PHYSICAL REVIEW B

VOLUME 3, NUMBER 12

S. Olszewski
Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
(Received 9 June 1970)

A method of the linear combinations of atomic orbitals for cubic crystals with an s orbital
on each atom is proposed, in which the Bloch wave functions (equivalent to the basis functions
of the one-dimensional representations of the subgroup of lattice translations) are replaced by
basis functions of the irreducible representations of the cubic point group. The coefficient
functions of the atomic orbitals which enter into the new wave functions are solutions of the
Wannier-Slater equation for a given type of lattice and for interactions between atomic neigh-
bors. These functions meet the requirement that they vanish at the crystal boundary. For a
pure crystal, the electron density need only be analyzed at one representative atomic site.
Since a site like this can be put in the center of the system of coordinates, the needed coeffi~
cient functions can be the basis functions of only one irreducible representation, viz., that
of the total symmetry of the cubic point group. They can be approximated in terms of a few
cubic harmonics belonging to the irreducible representation mentioned and in terms of spherical
Bessel functions equal in order to the cubic harmonics. Unlike the theory of Bloch, where
the wave functions and energies depend on a three-component vector parameter, the present
scheme introduces only one scalar parameter for the quantization of the electron states. This
enables one to reduce the integration generating the Green’s function to a one-dimensional one.
The energies can be expressed as sums of powers of the quantum parameter and the band is
obtained as a set of states which give the nonvanishing contribution to the electron density of
the crystal. The band structure obtained from approximate solutions for the face-centered
cubic lattice is compared with that obtained from Bloch’s method. In the tight-binding ap-
proach these solutions and Bloch’s method give the energy dependencies of the density of
states which are close to each other over about two-thirds of the bandwidth. For almost-free
electrons, these dependencies are nearly coincident within the interval of the energy between
the band bottom and a certain level below the critical one in Bloch’s band. With the same so-
lutions we obtain bandwidths which are identical with Bloch’s in the tight-binding case, but
nearly double Bloch’s in the case of almost-free electrons.
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New Approach to the Linear-Combination-of—Atomic-Orbitals Method for Cubic Crystals

I. INTRODUCTION

The LCAO (linear-combination-of-atomic-orbit-
als) method of Bloch is a well-known approach to
electron wave functions and energies in crystals. t
For the sake of simplicity, let us consider the
crystal as built up of one kind of atom distributed
periodically in space, each atom with only one
atomic orbital of spherical (s-type) symmetry. The
wave function is

‘I’=Z>t A(ﬁi)(b(-{'—ﬁi) , (1)
where ¢ denotes the atomic s orbital and
A®R)=Nye® ’y, (@)

Nj is the normalization coefficient, K is the vector
in the reciprocal space, and ﬁ; is the position vec-
tor of the atomic nucleus ¢ in the crystal. The
function ¥ fulfills the periodic, or Born-von Kar-
man, conditions at the boundary and is the eigen-
function of the operator of the lattice translations
[cf. Eq. (6)]. The energy of the electron is that

of the atomic state plus simple trigonometric func-
tions of the components of the three-dimensional
vector l?, which are modulated by the integrals

o

Bu= [ o* T -R,VE) -UF-R)] o -R,)dr;
(3)

V(F) is the crystal potential, U(F - R;) is the atomic
potential at ﬁ,. The integrals (3) are the constant
terms for all the electron states defined by the val-
ues k,, ky, and k2,. The energy E oscillates be-
tween two limiting values determined by the relation
E(y,ky,k,). Examples of the energy expressions
for different lattices are given in textbooks.! We
can assume that

f¢*(f_§u)¢(?—ﬁv)d7=5uv- (4)
Then we find
Np=N""2, (5)

where N is the number of atoms in the lattice.

The purpose of the present paper is to develop a
method which although based on the approximation
expressed by Eq. (1) seems to differ in its frame-
work from that of Bloch., The method to be pre-
sented here is limited to crystals of cubic symme-
try and involves only the sum of one kind of atomic
orbital, i.e., those of spherical symmetry. Also,
for the sake of simplicity, in a large part of the
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paper the nearest-neighbor interaction, or the
tight-binding approximation, is assumed, i.e., (3)
vanishes unless i and v are the same atom or
nearest-neighbor atoms, although this limitation
is inessential for the development of the method.
The main idea of the approach is the following,
First, we drop the requirement that the wave
functions of the crystal are the basis functions of
the one-dimensional irreducible representations of
the translations subgroup, but require them to be
the basis functions of the irreducible representa-
tions of the subgroup equal to the symmetry point
group of the crystal potential [in a special case
equal to that of a cube (0,)]. Then, assuming that
the LCAO approximation holds, i.e., that Eq. (1)
is valid and the atomic orbitals of spherical sym-
metry are repeated in each lattice site, the wave
functions of the symmetry of the cubic point group
can be arrived at when A of such a symmetry are
given, Thus, instead of the A in Eq. (2) which ful-
fill the eigenequation for the translation operator

TA=tA, (6)
the eigenvalue ¢ being e ' Fa=F0 e seek such 4
as will be the basis functions of the irreducible rep-

resentations of the cubic point group

ﬁAm=E (P)mkAk ; (7)
k

Pinan operator of the group, (P),, are the matrix
elements of this operator with respect to the basis
functions, and the indices m and % run over the
number of dimensions of a given irreducible repre-
sentation; see, e.g., Ref. 2.

