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A new method to investigate the direct-exciton spectrum in semiconductors with degenerate
bands is described. This method, which solves the effective-mass Hamiltonian using symmetry
arguments and second-order perturbation theory, gives a general and accurate description
of exciton states in semiconductors. Direct excitons in group-IV elements, III-V compounds,
and II-VI compounds are investigated. For Ge and GaAs, the binding energy is in excellent agree-
ment with previous calculations. For all other substances, our treatment represents the first
theoretical investigation. The results are in satisfactory agreement with available experimental
data.

I. INTRODUCTION

Diamond and zinc-blende semiconductors have
been studied extensively in recent years and a large
amount of information is now available both experi-
mentally and theoretically. Special attention has
been given to the optical properties because they
are one of the best tools for investigating band
structures and electron states. Near the funda-
mental edge, the optical spectra of these semicon-
ductors exhibit structure which is interpreted as
due to direct-exciton formation. In large-gap semi-
conductors, additional structure due to indirect ex-
citations is observed at lower energies.

The first observation of direct and indirect exci-
tons was made in Si and Ge. ' Since then, structure
due to exciton formation has been observed in many
zinc-blende III- V and II-VI ' compounds. These
effects are generally small, owing to the large di-
electric constants and small effective masses of
these materials. For InSb, these effects are so
small that they have not yet been observed in optical
spectra. In this case, however, exciton effects
have been observed in magneto-optical experiments
and the exciton binding energy can be estimated.

In contrast to such abundance of experimental
data, little theoretical work has been done up to
date. Most of these theoretical investigations have
been concerned with the exciton energy spectrum
and the optical absorption in a model semiconductor
with simple valence and conduction bands. In this
case, the Wannier exciton Hamiltonian can be re-
duced to that of the hydrogen atom and exact solu-
tions are easily obtained. Optical selection rules

and the absorption coefficient have been investi-
gated in detail too. Even though these investiga-
tions are useful from the theoretical point of view,
they cannot be applied directly to the interpretation
of most of the experimental data because degenera-
cies often occur in the energy bands. All crystals
with the diamond and zinc-blende structure have a
degenerate valence band at k = 0, where the exciton
is formed, and therefore the theory for simple
bands cannot be applied.

A formal theoretical treatment of excitons in the
case of degenerate bands has been done by Dressel-
haus. The resulting Hamiltonian is formally simi-
lar to that describing impurity states for degener-
ate bands and, owing to its complexity, no exact
solutions have been obtained. McLean and Loudon
have obtained an approximate solution for the
ground state of the direct and the indirect excitons
in Ge and Si using the variational technique pre-
viously introduced by Kohn and Schechter' in their
treatment of shallow acceptor states. The same
method was also used by Abe, "who considered
the direct exciton in Ge and GaAs. So far, no one
has considered the exciton series originating from
the split-off valence band whose effects in optical
spectra have been experimentally observed. '
Furthermore, no calculations have been done to
compute the energy of excited states which have
been experimentally observed in some of the III-V
compounds' and II-VI compounds. ' The reason for
these facts is that the variational technique, which
involves elaborate computations for the ground
state, becomes practically impossible when applied
to excited states or to the split-off exciton series.
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To avoid the above computational difficulties the
exciton spectra in these cases have been roughly
estimated using a model in which the degenerate
valence band is replaced by an "average" simple
band. Owing to the complexity of the valence band,
this model is expected to be poor. Valence-band
parameters are now available for crystals with the
diamond and zinc-blende lattices. " It would be
therefore desirable to obtain exciton energy spectra
which take into account the details of the valence
band.

In a previous paper' we have outlined a simple
method based on the symmetry properties of the
exciton effective-mass Hamiltonian and second-
order perturbation theory, which can be applied to
an arbitrary number of bands and to any lattice. We
have given there a simple analytical expression for
the binding energy of direct excitons in diamond and
zinc-blende crystals neglecting effects from the
split-off band.

The purpose of the present paper is to describe
in detail this method and to give a general investi-
gation of the direct-exciton spectra in diamond and
zinc-blende crystals. Analytical expressions for
the binding energy of the ground state and the first
excited state are obtained for both the main and the
split-off exciton series. The intrinsic lifetime of
the split-off exciton states is calculated too.

In Sec. II we give the general formulation of the
problem and the method of solution. In Sec. III we
apply the method to diamond and zinc-blende crys-
tals. The results are compared with available ex-
perimental data and discussed. In Sec. IV we sum-
marize the main results of the present investigation
and discuss possible extensions of the method.

II. FORMULATION OF PROBLEM AND METHOD

OF SOLUTION

The band structure of crystals with the diamond
and zinc-blende lattice have been studied extensive-
ly' andare verysimilar. The direct gap is at k=0,
where the conduction band has a nondegenerate
minimum and the valence band has a threefold-de-
generate maximum, neglecting spin. The inclusion

of spin and spin-orbit interaction alters the bands
by splitting the sixfold-degenerate valence states
into an upper fourfold (J= —,

'
) state and a lower

twofold (8=-,' ) state separated by a spin-orbit
splitting 4. The structure of the valence and con-
duction bands in the vicinity of k = 0 is shown in
Fig. 1(a), where the states are labeled by the ir-
reducible representation to which they belong. The
absence of inversion symmetry for zinc-blende
crystals leads to the presence of very small linear
terms in k in the energy-versus-momentum ex-
pression. These terms, which are generally very
small and only rarely lead to observable effects, '
slightly displace the valence-band maximum from
k=o.

