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Our results have therefore shown that solid
ortho-deuterium may be considered as a close-
packed array of spherical molecules in which near-
est-neighbor bond-stretching forces are dominant.
There is good agreement between the measured
phonon energies and those calculated using a poten-
tial derived from gas-phase studies, provided that
quantum effects are taken into account. We intend
to extend these measurements to higher tempera-
tures and pressures, and to attempt to measure

the phonon lifetimes near the melting point.
We thank J. C. G. Houmann for help with the

analysis of the data and M. IQein and A. R. Mackin-
tosh for many useful discussions.

This paper is respectfully dedicated to the mem-
ory of the late Professor Lothar Meyer who intro-
duced us to this field, participated fully in the early
stages of the experiment and, through his advice and
inspiring personal example, contributed greatly to
its satisfactory conclusion.
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The velocity of drifting second sound and the heat capacity per unit volume are calculated
for NaF for temperatures from 0 to 40'K. The velocity of second sound decreases by 24%
as the temperature is increased from 10 to 30'K, because of the dispersion of the phonon
frequency spectrum.

INTRODUCTION

In recent articles, ' Jackson, Walker, and

McNelly and McNelly et al. have reported on ob-
servations of the development of heat pulses in
very-pure NaF crystals. Pulses were obser'ved
which had some of the properties expected of sec-
ond-sound pulses. However, they found that the
velocity of the observed pulses did not approach
the expected theoretical value for the velocity of
second sound. It appears that the theoretical value
they used was the value for absolute zero, not the
value for the temperature at which the experiments
were performed. However, because of the disper-
sion in the phonon frequency spectrum, the theoret-
ical value for the velocity of second sound (v») is
not constant, but decreases with increasing tem-
perature.

To facilitate the interpretation of such experi-

ments, we have carried out a detailed calculation
of v„ for NaF with both the dispersion and the
anisotropy of the phonon frequency spectrum in-
cluded. It is found that the value of v„ is signifi-
cantly less (0.4-11%) at the temperatures at which
the second-sound experiments were performed (9-
21 'K) than it is at absolute zero.

We describe our calculation below, present our
results, and compare them with the experimental
results of Jackson et al. ' For completeness, the
heat capacity per unit volume is also given. We
conclude by suggesting a reason for the differences
between the velocities of the pulses observed by
Jackson ef; aL and our calculated values for v„.

THEORY

According to theory, when second sound exists,
variations in the local temperature T(x, t) are
described by the damped wave equationa
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a~T(x, t) 1 ST(x, t)

Tkk /(COVII) k (2)

provided, of course, that v» and Co, the heat ca-
pacity per unit volume, are known. It is because
of this that we have calculated both v» and Co.
Note that the validity of (2) follows from the fact
that the damped wave equation is valid for slowly
varying processes (&v'„« 1) for which the ordinary
diffusion equation Co(BT/&f) =K& T is also valid. '

TABLE l. Computed heat capacity per unit volume
and velocity of second sound as functions of temperature.

where r„and v» are, respectively, the relaxation
time and propagation velocity of second sound.
is also referred to as the relaxation time for re-
sistive processes. For drifting second sound, the
only type likely to be observed, this equation is
valid provided that r~«1, where ('d characterizes
the rate of change of the temperature and w„ is a
relaxation time descriptive of phonon scattering by
normal processes. For second-sound pulses to be
observed, it is required that r„&1. Neverthe-
less, Eq. (1) is still valid when &ur„«1. For such
slowly varying processes the first term in (1) be-
comes relatively unimportant, so that the solution
of (1) becomes indistinguishable from the solution
of a diffusion equation. Because of this, Eq. (1)
can be used to study the behavior of heat pulses in
the region of temperatures between where well-
developed pulses of second sound are possible and
where only pure diffusive behavior results.

To use (1) to study heat pulses in the region of
temperature mentioned above, one needs reliable
values for 7'„, as well as for e». Since 7'„depends
in a complicated way on the anharmonic forces and
the imperfections in the crystal, it is not easily
calculated. However, if the thermal conductivity
K of the sample being studied is measured, ~„can
be calculated from'
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FIG. 1. Computed velocity of second sound vs temper-
ature. Experimental velocities from Ref. 1: triangles
refer to the leading edge of the pulse; circles refer to
the pulse peak. For comparison, first-sound velocities
in the (100) direction in NaF are 6. 17&&105 and 3.19
&& 105 cm/sec.