Second, the above requirement for A implies that
the boundary conditions for the wave function may
be different from the periodic ones, which are char-
acteristic of the function of Eqs. (1) and (2). The
new conditions that satisfy the A of the present pa-
per are introduced in Sec. II, Third, the peri-
odic potential of the lattice has to be taken into ac-
count. According to Sec. II this requirement is
met if the eigenequation

|

> AR,)-Z {A<§>+<av,.ovm<
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WA=EA (8)

is fulfilled, W in (8) is the Wannier-Slater differ-
ential operator for a given lattice®* and E is
equal—with an accuracy to a constant term—to the
energy of the electron state represented by the ap-
proximate wave function (1). We seek instead of
(2) such solutions for (8) as fulfill (7), with the new
boundary conditions holding for ¥ and consequently
also for A.

II. EQUATION

The usual assumption is that the Wannier-Slater
(WS) equation presented in Eq. (8) holds in the ab-
sence of a perturbation of the periodic potential of
the crystal only when A fulfills the periodic boundary
conditions, i.e., when A is (2) for V,=0, where
V, is the potential change due to the perturbation.
This assumption is based on the fact that the ma-
trix elements of the energy operator commonly used
for deriving Eq. (8) are the Fourier coefficients for
the periodic function of the energy in the space of
the vector E, and are thus related directly to the
solution of the eigenproblem with periodic condi-
tions at the boundary.* This, however, seriously
restricts the problem represented by Eq. (8), which
can be derived—at least for all the cases we are
concerned with—without requiring the wave function
(1) to have specialized symmetry properties and
conditions at the boundary. The proof—suggested
by Friedel and exemplified by the case of a simple-
cubic lattice with the tight-binding approximation
for the crystal potential and one kind (s) of atomic
orbital—is the following.

We consider A as the continuous function of the
position R of the lattice sites. One side of the
equation is obtained by developing the A in a Taylor
series. We start from an atomic site -ﬁ,, in the
crystal and express the sum of A in the sites ﬁ,,,,,
whi_f:h are the nearest neighbors of ﬁ,,, in terms of
A(R,):

g 2
m+9%§lA@hn} . (9)
ﬁ:ﬁn

The differential operator

The summation in (9) covers all R,,. The symbol 3,, denotes the vector R,,- R,.
(9) can be represented in a more condensed form. Since the lattice is symmetrical with regard to inversion,

all odd-power terms vanish in (9). For the simple cubic lattice, Eq. (9) becomes

. m=o 2m 2m am 2m -
%A(Rvn)=%{[”§o (-ng—)l (‘887{5; +8—%W' +5§Z-;-27)A(R)} , (10)

n

where g—the number of the nearest atomic neighbors—is 6; a=|3,,| is the same for all v» and equal to
the lattice parameter. Using the series expansion for cosine we have
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E} A(R,,) = % {[cos(ia

The other side of the equation for A is obtained
from the tight-binding approximation. First, we
substitute Eq. (1) for ¥ in the Schriddinger equation
AY=EV¥, where H is - (Z%/2m,)A+V(T), and V(¥)
in the area near any R, can as usual be considered
as UF-R,;)+V(T)- UF-R,). Next, we multiply the
equation by the atomic orbital of ﬁ,, and integrate
it over the crystal volume; we obtain

ARE-E -y(n)] =20 Bn) A(R,,)

=B(n)Z> A(ﬁvn) ’ (12)

where B (vn) is the integral (3) for R,=R,, and &,
=R,, and y(») is (3) for R,=R, =R,. Since spheri-
cal symmetry is assumed for ¢, we have the same
B (vn) for all ﬁ,,,, , and thus the second equation in
(12) is valid with B(vn) abbreviated to a single B(z).
The usual approximation of Eq. (4) has been taken
into account. E° is the eigenvalue of the atomic
orbital ¢. From (10) and (12) we obtain

[E-E°-ym)]A(R,)

= % Bn) { [cos(za %) +cos<za 5%;)
+cos(ia :—Z>]A(ﬁ) }

This is a Wannier-Slater equation which determines
A in the case of a (perfect) simple cubic lattice,

It is repeated for each ﬁ,, inside the lattice and the
index # can be omitted because ¥ (z) and B(n) are
the same for all #» beyond the regions close to the
crystal surface,

An equation analogous to (13) can be established
in the same way for other lattices, For example,
for the face-centered cubic (fcc) lattice with s atom-
ic orbitals we obtain

(E-E°-y)AR,)= % B{[cos(ia 3%-(-) cos <ia ;;)
+cos(ia 5§I7) cos (ia a_aZ)
+cos(za 57) cos(m ——)]A(ﬁ)}

where ¢ is 12 and a, B, and ¥ are, respectively,
the value of the lattice parameter and the corre-
sponding integrals for the fcc lattice. The WS equa-
tion for lattices with interaction between atomic

(13)
ﬁ:ﬁn

, (14)
ﬁ:ﬁ,,
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1)

ia 8_3}—’) +cos (za B—Z)] A(ﬁ)}

]
neighbors more distant than the nearest ones can
be obtained in the same way.

