-lattice site in the different alkali halide lattices. For the
CN case, no appreciable displacement of the impurity c.m. is evidenced. In this case, the
effect of the relaxation of the lattice near the impurity is also considered. This has been
found to add a small tetragonal term of the type (4&) &" Y0 to the octahedral potential.
The addition of such a small tetragonal term has recently been demonstrated by Pompi and
Narayanamurti to explain successfully the rather unexpected infrared results and also the
anomalous specific-heat results of Harrison et al. The calculated values of the barrier and
the off-center displacement have been used successfully to explain the librational frequency
and the tunneling splitting of these impurities in the matrices. The general validity of dif-
ferent approaches has been discussed in the light of the librational frequencies and their
isotope effect.

I. INTRODUCTION

Ionic crystals containing a small concentration of
dipolar impurities like OH and CN have attracted
considerable experimental' and theoretical
attention. The presence of such impurities in the
alkali halide crystals gas been experimentally seen
to cause changes in the dielectric constant, specific
heat, and thermal conductivity at low temperatures.
The interpretation of these and other phenomena
like infrared absorption and paraelectric-resonance
studies requires a definite knowledge of the potential
in which the impurity ion performs different types
of motions. These experiments also present strong
evidence for a novel type of lattice distortion, when
the mismatch in the size between the impurity and
the replaced ion is large. Thus, when the OH im-
purity is substituted for the Cl ion in a KC1 matrix,
experiments suggest that the OH impurity shuttles
around a number of equivalent off-center positions
leading to observable dielectric, thermal, and
mechanical effects. In this respect the behavior
of the OH and CN ions is more or less similar to
that of a Li' ion dispersed in the ionic matrices. '
A first-principles analysis of the origin of the off-

center position of the center of mass (c.m. ) a.nd the
angle-dependent part of the potential energy (i. e. ,
the barrier-hindering angular motion of the dipolar
impurity) is, therefore, of interest.

Attempts" ' have been made to calculate the po-
tential barrier and the origin of such off-center
displacements for a Li' ion in the alkali halide ma-
trices. Such calculations have been done within
the framework of a Born-Mayer model with either
an arbitrary but steep linear term to avoid col-
lapse' or a modification for the polarization and
the repulsion effects at short distances. '

For the dipolar impurities Lawless used a
point-charge-point-dipole model to calculate the
rotational barrier for the OH impurity in alkali
halide matrices. More recently, Chandra et al. '
calculated the barrier height on a more realistic
approach. The general method of multipole expan-
sion was used to calculate the rotational barrier
parameter K. This method could be applied to any
diatomic impurity, provided its quadrupole and hex-
adecapole moments were known. This calculation
gave a good estimate of the barrier height, except
in the case of the KBr-OH system, where the calcu-
lated barrier parameter was about 25/p less than
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the observed one.
Though the displaced position of the OH c.m. is

conceivable within the framework of the above cal-
culation, ' it was not explicitly considered there.
It is a well-known theorem of electrostatics that
the displacement of a point dipole is equivalent to
superimposing a quadrupole moment on the dipole
at its original position. The quadrupole moment
obtained, therefore, will be the sum of the molecu-
lar quadrupole moment and that due to the displace-
ment of the dipole. If the impurity quadrupole mo-
ment is known from other methods, the contribu-
tion due to the displacement of the dipole can, be
separated out and the value of the displacement de-
termined. This naturally suggests an equal off-
center displacement of the OH c.m. in a.ll the host
matrices, which is not convincing.

The failure of the above calculation for the case
of the KBr-QH system and aprivate correspondence
from Lawless, 3 made it clear that for an accurate
calculation of the barrier height, the off-center
displacement of the impurity c.m. should be ex-
plicitly considered.