By neglecting the first term in (1) and associating
the coefficients in (1) with those in the diffusion
equation, one obtains (2).

CALCULATIONS

When calculating v», it is important to consider
the dispersion of the phonon frequency spectrum,
since it leads to a value of v» which decreases with
increasing temperature. The formula for the ve-
locity of drifting second sound, when no approxima-
tions concerning the dispersion or anisotropy of the
frequency spectrum are made, is4

Temperature
&('Q

0
9

12
15
18
21
24
27
30
33
36
39

Heat Capacity
per unit volume

Co(10 ergs/cm )

0. 0000
0. 16447
0.395 69
0. 79050
l. 413 4
2. 343 4
3.665 7
5. 459 2
7.7803

10.657
14. 084
18.067

Velocity of
second sound

vo (10 cm/sec)

2. 0209
2. 0133
l. 9914
1.9531
l. 8912
1.8067
l. 7090
1.6101
l.5177
l. 4344
1.3614
l. 2944

k kx (3V'g Ci, )
'~' V 'g C-„,

ks

@(d~g

kk S's siss(ktsk, /kk T)) (4)

where -„, is the frequency of the normal mode with
wave vector k and polarization index s (s goes from
1 to 6 for NaF). V is the volume of the sample,
and
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where k~ is Boltzmann's constant. The heat capa-
city per unit volume is given by

C, = V-'ZC&, .
%s

(5)

Jackson et al. ' observed heat pulses with some
of the properties expected of second sound. The
velocities of propagation of these pulses can be de-

The deformation dipole model, which gives very
good agreement with neutron scattering results, ~

has been used to determine the frequencies. The
short-range forces include nearest-neighbor inter-
actions, next-nearest-neighbor interactions be-
tween negative ions only, and angle bending forces. e

The elastic constants (C„=10.85, C,~ = 2. 290, C«
= 2. 899, in units of 10"dyn/cm~) and the density
(2.851 g/cm~) used in the model are the 4 'K values
of Lewis, Lehoczky, and Briscoe. ' These elastic
constants lead to first sound velocities that are in
good agreement with the arrival times of the leading
edges of the ballistic pulses observed by Jackson
et al. ' The dielectric constants and restrahlen
frequency used are the 2'K values of Lowndes and
Martin. ' The calculations were performed with a
sample of 64000 points in the first Brillouin zone.
The results are good down to 8 K; below that tem-
perature, the number of points in the BriQouin zone
contributing to the sums in (8) and (5) becomes too
small for the results to be reliable. The value of
v» at 7= 0'K was estimated with approximation J,
of Betts, Bhatia, and Wyman. The computed re-
sults for v» and Co are given in Fig. 1 and Table I.

DISCUSSION

termined by dividing the length of the sample used
(8. 8 mm) by the reported arrival times. The ve-
locities obtained are plotted in Fig. 1. For all
temperatures less than 18 K, these velocities are
greater than the calculated values for v».

If one considers second sound to refer to behavior
which is within the realm of applicability of Eq. (1),
the pulses observed at temperatures below 18 'K,
strictly speaking, cannot be second-sound pulses,
since v„ is the maximum propagation velocity for
any effect describable by (1).'0 For Eq. (1) to be
applicable, it is required that +~&«1, but it is not
clear justhow much smaller than one +v.

N mustbe.
Since && increases as the temperature is lowered,
there must be some temperature below which (1)
does not apply (assuming &u is not changed). A com-
parison of the velocities of the observed pulses
with the calculated values for v» suggests that (dT g
«1 ceased to be satisfied in the sample used at
about 18 K, and that below 18 K the transition
from the region where fully developed second-sound
pulses are possible to the region where phonons
propagate ballistically (i. e. , without appreciable
scattering) was being observed

Jackson et al. did not report observing any mell-
developed heat pulses above 19'K. This suggests
that the relaxation time &„had become so small at
19 K that the transition to the higher-temperature
region where only pure diffusion results had already
begun. This interpretation could be checked by
performing experiments at the temperatures where
the transition to pure diffusion takes place and
comparing the results obtained with the predictions
of Eq. (1).
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