-3,

III. BOUNDARY CONDITIONS AND
ELECTRON DENSITY

The boundary condition we assume is that the
electrons are enclosed in a large spherical crystal
block of the radius R,, i.e.,

¥(F)=0 (15)

for |T|=R,;. Then ¥ will be much like the standing
waves in a spherical potential box. Since ¥ in (1)
is modulated everywhere by the same atomic func-
tions ¢, the condition of standing waves is valid for
A; we have

AR)=0 (16)

for |RI=R,. This raises the problem of the spatial
distribution of the electron density determined by
the new ¥ and A. The answer is offered by the gen-
eral theorem, given for the free particles (elec-
trons) by von Laue® and extended to the electrons in
the field of the periodic lattice by Friedel,® which
states that the electron density per unit energy
range is practically independent of the form of the
conditions at the boundary providing that the dis-
tance from the boundary is greater than the electron
wavelength characteristic of the considered energy
range and that there is a sufficiently large number
of electron states within the energy range. This
density is constant in the free-electron case and is
periodic with the lattice in the case of a crystal.
Now let AE be the energy interval, When Eq.
(4) is used the electron charge within AE will be

Do [UEV, dr =2, 20, A* R, ,0A®R,, ), (17)

where the summation over w runs over all the wave
functions having energies within the chosen interval.
According to the theorem of von Laue and Friedel
we expect also in the case of A of Eqs. (7) and (16)

2w AY Ry, AR, W~X, A* (R, w)AR,, )

2, AR, w)AR;, w), etc., (18)

providing ﬁl, R,, ﬁa, etc., are nottoo close to the
surface of the crystal, and AE covers a sufficiently
large number of states.

Equation (18) offers an important simplification.
Because, when it is fulfilled, we can obtain the den-
sity of electron states in the crystal without calcu-
lating the solutions of the WS equation in the whole
crystal area. We can leave it at calculating the
electron charge only at one atom, the situation at
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this atom being repeated throughout the crystal.
For example, we can choose this atom at the center
of the coordinate system and then investigate

2w A* (0, w) A(D, w)

and its dependence on E. Then, of the functions A
belonging to different irreducible representations

of the cubic point group, we need only such solutions
as are the basis functions for the total symmetry
representation (I';) of the group, because only they
can give a nonvanishing contribution to (19) (cf.

Sec. IV).

IV. CONSTRUCTION OF FUNCTIONS 4

(19)

A. Method

This section presents the technique of solving the
WS equation. Our attention is focused on solutions
belonging to the irreducible representation I'; (cf.

OLSZEWSKI

[eo

the problem is to solve the eigenequation

WAR, k)=E(k)AR, «), (20)

where k is a parameter and A should be continuous,
should have the required symmetry, and should ful-
fill certain conditions at the boundary and be nor-
malized; W is the differential operator given for
two cubic lattices in Eqs. (13) and (14), and

E(k)=(E-E°-v)/qB (21)

in each case. The function A can be constructed
similarly for all cubic lattices. For simplicity,
we put the lattice parameter a as equal to the unit
distance.

In general, A can be considered as a polynomial
composed of the infinite number of terms arranged

Sec. III and the following notes). Mathematically, as follows (R?=X%+ Y%+ Z?):
|

const; K% K*; K%, etc.;
«®RZ; K*R2; k®RZ; k®R%; etc.;
k*RY; k®RY; k®R*; k'R, ete.;
KX Y+ 2%, BXP T+ 2Y); k3(X*+ Y1+ Z%); kO(xt+ Y+ Z%); etc.;
kRS; k®RS; k'°RS; «'2RE; ete. ;
KSRA(X: + Y + Z%); KERA(X* + Y* + Z%); kORE(X* 1+ Yt + Z2%); kPR¥XY+ Y* 1+ Z%);  etc.; (22)
k(X% + Y8+ 2%); k(X8 + Y8+ 2%); k(X8 1+ Y8 4+ Z8); k'3(x% + Y8+ Z8); etc.;
k8RS, «'°R®; k2R, kRS, ete. ;
KCRYXE+ Y44+ 2%, KRHXP+ Y 4+ 2%);  kMPRUXP Y420, KMRYX+ Y+ Z%);  ete.;
KCRAXS+ Y8+ 28); kRA(X®+Y®42%); k“RAXC+Y®.Z%); kMRAXC+Y®4Z%); etc.;
k(X% + Y8+ Z8); kO(x? 4+ ¥® 4+ Z8); k'3(Xx® + Y8+ Z8); k(X% 4+ Y8+ Z8); etc.;

etc.; etc.; etc,; etc. ; etc.;

It is clear how the further terms can be added.
Rows having the same powers of k and equal orders
d=a+b +c of the polynomials expressed in terms of
X°¥® Z° form multiple rows, The exception is the
first multiple row, which is made up of the terms
K’ and KP-bZRa‘

The polynomials which depend on X, Y, and Z and
enter into a given multiple row are completely anal-
ogous to the characteristic polynomials of type I';
of Von der Lage and Bethe.” They are so chosen as
to enable any polynomial of type I'; and the order
characteristic of this row to be represented as a
linear combination of the polynomials in this row.?
Only the polynomials of type I'; are important be-
cause other irreducible representations of the cubic
goint group give exclusively terms which vanish at
0.