In the present paper, a general method has been
developed for the calculation of the potential bar-
rier-hindering angular motion of the impurity mole-
cule and also the possible off-center position of
its c.m. . The method has been applied for cal-
culating these parameters for the OH, OD, and
CN impurities in a number of alkali halide ma-
trices. For the OH impurity, a value of about
0. 2-0. 3 A has been obtained for the off-center dis-
placement of its c.m. in different alkali halide ma-
trices. For the CN case, no appreciable displace-
ment of the c.m. is evidenced. In this case, the
effect of the relaxation of the lattice near the im-
purity is also considered. This is found to add a
small tetragonal term of the type (4w) ~ E"y 0 to
the Devonshire octahedral potential. This small
tetragonal term has recently been incorporated by
Pompi and Narayanamurti to explain with success
the rather unexpected infrared optical results and
also the anomalous specific-heat results of Harrison
et al.

II. MODEL

For the rigorous determination of the impurity
displacement, one needs to calculate the variation
of the system energy as a function of the impurity
displacement. This requires an adequate knowledge
of the attractive as well as the repulsive potential
between the impurity ion and the ions of the host
matrix. Calculations of this type have been made
for the Li'impurity' ' for which the form of the
potential is well known. Unfortunately, such po-
tentials are not available for the dipolar impurity-
host-lattice ion systems.

The calculation of the barrier height and the dis-

placed position of the impurity c.m. is based here
on the multipole expansion method of the inter-
molecular interaction. The idea of a possible off-
c. m. displacement of a dipolar impurity was first
suggested by Seward and Narayanamurti and later
reaffirmed by a number of other workers. ' ' '

The reason for such a displacement can be stated
as follows. The equilibrium configuration of the
impurity in the matrix cavity is described by the
minimum energy configuration. The interaction
energy depends upon the distribution of charges
in the dipolar impurity and the atoms of the host
lattice. Consequently, the point of the impurity,
which rests at the normal-lattice site in the mini-
mum energy configuration will depend upon the
distribution of the charges in the impurity. We
call this point the center of interaction (CI), be-
cause it is this point at which the effective crystal-
line field interaction acts. Essentially, the CI need
not coincide with the c.m. because the latter is
governed by the distribution of masses in the im-
purity. We assume that the angular anisotropy of
interactions is also minimum about the CI. To
summarize, our assumptions are (i) that the im-
purity occupies a substitutional site in the undis-
torted host matrix cage with its CI t,'and not the
c. m. ) at the normal-lattice site and (ii) that the
angular anisotropy of interaction is minimum about
the CI. The concept of such a CI has recently been
introduced by a number of workers, 7 and the
parameter (separation between molecular e. m.
and CI) has been demonstrated to be of much im-
portance in understanding a number of molecular
problems in the gaseous phase. ' Such a concept
of molecular CI has also led to the understanding
of the matrix spectra of HCl- and HBr-type im-
purities in the rare-gas matrices at low tempera-
tures.

So far as the properties of this CI are concerned,
the following points may be mentioned. Where
there is a symmetric charge distribution in the
mo1.ecule, the CI can be taken as located at the
center of symmetry. For an asymmetric charge
distribution, CI is the point about which the angular
dependence of the intermolecular interaction is
minimum. The relative importance of the various
types of these interactions (such as dispersion,
induction, exchange, and multipole interactions),
which are not necessarily centered at the same
point, is determined by the intermolecular dis-
tances and the environs of the impurity. The CI
of an asymmetric molecule (and hence the point
of the impurity, which rests at the normal-lattice
site) is, therefore, not only a molecular constant
but it also depends upon the environment of the
impurity. The position of the CI may also slightly
depend upon the experimental conditions, such as
temperature, pressure, and state of aggregation,
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etc. These latter small effects will not be con-
sidered here.

III. BARRIER-HINDERING ANGULAR MOTION AND
OFF-CENTER POSITION OF Ii~iPURITY c.m.

The barrier arises due to the angular anisotropy
of the interaction between the trapped impurity and
the atoms of the host lattice. The dominant inter-
actions are the following: (a) electrostatic inter-
action between the charges of the host-lattice atoms
and the multipole moments of the impurity; (b)
induction interaction, i.e. , the interaction between
the multipole moments of the impurity and the di-
pole moment induced in the host-lattice atoms due
to these multipole moments; (c) induced multi-
pole-induced multipole London dispersion interac-
tion; and (d) exchange interaction, which arises
because of the overlap of the two charge distribu-
tions.