Figure 1(a) shows that, in diamond and zinc-
blende crystals, two different direct-exciton series
can be formed. The first (which will be called
main series hereafter) is fourfold degenerate and
originates from the upper valence band; the second
(split-off series) is twofold degenerate and origi-
nates from the lower valence band. The two series
are displaced by the spin-orbit splitting 4 and are
schematically shown in Fig. 1(b). For the kind of
band structure represented in Fig. 1(a), the Hamil-
tonian for the relative electron-hole motion is (ne-
glecting the electronic spin)

e„(p)= ——~f - ff„(p),
p2 e2)

2m,* cr ~

where p is the relative electron-hole momentum,
.m,* is the electron effective mass, e is the static
dielectric constant, r is the electron-hole distance,
I is the 6x 6 unit matrix, and H„ is the well-known
6x 6 matrix which describes the hole kinetic ener-
gy near k =0. Equation (1) differs for diamond and
zinc-blende structures because of linear terms in

p which appear in H„ in the latter case. We shall
therefore treat separately the two lattices.

A. Crystals with Diamond Structure

We first consider the diamond case and write
Eq. (1) in matrix form as follows:

M'
H„(p) =

(-i/W2) L' a W2q

+M

P —Q

—L'

i (P-, ) L

(i/W2) L

-~ W2Q

-i (4 —') L'

-iv 2M

-iv2M

i (4-') L

-i W2Q

-(i/~2 L'
(2)

iv 2M' —i(P)L; (i/~2 I. 0

where
p2 g2

2pp
(s-like),

2+ 2-2 2

(d-like),
2+1

(2b)
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r8(re)

~~7r (r+)

K =- (0,0,0)

IJJ)
C3
UJ
tL

LIJ

C9K

fl =2

n=l

A, B, and C as follows:

1 1 y 1 2+~= —-~A,
P p mg+ mo Ps~+

1 y 1

pg mp

—=2 v 3 ~=~ (C +38 )'
mo

(4a)

(4b)

(4c}

r, (r,') r, (r,')

,.4 -ip.}p.
2P2

(d-like), (3c)

M=+v3 * ""—i ' "- (d-like).
2p g 2pg

(3d)

In the above expressions we have introduced the
masses p, o, p. „and p, ~ which are the most natural
choices for the description of the valence and con-
duction bands in the exciton Hamiltonian. They are
related to the Luttinger parameters y„y„and
y3 and to the Dresselhaus-Kip-Kittel parameters

FIG. l. (a) Schematic plot of the conduction and valence
bands for diamond and zinc-blende crystals near k=0.
Their irreducible representations are also indicated. (b)
Energy levels of the two direct-exciton series originating
from the band structure shown in (a). H, »= H~+ H„, (6)

where H, and H~ are 6@6 matrices which contain
only s-like and d-like, operators, respectively.
Their explicit expressions are

O 0 O O

0 P 0 0 0

0 0 P 0 0
S

0 0 0 P 0
, (6a)

0 0 0 0 P+& 0

0 0 0 0 0

where mo is the free-electron mass. Under the
operations of the rotation group, the operators
(3a)-(3d) have different symmetry properties, which
are indicated to the right. In accordance with this,
it is natural to write (2) as follows:

L'

Hq ——

0

L' (i/~a I,

-iv 2q

i (v"-, ) L—'
-i u 2M'

—i v 2llf

i (P-, ) L

-iv 2q

(-i/v 2}L' (6b)

( i/&2)-L' i v 2Q

(i&) -'L

i (4-,') L i W2M

iv 2Q (i/W2)L 0

The operators (6a} and (6b) have a simple physical
meaning. The former represents an exciton which
results from the Coulomb interaction between the
electron and the isotropic part of the hole; the lat-
ter describes the anisotropy in the valence band.

From expressions (4a)-(4c), the masses p, and
p. ~ are expected to be much larger than p, p because
the electron effective mass appears only in the lat-
ter. For this reason the operators (3b)-(3d) should
be much smaller than (3a), so the H, in (5) can be
considered as a perturbation with respect to H, .
The validity of this assumption has been verified
for a few substances in our previous paper' and
will be confirmed for all crystals with the diamond
and zinc-blende structure from the results which
are presented in Sec. IIB. ao- e)i /goe (6)

We first analyze eigenstates and eigenvalues of
the unperturbed Hamiltonian H, . Exact solutions
of this Hamiltonian are easily found because the
operator P represents the Hamiltonian of a hydro-
gen atom with reduced mass p, o and dielectric con-
stant e. The eigenstates of (6a) consist of six ex-
citon spectra which can be grouped into two differ-
ent series, fourfold and twofold degenerate, respec-
tively, separated by the spin-orbit splitting h.
These two series, which are represented in Fig.
l(b), have the same effective Rydberg

R, =p, e'/28 e'

and the same effective Bohr radius
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From now on, we use expressions (V) and (8) as
units of energy and length, respectivel, y.