The action of W on any of the polynomials of the
type in (22) gives a linear combination of polynomi-
als of the same type. From this point of view, the
polynomials form a complete set and can be com-
bined to fulfill Eq. (20) to the arbitrary degree of
the approximation for the solution. This approxi-
mation is the better the larger the number of differ-
ential operators of different orders we include in
our W and the larger the number of polynomials
(22) which fit (20). However, for the normalization
and the establishment of the boundary conditions the
approximate behavior of A at large distances from
the origin of the coordinate system should be suit-
able and known, Thus we choose the following com-
binations of (22):

jo(kR) (23)
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and
s vee . e
KH){akR);  K*KH) jokR);  KHEH)j(kR); ete.;
. ; ven ; Cee ; ce e ;
(KH)g'jg(kR); KXKH)I'jo(kR); K KH)s'je(kR); etc.;
cee 3 cee; . . (24)
(KH)s 'jg(kR);  K*(KH)g 'jo(kR); K*KH)s 'j4(kR); etc.;
. vev s . e
. e . e
. e - oo s
ete.; ete.; ete. ; ete. ;

(KH),r ! is a cubic harmonic of symmetry I'; and
order / and j, is a spherical Bessel function of
order I. We seek such coefficients in the combina-
tion of (23) and (24)

=N T, D Doy, mEH), 45, (kR) ™ (25)
and such
oy, @y, @y, ..., etc., (26)
in the expression
E(K)= ap+ @y k% + aprt + agk®+ - (27)

as will make a possibly large number of columns
and multiple rows of polynomials in (22) satisfy
Eq. (20).° N (k) in (25) is the normalization co-
efficient of the wave function which has coefficient
function A ™', In the present, use is made only of
the orders ! for which one cubic harmonic occurs
in the combination of (25), wh1ch permits us to
drop the index ¢.10

Practically, we calculate the coefficients ¢; ,
and @; in the following way. First, we make all
the polynomials of the first column of (22) satisfy
(20). This is achieved with a;=1, and holds for
arbitrary combinations of functions (24). The
same can be done with the second column of (22)
if we consider that all (KH),’:‘, ji1(kR) are the eigen-
functions of the Laplace operator with the same
eigenvalue - x%. Then, o, is the negative value of
the coefficient of the Laplace operator in W. With
the sc lattice as an example, this gives—with Eq.
(21)—a, equal to -4

Now the matter becomes less simple. For ex-
ample, the four polynomials at the top of the third
column in (22) (two multiple rows) cam be made to
satisfy (20) by choosing the right @, and coefficient

Cy,o for (KH)[1j 4 S0 can the seven polynomials at
the top of this column (three multiple rows) by
suitably choosing @, (which will be different from
the prevmus) and the coefficients for (KH);j, and
(KH )6 je; and so can also the 11 polynomials at the
top of the column by choosmg the right a, a.nd the
coefficients for (KH){'j,, (KH)g'jg, and (KH)B Jas
etc. In all the cases (d < 10) examined in the pres-
ent paper the number of the functions (KH); 4,
with 7 >0 needed in combination (25) to make Eq.
(20) satisfied by the polynomials taken from the top
of the third column in (22) equals the number of the
multiple rows less unity taken into account in the
column; a case in which the polynomials of Ref. 8
occur has to be classified separately because two
different (KH);} have to be considered when we
seek to satisfy Eq. (20) for a complete multiple
row which has d=12. The coefficient for the term
jo in (25) need not be determined; we put it as equal
to unity in each combination.

Coefficients can be similarly chosen to make the
polynomials in the columns following the third sat-
isfy (20). For the nth column in (22) (z >3), this
is done by calculating the coefficient o, in Eq.
(27) and those for such functions k2™(KH); 'j, of
Eq. (24) as have the power exponent m =n — 3.

Then the coefficient @, with p<»n -1 as well as
those of the functions (24) with m <n -3, calculated
in the preceding steps, are put as constants into
the equat1ons for @, and ¢; ,.5. The number of

k"3 (KH);1j, used in this operation was found to
be the same as for the third (»=3) column.

A characteristic point is that the number of the
parameters [the coefficients for the functions

K™ (KH);'j, and those in Eq. (27)] used in the cal-
culations is clearly less than the number of the
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polynomials in (22) which we seek to make satisfy
(20). This number of polynomials equals the num-
ber of component rows times the number of the

columns after the second one. We can increase
]

OLSZEWSKI 3

accordingly the number of the parameters by re-
placing the dots in Eq. (24) with additional functions.
For example, we can choose the following combina-
tions of the polynomials in (22):

k% (K R); K o(KR); k%jo(KR); ete.;
. . .
k2 (K R); K*j ok R); K®j4(KR); etc. ;
oo cens e
Kz].s(KR)§ Kll]'s(KR),' Ksje(KR); etc,;
l'cz[)ﬁ)4 +<Z>4+<—Z)4:|]'e§ K4[<2£>4 +<X)4+< )4] Je; K6[<£>4+(Z>4+<£>4] je; ete.;
R R R R R R R R ’ (28)
3 et s s
k%j(kR); k*jg(kR); k%jg(KR); ete. ;
Je; KG[(%); +<I§ ' +<EZ>4:lja; etc. ;

The behavior of these combinations at large dis -
tances from the origin of the coordinate system is
also suitable for our purpose. Then the combina-
tion for A ™ is supplemented with

SN D T 1 t0 mEPY, 4§y (KR) K ¥™2 |
1 ¢ m
(29)

where KP is the angle-dependent term in a given
function (28), and ¢’ indicates the component row
into which the function belongs. [For example,
the coefficient for k%jg(kR) is C44,0.] But the in-
troduction of functions (28) is superfluous if we
consider that the coefficients ¢; ;. , are exactly
zero, as was shown by numerical calculations
made for all the considered sets of multiple rows
and columns in the upper left corner of what would
be the complete Eq. (22) and for all kinds of cubic
lattices, !* and also in the case of the interactions
between atomic neighbors more distant than the
first ones. This reduces the number of independent
equations to that of the coefficients in (25) and

(27) and, by simplifying the calculations, provides
a powerful tool for checking them.