Since the angular-dependent part of the exchange
interaction is not precisely known, it is not consid-
ered here. The radial-dependent part will not give
any contribution to the barrier if the center of the
exchange forces is taken to be the same as the CI.
The explicit expressions for the other interactions
are well known. These can be rearranged and
written in terms of spherical harmonics, summed
over all the neighboring and far neighboring atoms
to give the barrier parameter as29

HOH s 7 CH4s
pi B 5

f djffex„, 2 Rf 2 Rf
shells

7 aHC, C s
12 RB

and

2 4-4a Ps(c m, )+a C

2
Ss(cy, ) = es(c.m. ) 2 ~s(c.m. ) +a C, . (6)

Substitution of these in (2) gives

K= (AO,'+BC,) —4a(Ap, 0, +BQ,)

+2a (2Ap, , +AO~, C, +3BO~, )

—4a'.(Ay. ,C, +By,)+a (AC, +Bc,). (6)

The barrier parameter X is also a measure of the
strength of the angular anisotropy of interactions.
Hence, according to the definition of the CI, d&/da
should vanish and de/da~ should be positive. This
gives

a'(AC2 +BC,) —3a (A p, , C, + By, )

The subscripts s and H denote, respectively, the
host lattice and the solute or the impurity ion. The
symbols C, p. , 8, Q, and @stand for the charge,
dipole, quadrupole, octupole, and hexadecapole
moments, respectively. The values of the shell
summation constants pf and Rf for the first few
neighboring shells have been listed in Table I.

The molecular moments Q, and 4, are those ex-
pressed about the CI (the point which rests at the
normal-lattice site). These can be expressed in
terms of the impurity multipole moments expressed
with respect to the c.m. and the (c.m. -CI) sepa-
ration a, as follows:

2 HCs(Q J) Cs(c.m. ) s(c. m. ) + 6~ s(c.m. )

or
K=AO+ + B4s, (2)

+ a(2Ap,' +A 0", C, + 3BO~, ) —(A p, 0~, +BA, ) = O.

(7)

where

A=gp, —~9 uH

2 Rf

TABLE I. Constants of the shell summation used for the
calculation of the barrier parameter.

The constants A and B depend only upon the matrix
parameters. Equations (6) and (I) in this way give
the value of the barrier parameter and the off-cen-
ter displacement of the impurity c.m. , respec-
tively, in terms of the multiyole moments of the
impurity and the constants of the matrix.

IV. EFFECT OF LATTICE RELAXATION NEAR IMPURITY

First shell
Second shell
Third shell
Fourth shell
Fifth shell
Sixth shell
Seventh shell
Eighth shell

Number of atoms
in the shell

6
12

8
6

24
24
12
30

Rf

+1.0 R
-0.5 g2 R
—0, 888 89 g3 R
+1.0 R
+0.8 (E5) R
-1.0 (/6) R
-0.5 (g8) R
-0.925 93

In cases where the size of the impurity is either
greater than or of the same magnitude as that of
the substituted ion of the host lattice, a relaxation
of the nearest-neighbor atoms may result. An im-
portant type of the lattice relaxation has recently
been proposed. ' In this it is assumed that the
nearest-neighbor atoms lying along the axis of the
dipolar impurity are pushed away, and those per-
pendicular to the axis of the dipole are pulled to-
wards the impurity ion. Figure 1 shows this type
of lattice relaxation together with the induced elec-
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tronic dipole moments in the nearest-neighbor
atoms. The displacements ($ and t) ) and the cor-
responding induced dipole moments (X and tt) are
taken to be radial with respect to the impurity CI.
When this is considered, the Devonshire octahedral
potential is modified to the form

V(8, P) = 5E(sin48 sinsP cosa/ + sins8 coss8)

ylf' cos 8+(&~) if'" (3 cos 8 —1) .