The eigenfunctions of the discrete spectrum can
be classified with the quantum numbers n, l, m,
and i, where the first three are the usual hydrogen-
atom quantum numbers and i = 1, 2, . . . , 6 denotes
the various exciton series. For the continuum, the
quantum number n is to be replaced by the continu-
ous variable k. The wave functions can be written

n ~ n

where
n

, l, m

are the usual hydrogen-atom wave functions as given
given, e. g. , in Ref. 25, and ~i) are the spinors

(10}

where 5&& is the Kronecker function. The corre-
sponding eigenvalues for the discrete spectra are

-1 n2, i =1,2, 3, 4
n, i

7-1/n', f=5, 6

where b, is the spin-orbit splitting ~ measured in
units of the effective Rydberg. For the continuum,
the energies are still given by (11)with the re-
placement n = —i /k.

We now consider the operator H~ and limit our-
selves to the lowest two bound states in each series
(the ls and 2s exciton states) because so far these
are the only states for which experimental evidence
is available. It is easily seen that, for these states,
the first nonvanishing contribution comes from sec-
ond-order degenerate perturbation theory. The re-
sulting secular determinant is diagonal and there-
fore nondegenerate perturbation theory can be used.
For the ls and 2s states of the main series the H„
contribution is

l(n, l, i mll, l }},0, 0, 1} I 00 l(I, I m, i Ill, l 1,0, 0, I}l'
I

+~ dk (12a)

I( ls, m, i l H~l 2, 0, 0, 1)l g
" l(k, f, m, i l H~ l 2, 0, 0, 1) ls

1
~ml II ~ I ~ ill

——-E
nsk

t, m -«-E» ]0
(12b)

and, for the same states of the split-off series, is

4 ~ l(n, l, m, i lH, 11,0, 0, 5)l ~ dk 1( lk, m, i l H, l l, p, p, 5) l~

f 1 II~ l, 0I 6- 1-E„] isa 5 —1 —E (12c)

l(n, l, m, i l H, l 2, 0, 0, 5)l ~ dk l(k, l, m, i l H, l 2, 0, 0, 5) l

I j.5~1 gag, m & —«-E lcm Ea, $

(12d)

In the above expressions, the summations on n, l,
and m extend over all possible values excluding the
initial state.

In the Appendix we consider expressions (12a)-
(12d) and we show that they can be written as fol-
l.ows:

«, (Is) =--', e(q„p,„i,) [S,(0)+S, (Z)], (»a)
«, (2s) = —Qc (i}0,p&, pa) [sz(0}+s,(g)], (13b)

«~ (ls) = —
5 C'(po, p„p2) Z', (2,~) (13c)

«;'(2s) = —-', e(po, p„p,) T, (E), (13d)
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FIG. 2. Plot of the functions Si, S2, T„and T2 versus the
spin-orbit splitting g, which is in units of the effective
Rydberg.

FIG. 3. Values of &1 and p2 as functions of the spin-
orbit splitting 6, which is in units of the effective Rydberg.

where the functions S„Sz, T„and T~ are defined
in the Appendix and are shown in Fig. 2 for 6 &1.
Some numerical values are given in Table I. In
expressions (13a)-(13d) we have introduced the
parameter

@(i 0 i1i& i)o=6 (i o/i )) +(i oi) o) (14)

which depends only on the electron and hole effective
masses and gives the strength of the interactions
described by the operator H~. These interactions
are of two different kinds: the "intraseries" inter-
action between levels of the main series and the
"interseries" interaction between levels belonging
to different series. Note that the coupling strength
4 is the same for the two kinds of interactions and
that the operator H~ does not couple levels of the
split-off series.

The unperturbed energy (11) together with the
corrections (13a)-(13b) describes the low-energy
bound states of the main series. Expression (11)
together with (13c)-(13d)describes the low-energy
spectrum of the split-off series. These latter states
are degenerate with the continuum of the main series

as shown in Fig. 1(b) and interact with it through

H~, so that, besides being shifted by the energies
(13c)-(13d), they are broadened.

The half-width of these states can be computed
with the method of Ref. 26 and is given by

r'„'=v g ~ I&& f ~ fl&oil o 0 5)I', (15a)
i~i

r'„'=o E &"
l&&, f, ~.f lffo12, 0, 0, 5}l',

$~1 l, lyly

r|o=@ (Po it g, Po) 'Yg (d),

ran=4 (uo, u„V )o» (&),

(16a)

(16b)

with the functions y, and ya defined there. These
functions are shown in Fig. 3 for Z &1 and some
numerical values are given in Table I.

where 0 is such that the two states in the above ma-
trix elements have the same energy. As shown in
the Appendix, expressions (15a) and (15b) can be
written as

TABLE I. Numerical values of the functions S&, S» T„T2, &» and 72 defined in the text.

0
1
2
3
4
5
6
8

10
20
50

100

Si

0.2246
0.1587
0.1268
0.1070
0.0932
0.0830
0.0750
0.0633
0.0550
0.0341
0.0168
0.0094

0.7029
0.3420
0.2452
0.1953
0.1638
0.1419
0.1257
0.1029
0.0875
0.0514
0.0240
0.0130

0.4751
0.0983

-0.0161
—0.0555
—0.0699
—0.0745
-0.0733
—0.0672
-0.0456
—0.0218
—0.0116

T2

0.1119
—0.1421
—0.1767
—0.1737
—0.1627
—0.1504
—0.1287
—0.1106
—0.0661
—0.0296
—0.0154

0.9235
1.2018
0.9310
0.7248
0.5810
0.4785
0.3452
0.2643
0.1090
0.0311
0.0116

~ ~ ~

0.3350
0.2067
0.1411
0.1042
0.0812
0.0656
0.0463
0.0350
0.0140
0.0038
0.0015
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B. Crystals with Zinc-Blende Structure

v 3U'