Another characteristic point is that the equations
for the coefficients which make the polynomials of
the third column in ( 22) satisfy Eq. (20) are not
linear. The degree of the algebraic equation to
which the problem is reduced equals the tofal num-
ber of the components (KH)f}t Jj; introduced into the

RERERG; .

development.
solved —the number of combinations in (25) equals
the number of the functions (KH), }j, used in it.
Hereafter, we give the index A to different com-
binations of the same (KH),P, L. The inclusion in
calculations of more than three columns of the
polynomials does not increase the number of A%,
because the equations for the coefficients needed
for the polynomials in the columns beyond the third
are linear,
in Secs. IVB-VIIL

can be examined in two aspects.
ask to what extent the individual solutions of (25)
and (27) can be considered as accurate. This—
with the whole problem confined to site 0—is re-
duced to an examination of the accuracy of

Thus—after the equation has been

The consequences will be important

The cubic harmonics of I'y used in the calcula-

tions are those in Ref. 7 with the normalization
factors omitted, excepting (KH)s!, which is three
times the non-normalized expression in Ref. 7.
Table I gives the coefficients in (25) and (27) for
four multiple rows and various numbers of columns
considered in (22) for the fcc lattice.
data for ¢; ; » and @; for the sc lattice, and some
for the bcc lattice, will be published elsewhere.

The detailed

11a
B. Problem of Convergence

The problem of the convergence of the method
First, we may

N(k) = AT1(0, ) (30)
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TABLE I. Coefficients ¢;,, and ; of Egs. (25) and (27) for the fcc lattice when only =0, 4, 6, and 8 are taken into
account. All coefficients € ;¢ ,, of Eq. (29) vanish for all A. The coefficient a =—% is used in the establishment of

all equations for ¢y, @; and T3, ;.

A=1 A=2 A=3 A=4
a, 3.612657 107 3.448426 107 3.241209 107 2.890003 10-2
4,0 -6.599012 - 2.719073 2.176 445 1.047368 10!
Ce,0 -5.715378 10! 7.346275 10! 1.015794 10! —3.530344 10!
Cs.0 2.273779 10! 7.994031 10! —1.308137 10° 1.094105 102
ag -1.68430 10°° -1.85861 1073 -1.50567 107 -1.08319 10°°
4,1 -3.33687 107 -3.98856 107 -5.49537  10-2 -3.04113 102
6,1 -1.03953 -g8.12791 107! 2.69577 107 4,18897 107!
a1 2.36547 107 -1.67010 107! -1.92527 107 —1.44825
a, 4.37700 10°° 5.98017  10°° 4.03918  107° 2.28183  107°
4,2 4.87569 1073 3.99331  10°° -2.50977 107 —-3.41669 10°°
g2 1.41121 107! 1.83891 107! 1.77684 107 2.35843 1072
cs,2 6.91313 102 1.15045 107! —-2.61768 1072 -9.99601 1072
as —7.45047 1077 -1,23297 1076 -6.96645 1077 —-3.15600 1077
43 -6.85437 107 -1,02863 1073 -1.99820 107! -2.,41360 107
Ce,3 —2.34652  107? -2.97684 1072 1.36837  10°° 1.34160 10°°
cs,3 -1,07627 1072 -1,06460 10°? -6.30677 10! -5.95013 107°
ag 1.52119 107 1.49303 1078 8.90602  107? 2.92081 10°°
ca4 1.17079 107 1.58167 107 -1.54832  107° -1.53152 10°°
Co4 3.90782 1073 5.71538 107 1.13332  107° 8.08041  107°
o4 1.83792 107 2.96417 107 4.82231  10°° -3.48639 107
ay -6.68003 10710 4.07053 10710 -6.86386 107! -3.27883 107!
cy,s -1.95005  10°° -3.11176  10°° -1.1664 10-¢ —-9.573 10”7
Ce,5 -6.530 57 107 -1.0012¢4 107 1.0019 10°° 4. 828 10-¢
cs,5 —-3.03619 107! —4.32264 10 1.1378 1075 -1.991 1075
ayg —1.0404 10710 —-1.0181 10710 9.7 1018 -5.3 10713
46 3.2492 10-¢ 5,381 1076 -9.21 1078 —-5.83 1078
Co,6 1.0867 10-4 1.837 10-4 8.87 1077 2.84 10~7
Cs,6 5.0606  107° 8.826 107 1.60 10- —-1.09 1076

and of E(k) within a certain interval of k. It is
found in Sec. VI that only solutions with k below a
certain constant value, usually much smaller than
10, are important for our purposes. In this case,
relatively good individual [N"1(x)]% and E(x) can be
obtained even with the aid of only a few terms in
(25) and (27). This can be checked by calculating
[NT(x)]? and E(x) in terms of a certain number of
the powers of k used in (27) and (30), and by com-
paring the results with those obtained in the next
(more developed) approximation. The convergence
is usually very good for small k (2-2.5 or less);
for larger « it is the better the larger not only the
number of the powers of k but also the number of
the terms (KH)]'j, used in the calculations.