Here 8 and P are the polar angles describing the
orientation of the dipole in a lattice fixed-coordi-
nate system. The constants K, E', and E" are
given by

9 e 8 7 C(g~+2gt) B s + s s 8 +(5g+15t&) H 8

25 ~C4~—$(1+6)+21) ) —
2

~&~5 +that given in Eq. (2),

«=yRRe. V)"3(5-3)t(-,' "„." —,', "„' ) r85(3 V).VR(5-")j --''".')
2 A

~ [(5 3) ~ 8(5'-3') RR(8"3')I (- 83, , RV C„O, 38a„ai RVa„C,S, 38a„S~)

~(
58C S, 555 C, V, 83a„a, 388 a„C,S, VVRa„S,'

V. RESULTS AND MSCUSSIONS

A. OH and OD Systems

Tables II and III summarize the various con-
stants used in the calculations. Table IV gives the
values of the barrier parameter K and the dis-
placed position of the impurity center of mass a,
which have been calculated on the basis of the pres-
ent model. We should now show that these values
are in accord with some experimentally observed
results. The experimental observations, which
can be directly correlated to these parameters, are
the librational level and the tunneling frequency of
the impurities in the matrices.

The librational frequency can be calculated by
different approximate formulas. In the first case,
when the potential barrier-hindering angular mo-
tion is small for the angular motion to be just li-
brational, the Devonshire model' is a good ap-
proximation. It has been very well realized that
the Devonshire model'3 is unable to explain ade-
quately the librational levels and their isotope ef-
fect for the case of the OH alkali halide systems.
This is clear from the fourth column of Table IV,
where the values of the librational frequencies as
obtained from the Devonshire model have been
summarized. This same conclusion is also drawn

Y

I

)Q

85'

858

/

FIG. 1. Displacements $ and g and corresponding dis-
placement dipole moments & and p. All displacements
and induced dipoles are radial with respect to the impurity
CI (i.e. , the point of the impurity which rests at the nor-
mal-lattice site of the matrix). The impurity is shown to
align along the (OO&) orientation. 0, normal position of
the lattice points; , relaxed positiyn.
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TABLE II. Lattice parameters used in the calculations. TABLE III. Impurity constants used in the calculations.

KCl KBr NaCl RbCl

a (A)a

n' g') b

O.
- (A') b

3.12 3.25 2.80 3.26 3.53

3.29 3.29 1.57 4.56 3.29

4.98 6.44 4.S8 4.98 8.68

~¹F. Mott and R. W. Gurney, Electronic I'rocesses
in Ionic Crystals (Clarendon, London, 1940).

S. Roberts, Phys. Rev. 81, 865 (1951).

B (cm-') '
p, (Debye) b

8~ (Debye ~)

Qb (Debye At)

e, (Debye &') b

Bond length (~) '

OH
18.9

4.59

9.15

2.556

0.25

0.974

OD
10.0

4. 59

g, 15

2. 556

0.25

0.974

CN
1.25

0.3
0.78

—0.06

],444

from the last column of Table I in Ref. 31, where
quite different values of the barrier parameter are
obtained for the QH and OD impurities. In fact,
these systems do not fall in the low-barrier limit.
For the case of larger barriers also, Devonshire
has solved the appropriate Schrodinger equation,
which gives the librational frequency as

Pnb = (20KB) 4. 5B (12)

The fifth column of Table IV gives the values of
v„b as obtained from Eg. (12). It can be seen that
although this calculation presents an improvement
in the right direction, it does not account satisfac-
torily for the observed librational frequencies.

C. H. Townes and A. L. Schawlow, Micros@ave Spec-
troscopy (McGraw-Hill, New York, 1955).

"For the OH impurity, the multipole moments are
about the impurity CI in the KC1 matrix, i.e. , about a
point which is 0.2801 A away from the o. m. towards
the oxygen atom. For the CN impurity these are about
the c.m.

'Obtained from the known value of the rotational con-
stant.