-v3U' 0

F3U V

, (is}

where

U= —, v 3 ~ — +i Q-like),
P3 8X ey

(i9a)

V=iW3 ~—p, 8

p, , 88 Q-like), (19b)

and the units (7) and (9) have been used. In expres-
sions (19a) and (19b) we have introduced the inver-
sion-asymmetry effective mass p3, which is related
to the previously used parameter C as follows:

p, = —,
'

v 3 (II'/a, ) (1/ C) . (20)

We now solve Hamiltonian (17) following exactly
the same technique used in the case of (5). In this
case the perturbation term is H~+Hp. The contri-
bution from H~ is given by expression (13a) and
therefore we have to consider only the effect of (18).
In this case too, the first nonvanishing contribution
to the ground-state energy comes from second-
order degenerate perturbation theory and is

AEp (1s)
I (n, l, m, i I H, I 1, 0, 0, 1) I

-1-E„s

"d& I(&, l, m, i I H, I 1, 0, 0, 1) I'
-1—Eq ]

As shown in the Appendix, expression (21) can be
written as

AZ~(ls) =-12 (po/ p~) S~(0) = a4 (po/ p~) (22-)

In this case, the exciton Hamiltonian is equal to
that of the diamond case, expression (2), plus a
6x 6 matrix whose elements are linear in p and
which expresses inversion-asymmetry eff ects

(17)

As already said, the contribution from the last term
in (17) is generally extremely small. In order to
establish the magnitude of this contribution, we now
consider the inversion-asymmetry effect on the
ground state of the main series, neglecting the
interaction with the split-off series, this being even
smaller. Under this assumption, H~(p) is the fol-
lowing 4x4 matrix

in units of the effective Rydberg. The quant tty S, (0)
is defined in the Appendix, where its value S, (0)
=+, is derived. Since the inversion-asymmetry
mass p. , is infinite for the diamond case and gener-
ally extremely large for the zinc-blende case, we
obtain that the contribution (22) is vanishing in the
former case, as it has to be, and very small in the
latter.

Before applying our method to actual cases, we
summarize the results of this section. We have
separated the total exciton Hamiltonian into two
parts. The first one (H, ) describes the main and
split-off exciton spectra as being perfectly hydro-
genic and noninteracting. The second part (H~ or
&g+&p for diamond or zinc-blende lattices, respec-
tively) introduces the interseries and intraseries
couplings. This second part destroys the Rydberg
law in both series and its contribution to the energy
levels has been treated by perturbation theory. Our
results show that the strength of both interactions
depends on the coupling parameter 4 and that the
relative magnitude of the interseries and intraseries
interactions is a function of the parameter b,. Fig-
ure 2 shows that the larger the b, , the smaller the
ratio between interseries and intraseries inter-
actions.

III. RESULTS AND DISCUSSION

Our purpose is threefold: (i) Test the validity
of the perturbation treatment; (ii) compare its ac-
curacy with respect to the variational approach;
and (iii) apply our method to investigate the main
and split-off exciton series in all crystals with the
diamond and zinc-blende structure for which band
parameters are available.

Table II gives the parameters used in the calcu-
lation together with the energy gap E~ and an esti-
mate of the binding energy E~ of the exciton main
series obtained assuming an infinite mass for the
hole. For every substance shown, we give various
sets of valence-band parameters as obtained theo-
retically or experimentally by different authors.
From the values shown in Table II we can test the
validity of our treatment. The requirements po/p, ,
& 1 and p, o/ pz & 1 are always verified, so that the
parameter 4, which is a measure of the strength
of the perturbation, is always small and therefore
our treatment is valid.

Furthermore, in going from Hamiltonian (1) to
its explicit expression (2), we have implicitly ac-
cepted the assumption that the upper and lower
valence bands have the same isotropic mass. This
assumption is valid only when A/E « I, a condition
which is generally, but not always, satisfied for the
substances shown in Table II. For GaSb, InAs, and
InSb the above condition is not verified and, in ef-
fect, a difference in the valence-band masses has
been actually experimentally observed in InAs

'
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TABLE II. Parameters used in the calculations. Static dielectric constant &p, electron effective mass m~, exciton
reduced masses pp, p&, and p2 defined in the text, spin-orbit splitting &, and energy gap E~. The value of the coupling
parameter 4 and an estimate of the exciton binding energy E& are also given. The upper indices refer to references.
The energy unit is meV.

Cp m~/mp Pp/m p P2/mP E

AlSb 9 9 28 p oil 5p O. OlO "
O. O1O " 1.835

o. soo 4'
0.202
0.153 4'

222Q ~ 52 75p 38 1.5 0.003
o.oos 43

GaP 0.075
0.081 43

—18.182 ~z

o.v69 4'
O. 2V1 "
O. 1SS" 274p 52t 53 90 53 59 14.4 0.077

O. 279

12.5 0.066 ' 0.048
o.o4s 4'

o.o45 "
0.823
o.444 "
0 400 6P

0.148
o.129 4'

0.115 6P

52P s6 34Q 52~ 58 5.7 O. 13O "
O. 235 43

0.250

GaSb 15.2 0.047 ' 0 035
O. O32 "
0 031 4Z

0 444
O. 233 "
O. 333 4'