In the second step, we may ask how many of the
solutions of (25), or of the components (KH)},
have to be taken into account. Their number can
be established by finding how many (KH)f,ltj, are
needed for a fairly satisfactory approach to the
total electron charge in the crystal; see Sec. VL.
For fcc solutions having large powers of k, we find
this number to be larger than 4, but probably not

very much so.

For the case of the sc crystal, in which the in-
terval of k corresponding to the electron states is
evidently larger than in the fcc crystal (see Sec.
VI; Ref. 16), more individual solutions as well as
more terms in each of them are necessary for a
good approximation.

V. ELECTRON STATES AND THEIR DENSITY

According to Eq. (16) we require that A™ vanish
at the surface of a crystal block equal to a sphere
with the radius R,.'? Since R, is large—e. g., ~ 10°
when expressed in terms of the lattice parameter
taken as the unit distance—we have with good ap-
proximation

Arl(", 8, @, Rd)

_ sin(kR, = 3lm
_Z)l Ffl(K: 9, (P) ( KRd 4 ’ (31)

providing the relation

KRy > 31(1+1) (32)
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is valid. If the number of the spherical Bessel
functions used for ATt and consequently also the
values of [ in (31) are small, the relations (32) and
(31) do not hold only when « is very small. For
the larger k, which fill a much larger interval be-
cause the electrons in a crystal block are very
numerous,'® the expression (31) can be considered
as exact.'* The zeros of the whole function (31)
coincide with the zeros of the component functions
j; and are identical for all I, considering that the
7 in the combination (31) are of the same (even)
parity. Hence, the quantization of A™ can be re-
placed by that of a single component of A", e.g.,
jo(kR). The quantum condition is then

kRs=nm, n=1,2,3, ..., etc., (33)

and the density of states per unit  is'®

dn R
= ~7T—‘L . (34)
A similar reasoning can be applied to the func-
tions for I}# I}, providing they can be considered
as sufficiently accurate when composed of not too
large a number of j;.
Now we normalize the relevant V¥; using Eq. (4)
we obtain

[ w*wdr=3, AT (R;, OAT(R,, k)=1  (35)

for any k. Providing A does not change too rapidly
along the distance between two neighboring atoms,
the summation in (35) over the lattice sites can be
replaced by integration over the volume of the
crystal sphere. Then

Z,Arl*(ﬁ,, K)AR(R,;, k)
=(1/vy)f [AT(R, K))?d2  (36)

because A" is real; v, is the volume of the atomic
cell and Q=% TrR,’;. In view of the orthogonality re-
lation between (KH)f}, having different 7, or the
same [ and different {, any component of the in-
tegral (36) is proportional to

foR" j%kR)R*dR . (37)

The integral (37) vanishes at the lower limit owing
to the behavior of j, at small R. At the upper
limit—R, being very large—all j, can be approxi-
mated by [sin(kR)]/«kR (we notice that all 7 in A™1
are even numbers). We obtain

<2 s
sinkR _» ., 1 sin2«R
_/ P aR=3.z <R T 2% ’

which at R=R, gives (1/2«*)R, because sinkR,=0
at the boundary. Thus the right-hand side of Eq.
(36) is

OLSZEWSKI
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{[NT1(x)]%/2k%0, }
X 4nR4[1+23, 23 (O Cz,t,m’fzm )2Il,t 1, (38)

where the summation over / and ¢ includes all the
(non-normalized) cubic harmonics in I'; except that
whose /=0, and [, ; is

L= (@) [7 o [ 7 dgsing [(KHDT, T

The density of crystal states, D°(k), per unit
range of k and per volume of one crystal cell, can
be obtained by multiplying Eq. (34) by the number
of the electron charge provided by the cell at the
central atom, thus 1, times this atom’s contribu-
tion

[AT1 (D, «) ]? (39)

to the total charge carried by an orbital having the
quantum parameter k. In view of (30)—and owing
to the requirement that (36) or (38) be unity—we
have '

D°(k) =[N k) Ry /m={" - }-1(1/2112)K2va ,  (40)

where the expression within the squarebraces is that
givenin Eq. (38); v, is 1for the sc crystaland 2for the
fce crystal, if the primitive translations from Sec.
II are used and the lattice parameter ¢ is put equal
to the unit distance (cf. also Secs. IVA and VIA).

The density of states D°(E) as a function of ener-
gy and per unit of volume (e.g., v, further below)
can be obtained from the relation

De(E)= (AE>-1fAE D) dxk . (41)

The integration in (41) is extended over this interval
(or intervals) of k for which the energies are with-
in the interval

(E-3AE, E+3AE) . (42)

It should be noted that Eqs. (40) and (41) are re-
lated to only one A"t solution. But we have many
AT1 (see Sec. IV and Sec. VI) for any k and each
can contribute to the electron density at 0. Thus
the total crystal density of states per unit range of
k and per unit of volume is

D(k) =22, D° M) ,

where the components are (40)'s for different . In
the same way the total density of states in the crys-
tal as a function of E and per unit of volume is

D(E)=23,D%*(E), (417)

where the components are those of Eq. (41). The
results of the calculations of D®* (k) are discussed
in the Sec. VI; those for D(E)in Sec. VII.