The reason can be stated as follows. Devonshire's
calculation for the large barriers treats the motion
of the impurity in two angular coordinates, i.e. ,
it considers the three-dimensional librational mo-
tion of the impurity molecule. For the large value
of the barrier parameter K, it may be difficult for

TABLE IV. Calculated values of the barrier parameter and off-center position of c.m. for the OH" impurity. From
this barrier parameter the librational frequencies have been calculated for the normal as well as deuterated samples and
compared with the experimental data.

System

KCl-OH

Calculated
barrier
height
(cm ')

584.04

Displacement
of impurity

c.m.

0.2801 254. 24

Bb
(cm-')

263.35

Cc
(cm-')

297.43

Calculated librational frequency

D ti

(cm ')

326.2

Observed
librational
frequency

(cm ~)

297. 5
293'

KCl-OD

KBr-OH

KBr-OD

NaC1-OH

NaCl-OD

RbC1-OH

RbCl-OD

KI-OH

KI-OD"

584. 04

470.01

470. 01

741.20

741.20

634.55

634.55

370.92

370.92

0.3310

0.2122

0.2631

0.2037

0.2546

0.3379

0.3888

0.2050

0.2559

213.55

236.26

200.46

333.40

266.36

244. g8

201.14

195.00

172.48

211.25

263.39

206. 57

347.98

269.30

248. 00

203.05

231.76

182.43

231.98

309.14

232.42

395.45

295.89

274. 71

220. 25

278. 96

208. 89

276. 6

354.9

294.7

486. 2

396.5

263, 9

251.7

311.4
260.6

231.5'
309 7
309

233 '
235

390 0
385'

270.5'

279'

213 f

'Obtained from Devonshire model for low barriers.
"Obtained from Devonshire model for large barriers. In this v~&b= (20EB) -4.5B.
Corresponding to torsional oscillation model in one plane. For this vggb= (20&B)
Obtained from the point-mass model of Dreyfus (Ref. 32).

'M. V. Klein, B. Wedding, and M. A. Levine, Phys. Rev. 180, 902 (1969).
D. Harrison and F. Luty, Far Infrared Librational Excitations of OH and OD Dipoles in Alkali Halides, Interna-

tional Symposium on Color Centers in Alkali Halides, Rome, 1968 (unpublished).
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System

KCI-OH
KCl-OD
KBr-OH
KBr-OD
NaCl-OH
NaCl-OD"
RbCl-OH
RbCl-OD
KI-OH
KI-OD

0.2801
0.3310
0.2122
0.2631
0.2037
0.2546
0.3379
0.3888
0.2050
0.2509

Calculated
tunneling
splitting

(cm-')

0.18
0.04
4.71
1.19
2.74
0.49
0.01
0.00
9.02
2.84

Observed
tunneling
splitting

(cm i)

P 21b.. P ]8c

] 6Pd. 2 8e

'Obtained from our calculated value of barrier parame-
ter & and off-center displacement parameter a. The
results are from the tunneling model of Gomez et al.
(Ref. 11).

Reference 3.
'Reference 33.
R. E. Aldrich, W. J. Burke, and K. A. McCarthy,

Solid State Commun. 5, 899 (1967).
'B. Wedding and M. V. Klein, Phys. Rev. 177, 1274

(1969).

the molecule to perform angular motion in three
dimensions. There are planes having sma, lier po-
tential energy, and it is quite likely that the mole-
cule makes angular motion in this plane of lowest
potential energy. For example, for the (100)
equilibrium orientation of a dipolar impurity in an
octahedral potential, it can be shown that the po-
tential energy for the molecular angular displace-
ment is least when this displacement is in the xy
or gz plane. For such a case of torsional oscilla-
tion in one plane the librational frequency is given

pygmy
= (20KB) (13)

The sixth column of Table IV presents the calcu-
lated values of the librational frequencies as ob-
ta, ined from Eq. (13). It can be seen from the table
itself that this calculation explains adequately the
librational frequencies as well as their variation
on isotopic substitution. This result is also sup-
ported by similar conclusions of Klein et al. "