0.100
0.065
o.o66 "

810 Spp '52~ Sz 2.8 0.169 "
0.389
o. 2se 4'

InAs

12.1

11.8

0 077 ' 0 053
O. O52 4'

0 024 ' ' 0.018
O. O1V 4'

0.016

0.719
O. 3VV 4'

0.157
O. 131 "
0.111

0.141
o. loe "
0.042
O. O38 4'

0.032 N

1310 ' 240

41p 39' 55 38Q i4

7.2

2.3

0.188
O. 3VS 4'

O. 280
O. 345 "
0.419

Ge

ZnS

ZnSe

ZTe

16.8 0 015

15.4 '4 O. O3S 4'

35 p 39 43

S.V
" O. lV 44

10 1 35 0 Q9 45

0.012
0.010 3

0.010 48

O. O26 4'

O. O25 4'

0.178
0.229 43

0.125
O. 132 43

o.o69 "
0.081

0.117 "
0.068
o.o69 4'

O. 25O 4'

0.233 4'

—3.774
1,036

4.167
0.837

25.000
o.s4o 4'

O. O32 "
o.ole "
0.018

o.o59 "
0.051

o. svs "
O. 3S1 "
0.423
0.215 43

0.389
0.244

240 '

seo "
3800

2800

2390

Slp ~4. 52

290 '3

V24

430

900

0.7

2. 2

80.9

30.6

12.0

0.213
o.45v 4'

0.460 "
O. 282 4'

0.340

0.113
0.749

O. O94 "
0.573

0.032 '

0.186 43

CdTe 9.7 0.096 0, 079
o.ovo 4'

1,942
o.5oo 4'

0.327
O. 1V2 4'

161Q 900 13.9 0.072
O. 322 4'

and GaSb. '~ For these substances Eq. (2) is still
valid as long as one changes the reduced effective
mass of the split-off series. This change does not
affect in any way our treatment. All that has to be
done is to introduce a different effective Rydberg
for the split-off exciton. In fact, the interseries
coupling, which should have been reconsidered be-
cause the two series have two different Bohr radii,
can be neglected due to the fact that, in these
semiconductors, b. &100, as shown in Table II.

We now consider the accuracy of our method with
respect to the variational approach. The perturba-
tion treatment is expected to have the same, or
even higher, accuracy than the variational approach
as long as the coupling parameter 4 is sufficiently
weak. Variational calculations have been performed
by Abe" for the binding energy of the main exciton
in Ge and GaAs, assuming an infinite spin-orbit
splitting b, for both substances and neglecting the
inversion-asymmetry effect for GaAs. The values
of the parameters used by Abe are 6'p= 16.0, pp

=0. 025, p, =0. 224, and p.2=0. 051 for Ge, and ep
= 12, 9 pp = 0 049 p y

= 0. 652 and p 2 = 0. 095 for
GaAs. His results for the binding energy are 1.40
and 4. 22 meV for Ge and GaAs, respectively. Us-
ing expressions (11) and (13a) (with Z= ~) together
with (7), we obtain exactly the same results for
both substances. Another variational calculation
for the direct exciton in Ge has been done by
Mc Lean and Loudon using the parameters 6p = 16 0,
pp= 0, 025 pg = 0, 225, and p. &= 0. 054, and they ob-
tain a binding energy of 1.38 meV. Using the same
parameters we obtain a value of 1.39 meV, which
is in very good agreement. We note, looking at
Table II, that Ge has one of the highest values of
the coupling parameter 4 and therefore, since in
this case the accuracy of our method is as good as
that of the variational treatment, we conclude that,
for all the other substances, our method will be
even more accurate.

Having established the accuracy of our method,
we now apply it to an investigation of the main and
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sylit-off direct-exciton spectra in Ge III-V and

II-VI compounds using the parameters given in
Table II. In this table the inversion-asymmetry
effective mass p, 3 is not given because such mass
has not been evaluated so far and, to our knowl-

edge, its value is known only for InSb, where Pid-
geon and Groves' estimate p., = 0. 872m 0. Assum-
ing this value, and using E|l. (22) together with (7),
we find that linear terms in p contribute 0. 0005
meV to the binding energy of the main exciton in

InSb, which in Table II is roughly estimated 0. 7
meV. Even considering a large uncertainty for the
value of p. , given above, it is clear that this con-
tribution is extremely small. For other sub-
stances, since the value of p. , is not known, we
cannot evaluate the inversion-asymmetry contribu-
tion. The previous result for InSb, together with
the fact that effects from linear terms are very
difficult to be observed in all substances, guaran-
tees that the results that we are going to give will
not be affected by the inversion-asymmetry effect.

In Tables III and IV we give the results of our
investigation for the III-V and II-VI compounds,
respectively. In Table III we have also included
Ge. In these tables we give the binding energies
E, (ls, I', ) and E~ (1s, I'8) of the ground state for
the main and split-off series, respectively. Also
included is the binding energy E~(2s, I"8) of the first
excited state of the main series. These binding
energies have been obtained using expressions (11)

and (13a)-(13d) together with (7). The different
contributions to the binding energy E~ (ls, I'8) are
also explicitly given. Ro represents the 8, con-
tribution; E~ and E„represent the contribution from
intraseries and interseries interactions, respec-
tively.