(40")
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FIG. 1. Densities of states D%* times 7 vs k for (a) A=1, (b) A=2, (c) A=3, (d) A=4 (case of I=0, 4, 6, and 8

taken into account) as a semilogarithmic plot; fcc lattice.
velopment of Eq. (25) in each case.

The integers indicate the largest value of m used in the de-
The abscissas of the inflection points of curves 1-6 are given in Table II. The

maxima of curves 1 for A from 2 to 4 occur, respectively, at k equal to about 11.2, 12.6, and 11.2 and attain approxi-
mately the values 35.5, 30.5, and 41.5. For the largest m=0 (a case not shown in the figures) all D%* are propotional

to «? tending towards infinity with .

VI. FURTHER PROPERTIES OF ELECTRON
STATES

A. Bands of States and Their Limits

Considering the density of states per unit range
of k and per unit of volume, we find a profound dif-
ference between free electrons and those in the

crystal. The free electron D(k) is
dn K2
F) =P A f ()12 = F
D¥(k) o [Nf(k)] 2 (43)

because again one point, that of IR| = 0, can be con-
sidered as representative of the system and the
normalijzation coefficient of the free-electron solu-
tion which does not vanish at |RI =0, viz., j,(x R),
is k(2nR,)"}/2. The D?(k) starts at zero and tends

towards infinity with k. At the same time all
D®*(k)—except with very undeveloped solutions—
first increase from zero (at ¥ =0) similarly to D*(k),
and then decrease to extremely small values (see
Fig. 1), usually the more rapidly the more extended
A™* are used. In the limiting case of a very ex-
tended AT a very abrupt decrease may be ex-
pected. Thus, at a chosen crystal point, e.g., 0
the electron density is built up only by the states
with k >0 [cf. Eq. (33) and—concerning the states
with negative k—the end of Sec. VIC] but less than
a certain limiting value; when k exceeds this val-
ue, the states do not contribute to the density. The
zone for the one-dimensional quantum parameter
has its counterpart in the theory of Bloch. Since

to any interval of k there corresponds [via Eq. (27)]
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TABLE II. Positions of inflection points of D¢ (k)
for fcc and sc lattices in different approximations. The
m figure at the top of each column indicates the largest
power exponent used in the development of Eq. (25).

fee lattice; 1=0 and 4 taken into account

A m=0 m=1 m=2 m=3 m=4 m=5 m=6
1 no 15 7.1 5.8 5.2 5.0 4.9
2 inflection 13 10.6 7.2 8.7 6.7 7.1
points
fee lattice; 1=0, 4, and 6 taken into account
A m=0 m=1 m=2 m=3 m=4 m=5 m=6
1 no 14 6.0 4.9 4.1 3.9 3.6
2 inflection 21 6.9 5.0 4.6 4.0 4.0
3 points 44 13 8.1 6.4 5.6 5.2
fee lattice; 7=0, 4, 6, and 8 taken into account
A m=0 m=1 m=2 m=3 m=4 m=5 m=6
1 no 14.5 5.7 4.2 3.8 3.4 3.3
2 inflection 13 5.1 4.2 3.5 3.4 3.1
3 points 19 7.6 5.7 4.9 4.5 4.3
4 14 6.7 5.3 4.8 4.5 4.3
sc lattice: 7=0 and 4 taken into account
A m=0 m=1 m=2 m=3 m=4 m=5 m=6
1 no 54 24 21 18 14 12
2 inflection 36 23 34 15 13 11
points
A m=T m=8 m=9 m=10 m=11 m=12 m=13
1 11 11 10 10 9.8 9.6 9.4
2 11 10 10 9.6 9.4 9.2 9.1
sc lattice; =0, 4, and 6 taken into account
A m=0 m=1 m=2 m=3 m=4 m=5 m=6
1 no 52 18 13 12 11 10.5
2 inflection 76 18 13 11 10 9.2
3 points 158 17 11 10 9.0 8.5

an interval or intervals of energy, there is also in
the present method a zone for the energies of elec-
tron states.

We can distinguish on D®* (k) inflection points to
the right of which the decrease of D°?* becomes very
rapid for developed ATt'*, The abcissas k;* of these
points calculated in successive approximations, as
well as D°'* themselves, exhibit a tendency to con-

verge [see respectively, Table II and Figs.1(a)-1(d)].

When, for the fcc lattice, the approximation for
AT1* and convergence of k} are rather satisfactory,
we have

k}=3.3; 4.3; «i=

Let us note that the maximum value in (44) is not
far from the maximum value of |k| for the first
Brillouin zone .of the fcc lattice

k2=3.1; k3= 4.3. (44)

(3V5)7m=3.51, (45)
which holds if (1, 1, 0); (1, 0, 1) and (0, 1, 1) are
taken as the primitive translations. This is the

expected result if we take into account that (a) the
functions of Eq. (24) are—similarly to Eq. (2)—the
free-electron eigenfunctions with