More recently Dreyfus32 has compared the hin-
dered-rotor model and the tunneling model for the
energy levels in the lowest mainfold. In doing so
he has concluded that the two models provide suffi-
ciently identical results (tunneling splitting), when

v«b is expressed by a formula like Eq. (12) and
when the dipolar impurity is considered as a point
mass concentrated at its c.m. This point mass is
combined with a virtual infinite mass located at the
normal-lattice site. The moment of inertia of the

TABLE V. Calculated and observed values of. the tunneling
splittings for the OH and OD impurities.

dipole is taken as if it were a point mass situated
at a certain finite distance from the normal-lattice
site. We have presented a slightly different picture.
In our model we have identified a CI about which
the angular anisotropy of the interaction is mini-
mum. This point has been located at the normal-
lattice site and it has been emphasized that the an-
gular motion of the impurity in the matrix occurs
about the CI and not about the c.m. Under such a
condition the moment of inertia of the impurity gov-
erning the angular motion will be given by

Ici=I . + ma 2 (14)

and hence the effective value of the rotation constant
B now becomes

(16)

This should be compared with the effective value of
B in the Dreyfus work:

hB,«( Dreyfus) =
8m cj2ma (16)

The next to last column of Table IV gives the values
of the librational frequencies, which are obtained
using our calculated values of a and k and the Dreyfus
model. It can be seen that the Dreyfus model con-
sistently predicts larger values of the librational
frequencies. This is probably due to the neglect of
the diatomic nature of the impurity, which plays an
important part in the librational motion. The effec-
tive moment of inertia of the impurity is thus under-
estimated, which leads to the larger values of the
librational frequencies.

For the calculation of the tunneling splitting there
are two different models available: One is the Dev-
onshire model and the other is the tunneling mod-
el. ' 3 It has been demonstrated by Dreyfus that
over a certain range of the barrier parameter, the
two models provide identical results. Table V gives

Librational
frequency

Sys tern (cm" I)

KC1-CN" 12+ la

KBr-C N 12+1'

KI-CN 11+1a

Rbcl-CN 19+ 1

aReference 2.

Obtained from
the observed
librational
frequency

(cm-')

22. 2+2. 5

22. 2+2. 5

18.0+2.5

35.1 + 2. 5

Obtained
from Eq. (6)

of the present
formulation

(cm-')

22. 7

18.0

11,3

19.1

Obtained
from Eq. (9)
considering

lattice
relaxation

as well
(cm ')

22.7

18.0

18.0

35.1

TABLE VI. Calculated and observed values of the barrier
parameter & for the CN impurity.

Barrier parameter &
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the values of the tunneling-splitting parameter ob-
tained by using our calculated values of the barrier
parameter K and the displacement parameter a. It
can be seen that the limited experimental data are
well reproduced by our calculated values of K and a.
For cases where tunneling frequency data are not
available, our calculated values stand as theoretical
ones to be verified by later experiments. The good
agreement of the observed librational and tunneling
frequencies to the values obtained from the calcu-
lated values of the barrier parameter K and the
c.m. displacement parameter a proves the adequacy
of the latter calculated values and also that of the
model.

The general behavior of the variation of the dis-
placement parameter with the host matrix and the
equilibrium orientation of the impurity can also be
compared with the information obtained from other
sources. From the sign of the barrier parameter
X as positive, a (100) equilibrium orientation is
predicted. This is in agreement with the conclu-
sions of Kuhn and tuty' and many others. M''4'"
The value of the parameter a increases in the se-
quence NaCl, KCl, BbC1, i. e. , it increases with
the covalent radius of the nearest-neighbor atom
when the displaced ion is the same. The value of a
for the KBr matrix is smaller than that for the KCl
matrix, although the cavity size is larger for KBr.
This behavior is consistent with the similar results
on the KCl-Li' and KBr-Li' systems. ' Our calcu-
lated value of the displacement parameter for the
KCl-OH system (0. 2801 A) agrees well with that
obtained by Bron and Dreyfus" (0. 28 A).