%e can see that E~ and E„are much smaller
than RD, so that the condition of applicability of per-
turbation theory is well verified. As already said,
the split-off exciton levels are resonant states be-
cause they can decay into the continuum of the main
exciton series. The intrinsic half-width I'(ls) of
the ground state is also given in Tables III and IV.
These values cannot be directly compared with
experiment and cannot be used to establish if the
split-off exciton states can be experimentally ob-
served, because other decay mechanisms are gen-
erally present (such as phonon or impurity scatter-
ing) which can additionally broaden the exciton peaks
appreciably.

The agreement of our results with experiment is
generally satisfactory and could be improved when
more accurate band parameters will be available.
The only case in which there is a large discreyancy
between theoretical and experimental results is
GaP. Because for this compound the coupling pa-
rameter 4 has a small value, our method is cer-
tainly applicable, and therefore the above disagree-
ment must be attributed to the values of the pa-
rameters used in the calculation, supposing that

E Es(ls, I 8)
Theo r Expt
l.44
1.45

17
43

1.44
1.45

0.36
0.36

1.44
1.45

AlAb

TABLE III. Results for Ge and III-V compounds. All the quantities are defined in the text. The last column gives
the reference for the valence-band parameters used in the calculation. The blanks mean lacking experimental results
and the dots indicate a number smaller than 10 2 meV. The energy unit is meV.

Ro E&(2s, I'8) E&(ls, I'6) I'(ls) Ref.

GaP

GaAs

GaSb

InAs

8.30
8, 91

4.16
4. 22
3.90

2.05
1.87
1.82

4.96
4.82

1.74
1.68
1.57

0.11
0.45

0.10
0.18
0.18

0.06
0.13
0.09

0.17
0.33

0.09
0.10
0.12

0.03
0.11

0.01
0.02

8.44
9.47

4.26
4.40
4.08

2. 11
2.00
1.91

5.14
5.17

1.83
1.78
1.69

3.5 (Ref. 59)

4.4 (Ref. 61)

4.0 (Ref. 62)

2.13
2.43

1.08
l.13
1.04

0.54
0.52
0.49

1.31
1.34

0.47
0.46
0.44

8.23
8.64

4.14
4.19
3.87

2.05
1.87
1.82

4.93
4.75

1.74
1.68
l.57

0.15
0.66

0.01
0.02
0.01

0.01
0.01
0.01

0.03
0.06

17
43

17
43
60

17
43
47

17
43

17
43
40

InSb

Ge

0.56
0.49
0.48

l.49
1.44

0.02
0.04
0.04

0.08
0.09

0.58
0.53 -0.4 (Ref. 5)

0.52

-1.6 (Ref. 63)1.53

0.15
0.14
0.14

0.40
0.40

0.56
0.49
0.48

1.49
1.44

17
43
48

43
49
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TABLE IV. Results for cubic II-VI compounds. The energy unit and the symbols are those used in Table III.

Ro E&(ls, I' )
Theo r Expt

E (2s, I ) E (ls, 16) I'(ls) Ref.

ZnS

ZnSe

ZTe

CdTe

36.87
47.41

22. 43
23.67

9.26
10.83

11.43
10.10

0.75
6.38

0.38
2.44

0.05
0.36

Q. 15
0.58

0.40
3.69

0.06
0.40

0.02

0.03

38.02
57.48

22. 87
26. 51

9.31
11.21

11.58
10.71

21.0 (Ref. 36)

10.0 (Ref. 45)

10.0 (Ref. 4)

9.61
15.29

5.77
6.95

2.34
2.85

2. 92
2.76

37.59
60, Ql

22. 28
22. 65

9.25
10.79

11.41
10.03

5.06
45.51

0.25
1.70

0.03

0.01
0.04

17
43

17
43

17
43

17
43

the experimental estimate of the binding energy is
correct.

It is interesting to discuss the sensitivity of the
results with respect to the choice of the parameters
used. The quantity which has to be accurately de-
termined is the effective Rydberg, and this means
that the dielectric constant eo, the electron effective
mass m,*, and the Luttinger valence-band parame-
ter y, require high accuracy. The results are
generally less sensitive to the other valence pa-
rameters.

The binding energy of the split-off exciton given
in Table III has been obtained assuming the same
effective mass for both valence bands. As already
noted, the split-off band should have a different
mass for compounds like GaSb, InAs, and InSb
where the spin-orbit splitting is comparable or
even larger than the energy gap. Reduced effective
masses of the split-off exciton are available for
GaSb' and InAs, ' where experiments give for po
the values 0. 034mo and 0. 020mo, respectively.
Using these values, the binding energy of the split-
off series is 1.98 and 2. 00 meV for GaSb and InAs,
respectively.

Before concluding, it is worth emphasizing that
the present method allows a complete description
of the effect of the split-off valence states on the
exciton energy levels. The case of an ideal semi-
conductor with 4 = 0. 5 is shown in Fig. 4. As one
can see, such effect can increase the binding ener-
gies by about 10% at most. This correction is much
smaller than what is usually expected. The reason
for this is that, even though the split-off contribu-
tion increases as 4-0, its magnitude is scaled by
the coupling parameter 4 as shown in expressions
(isa) and (i3h).

IV. CONCLUSIONS

1.20—
OP
C)

4 =0.5

4P

o I ~ 10
CP

+ 0.52
IJJ

~ 0.30
C

c OP8-
Kl

ps

valence bands can be overcome, and a method com-
parable for simplicity to that for simple bands is
obtained.