B. CN System

The calculated of the barrier in this case requires
a two-parameter fit to the four available experi-

, mental data. As can be seen from Table VI, this
could not be attained. The impurity quadrupole and
hexadecapole moments required to fit the KCl and

KBr data give sufficiently lower values of the bar-
rier parameter for the KI and RbCl matrices. The
excellent three-parameter fit to the ten experimen-
tal data for the OH case does establish the general
validity of the model, but its failure in the case of
the CN -doped systems invokes some difficulty.
There can be two possible methods for attributing
to this discrepancy. First, it may be possible that
the CN impurity occupies slightly off-center dis-
placed position in the KI and BbC1 matrices. This
possibility arises due to the larger cavity dimen-
sions in these two matrices. To examine this a
three-parameter fit (as was done for the case of the
OH impurity) was tried, which ended in failure.
This indicates that possibly the CN impurity does
not sit off center in the ionic matrices. Such a con-
clusion has also been drawn by a number of other
workers. "'" The other possibility is the relaxa-
tion of the lattice near the impurity. This has re-
cently been evidenced from the electric-field-in-
duced dichroism experiments on the RbCl-CN
system. The fourth column of Table VI gives the
value of the barrier parameter when lattice relax-
ation is also considered. The lattice-relaxation
parameter required to fit the results are $ = 0. 056
for the KI and $ = 0. 076 for the RbC1 matrix. This
in itself may be trivial because, in fact, it becomes
a four-parameter fit to the four experimental data.
The value of the tetragonal distortion parameter K
obtained from these values of $, etc. , is 5. 0 cm '
for the KI and 3.6 cm ' for the RbCl matrix. The
ratio A /K for the RbCI case becomes 0. 1, in
agreement with the predicted value of Pompi and
Narayanamurti. 9
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A six-parameter shell model which takes into account anion polarizability, noncentral
nearest-neighbor interactions, central second-neighbor interactions, and the effective charge
of the core and shell of the anion has been utilized for the determination of the lattice dyna-
mics of LiF, NaCl, KCl, and RbI. The model parameters are determined from experimental
data on the long-wavelength optical-mode phonon frequencies, the three elastic constants, and
the high- and low-frequency dielectric constants. By the incorporation of the pressure deri-
vatives of these quantities into the lattice-dynamical model, the individual-mode Gruneisen
parameters and the temperature dependence of the thermal-expansion coefficient are calcu-
lated. Reasonable agreement is found between the calculated values and the available experi-
mental data on these quantities.

I. INTRODUCTION

The first complete lattice-dynamical treatment of
alkali halides was done by Kellermann' in 1940 for
NaCl using a rigid-ion model with full formal ionic
charge. Since then a large number of treatments
have appeared on diatomic cubic crystals using
more complicated models, viz. , the shell model,
deformation-dipole model, ' breathing-shell model,
and othe». Many of these models employ a largev

number of parameters obtained from a fit of exten-
sive phonon-dispersion data measured by neutron-
scattering techniques. The use of a large number
of fitting parameters sometimes yields physically
unrealistic values for some of the model parame-
ters, thus reducing the lattice-dynamical treatment
to a mere curve-fitting procedure. Such models

are thus unsuitable for crystals for which extensive
data on phonon dispersion do not exist. Further-
more, these models are not easily adaptable to the
calculation of other thermodynamical properties,
such as the thermal expansion, without invoking
additional model parameters. For example, in
some calculations of the coefficient of thermal ex-
pansion, additional anharmonic parameters had to
be invoked, which in turn were evaluated by fitting
the thermal-expansion data, thus rendering the so-
called agreement between calculated and experimen-
tal values relatively insignificant.

In the present work, a simple shell model is used
in which all the model parameters are obtained
without .recourse to phonon-dispersion data. The
model takes into account short-range first- and sec-
ond-neighbor interactions and assumes the anion to