Our results show that the previously used simple
model in which the degenerate valence bands are
replaced by an "average" simple band can be satis-
factory and, in addition, they show how the mass
of this "average" simple band is related to actual
valence-band parameters. The accuracy of this
simple model has been obtained from the evaluation
of the most important corrections to it. Their
magnitude depends on a coupling parameter 4 which
is simply connected to the band parameters. As

a consequence of these corrections, the Rydberg
law is no longer satisfied. The effects of inversion
asymmetry are shown to be extremely small and

very difficult to be experimentally observed. In

the present treatment, we have neglected effects
due to the exchange interaction because they are
generally difficult to observe. However, our
method can be easily extended to include such ef-
fects.

This method has the same accuracy as the pre-
viously used variational method for the ground state
of the main series, but it is better in two respects:

%e have shown that direct-exciton spectra in
diamond and zinc-blende crystals can be easily in-
vestigated in spite of the degeneracy of the valence
band. Using symmetry considerations, we have
shown that the complications arising from the

FIG. 4. Binding energy for the ls and 2s main exciton
states versus the spin-orbit splitting 4, for an ideal semi-
conductor with a coupling parameter 4 =0.5. All energies
are in units of the effective Rydberg.



A. BALDERESCHI AND N. O. LIPARI

its simplicity and the fact that it allows also the

investigation of excited states of the main series
and the split-off series.

It is to be mentioned that our method cannot be
applied, as it is, to the problem of acceptor states
because in these cases the coupling parameter 4
can be so large that perturbation theory is not

valid. However, our method can be extended to
any number of degenerate bands and any kind of

crystal symmetry as long as terms of lower sym-
metry in the exciton Hamiltonian can be treated
by perturbation theory. Indirect excitons in group-
IV elements and III-V compounds can be investi-
gated with the same method, because in these
cases the coupling parameter 4 is sufficiently
small. Finally, one can also study the effects of
weak external fields or small strains on the exci-
ton energy levels. These problems are presently
under investigation.

APPENDIX

q~i, o, o)=- —"a 1 ', - y

m~1, 0, 0&=-i2 2 ~~ 1,', - y-~

(A3)

(A4)

2 ~2 ~P, g ~P, 2 ~ 1

lz„l' "" ll, 1'
Ag, (ls) = —

p 4 (pp, 0tl Pp) Z
1 1/ 2 +

Q
1+k

(A5)

where ~, are the spherical harmonics. P' We insert
the above expressions into (A2) and perform the
summation over l and m. Using the orthogonality
relations of the spherical harmonics, we obtain

( ) ~p Q I( nl, m, iIHgI1, 0, 0, 1)I
l, fft 1=1

1

(A1)

In this Appendix we drive expressions (13a)-
(13d) and (22) starting from (12a)-(12d) and (21),
respectively. We first consider expression (12a)
and we write it in the following condensed form:

, I ~ I —1/s g, Z ~ 1 ~I)
where 4 is defined by (14) and

I„=f"R„,(~)(~ +)xe dr, -
Q

(A6)

(Av)

where the first symbol on the right-hand side means
summation over n and integration in k. Performing
the summation over i, we get

~ (I ) S y 1(n, l, m I/II, 0, 0)l
n l, Ift 1/n'- 1

I (n, l, m IZ' ll, 0, 0) I

1/n' —1

I (n, l, m IM'
I 1, 0, 0) I

1/n —1

I (n, l, m I
—(i/ ~2) Z'

I I, 0, 0) I

'
1/n —1 —&

we obtain

(A9)~~(ls) = —f4(gp, pf n )[Spg(0)+S~(Z)],

which is the expression given in the text.
Following the procedure described above, ex-

pressions (13b)-(13d) and (22) are easily obtained
from (12b)-(12d) and (21), when the functions
Sp(x) and Sp(x) are defined as follows:

Id IS (x)=5, " + dk, , (A10)„., x+-,' —1 n' x+~+k
4

Q

where R„,(r) are the normalized hydrogenic radial
wave functions. I, is defined by expression (AV)
after replacing the lower index n by k. Introducing
.the function S,(x) defined as

Sq(x)= 5~ ",q+ '
q dk, (A8)x+ 1 —1/'n „x+1+k

Q

I(", l, I

'l 2M'l l, 0, 0)l'f+ 21/n —1-& (A2)

l2 f pe l~ l2
Sp(x)=Z "

/ p + dk '
g (All)„2 x+1 —1n x+1+kJ Q

where the state In, l, m ) is defined in the text by
expression (9) and the operators Q, L, and M are
the dimensionless expressions of the operators Q,
f., and M according to the units (7) and (8). The
effect of these operators on the ground-state wave
function I1, 0, 0) is

T,(x) = S,(- x),
V', (x) =S,(-x) .

(A12)

(AI3)

Z„=f R„p(r)(r+ pr —8x )e "/ dr, (A14)

The quantities J„and K„which appear in (A10) and
(Ail) are
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K„=f"It„s(r) r e "dr. (A15)

Analogous expressions define J~ and K~.
The quantities I„, J K I„J„and K, are de-

fined in terms of integrals involving discrete and
continuum hydrogenic radial wave functions. These
integrals can be exactly evaluated and, after
straightforward but lengthy calculations, can be
reduced to the following compact expressions:

n 19n +5 (n —1r"sss-s
(n —1)(n -4) . n —1 ~n +1&

'Ys(x)= —'& lJsl /k with k=(x ——,')sls. (A2s)

H, = p /2m —e /r + ap, . (A24)

The ground-state energy of (A24) can be obtained
exactly with a translation of the momentum p, and
is

In a previous paper" we have used the values Q»

and ~ss for S,(0) and Ss(0), respectively. The value
Ss(0) = ~&~ was obtained considering the following
fictitious Hamiltonian:

(A16) Zss= me /21 asm (A25)
1/2

(n* 1)-(n'-4)

135n —136n —80 n —2x 3- (n'- 4}s n+ 2

1/2

(A17)

(A18)

The same energy to second order in 0.'can be ob-
tained considering the last term in (A24) as a per-
turbation. The result is

Eso= —me /2I asa mSs(0} . (A26)

Comparing (A25) and (A26), we get the exact value

Ss(0}=We .
By numerically computing S,(0) as given by (A11)
we get the value 0. 187500. The value S&(0) =~«s
can be obtained using the same technique and intro-
ducing the fictitious Hamiltonian

H =———+ (p+p —2p ).P' e' ~ 2 2 a

2m r 2m
(A27)

k-x k+1

k 1/2

[1-e-""](1+k')(1+4k')

(A19)

2 8 i/2,
4'= (wa b) ' exp — s +~a b

(A28)

The ground-state energy of (A27) cannot be obtained
exactly and we have evaluated it using the variation-
al method. Following Kohn and Luttinger, ~ we use
the ground-state trial function

80k —136k —135x 3 y s s -sarc. taa(ss)/s

(A20)
1/2k -Rarctam(k ) / 0

1 —e '/ 1+k ~ (A21)

rs(x)=asv lfsl'/k with k=(x-1)'" . (A22)

Using the above expressions, the functions (A8) and
(A10)-(A13) can be computed to any degree of ac-
curacy (we have computed them to six decimal fig-
ures).

The same procedure can be used to obtain expres-
sions (16a) and (16b}from (15a) and (15b). In this
case the functions r&(x) and ys(x) are defined as
follows:

After lengthy calculations, we obtain the approxi-
mate ground-state energy to second order in P,

Z„= —(me'/2tf') [I+$P'] . (A29)

Zs', = —(me'/2)I'} [1++P'S, (0)].
Comparing (A29) and (A30), we get

S,(0):—~s =0. 223214 .

(Aso)

By numerically computing S&(0) using expression
(A8) we get S&(0) = 0. 224632, which slightly im-
proves the previous value.

The exact ground-state energy to second order in
P can be obtained considering the last term in (A27)
as a perturbation. The result is
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A simple theoretical model is proposed to explain the recently observed valence-band struc-
ture of CdSnP2 and similar chalcopyrite crystals. The valence bands of a chalcopyrite crystal
are regarded as equivalent to those of a strained version of its binary analog. This model pre-
dicts the signs and magnitudes of the valence-band splittings observed in CdSnP2 and ZnSiAs2.
We show further that the quasicubic model explains quantitatively the unusual polarization de-
pendences previously reported.

It has recently been reported' that the polarization
selection rules governing the band-edge electrore-
flectance and photoreflectance spectra of CdSnPz
are opposite to those observed in wurtzite 0-VI
semiconductors and to theoretical predictions for
similar chalcopyrite semiconductors. To explain
this result, a new valence-band model was pro-
posed' with the essential feature that the sign of the
crystal-field splitting was opposite to that observed
in wurtzite II-VI semiconductors. It is the purpose
of this paper to provide a theoretical explanation
for the proposed valence-band model, based on a
very simple approximation to the crystal potential
in chalcopyrite crystals. We show that the signs
and magnitudes of the valence-band splittings in
Cd SnP~ and ZnsiAsz (the only crystals for which
electroreflectance data are available) can be pre-
dicted from the known properties of the binary ana-
logs of these materials (e. g. , InP is the binary
analog of CdsnPz}. We further show that the quasi-
cubic model, developed by Hopfield~ to explain prop-
erties of wurtzite crystals, can also be applied to
chalcopyrite crystals with the result that the unusual
polarization dependences observed experimentally
can be explained quantitatively.

The valence-band model previously proposed to
explain the electroreflectance and photoreflectance
spectra of CdSnP2 is shown in Fig. I. The triply
degenerate I'» in zinc blende is split in chalcopy-
rite such that the nondegenerate level I'4 lies above
the doubly degenerate 1'5, just opposite to the order-
ing observed in wurtzite semiconductors. The
doubly degenerate state is then split by the spin-
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FIG. 1. Band structure and selection rules at k
= [000) in zinc blende and chalcopyrite for light polarized
relative to the optic axis. A, B, and C refer to the
three peaks observed in electroreQectance spectra (Refs.
1 and 6). For the polarizations shown in parentheses,
the transitions are allowed group theoretically but will
be observed only to the extent that spin-orbit coupling
mixes the unperturbed wave functions. For a finite
&~ and &~, the valence-band splittings must be deter-
mined using Eq. (1). For example, the separation of
the F~ and F6 levels will be equal to & only in the
limit that &~» 4~ and will be equal to (&) &„in the
limit that &No«h~.

orbit interaction. Hopfield's quasicubic model re-
gards the wurtzite crystal-field splitting as equiva-
lent to the splitting produced by a trigonal uniaxial
stress applied to a zinc-blende crystal. The strain