= x| (46)
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[cf. Egs. (56) and (58)]; (b) the functions AT1'* re-~
sponsible for Eq. (44) have been calculated with the
same primitive translations as those used for (45)
(cf. the beginning of Sec. IVA); and (c) Eq. (45) de-
notes the limiting value of Ik| or k, which can be
accepted quasicontinuously by the electron states
in the fce crystal of Bloch starting from k| =0. In
the idealized case of very accurate AT1'* we may
expect the maximum value of k?} for the fcc crystal
to come close to that of Eq. (45).18

The above reasoning is supported also by the cor-
respondence between the meaning of the maximum
of 1k| and the maximum of k for the behavior of
A, respectively, in the theory of Bloch and the pres-
ent one. The existence of a certain maximum k
which can be accepted by electron states implies
that the wavelength A= 27x™! of the coefficient func~
tion AT1'* at large distances R cannot be less than
a certain critical length. This prevents AT1** from
oscillating too rapidly, in agreement with the as-
sumption made in deriving the equation and the
properties for ATt'* (cf. also Sec. VIB). But this
result also is fully consistent with the LCAO theory
of Bloch. For, an arbitrary vector K’ in the recip-
rocal space can be represented as the sum E+_IE,,

where Kj is the vector of the reciprocal lattice and
k is the vector inside the first Brillouin zone, or
on its surface. The property K, Ri 2m5,; gives

'.'u_.. '-.a-.. 2 "u-‘-
etk R; — ez(k Rj+2mby;) etk R; R (47)

and thus (2) or (47) cannot have a wavelength
shorter than that obtained from the maximum value
of k on the surface of the first Brillouin zone. !

The next point of importance is the maximum
which a single atom at R, and the band of the crys-
tal states can contribute to the total electron charge
of the crystal. If the atomic orbitals fulfill Eq. (4),
this value is given in the LCAO theory of Bloch
simply as!®

Q(R;)=2; (1/N) e-iE Ry pik-R;
x [ ¢*(F-R,)¢(F-R,)dr (48)

equal to
(1/N)2031=1 (49)

because the summation is extended over all the
states of the Brillouin zone. Equation (49) is
fundamental for an explanation of the experimental
data for solids. In our calculations—confined to
T’y and related to site 0—we should have the same
result for @ and we consider the discrepancy of
Q(0) from 1 as the measure of the inaccuracy of
the set of solutions used for it.

The maximum contribution to the electron density
can be calculated when all quantum states whose
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TABLE IIl. Values of @(0) [see Eq. (50)] for fec and
sc lattices in different approximations. The figures m
have the same meaning as in Table II.
fce lattice; 1=0 and 4 taken into account
m=0 m=1 m=2 m=3 m=4 m=5 m=6
© 187 21.6 7.30 15.8 8.60 10.9

fcc lattice; 1=0, 4, and 6 taken into account

m=4 m=>5 m=6
7.88 5.15

m=3
15.8

m=2
76.2

m=0 m=1
0 857

fcc lattice; 1=0, 4, 6, and 8 taken into account

m=0 m=1 m=2 m=3 m=4 m=5 m=6
o 218 12.6 5.40 3.71 2.89 2.50
sc lattice; =0 and 4 taken into account

m=0 m=1 m=2 m=3 m=4 m=5 m=6
© 2560 302 671 99.6 49.1 33.9

m="17 m=8 m=9 m=10 m=11 m=12 m=13
26.7 22.6 19.9 18.2 16.9 15.8 15.0

sc lattice; 1=0, 4, and 6 taken into account

m=0 m=1 m=2 m=3 m=4 m=5 m=6
o0 20100 132 50.1 32.1 24.9 21.0

wave functions do not vanish at 0 are taken into ac-
count. Thus

Q(0)=2, f," D** (k) dk (50)

since, in principle, the densities of all states—also
those of very large k—can add up significantly to @.
This is so in the case of free electrons for which
Q(0) is infinity. The values of €(0) in different ap-
proximations for ATt'* are given in Table III. We
see that for little developed ATt'* ( = 0) the values
for (50) are still infinite, However, when the terms
with » >0 are introduced in (25), we have a zonal
(band) structure, i.e., Eq. (50) can be written
-> A

Q0)=2, [;" D™ (k) dk (51)
where k), are finite values.

From Figs. 1(a)-1(d) it is evident that for well
developed ATt'* these values should not be much
larger than the abcissas of the inflection points dis-
cussed at the beginning of this section. In fact,
when xi‘ of Eq. (44) are put as the upper limits of
the integrals (51), the difference between (51) and
(50), calculated for the case of solutions corre-
sponding to (44), is only about 12% of (50). For
k) somewhat larger than k}, viz.,

it =3.7; k%=3.5; Kk3=4.55; kh=4.8, (52)

this difference diminishes to about 1.5%. Another
characteristic point is that for well developed AT1'*
the difference between (51), or (50), and (49) de-
creases distinctly (Table III), and E*k) also can be
rather accurate within the intervals (0, k), which
enables the density of states per energy unit to be
calculated from Eqgs. (41) and (41’). The limits of
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the energy band can be obtained as the extreme val-
ues of E* within the intervals (0, k). This is done
in Sec. VII for the fcc lattice as an example.

B. Property of Orthogonality

Two LCAO functions, either (i) with different «,
or (ii) with the same « and different A, are orthog-
onal. Owing to Eq. (4) andthe assumptions charac-
teristic for the derivation of Eq. (36), the orthog-
onality of ¥ becomes equivalent to that of AT1*,
The property (i) can be deduced from the behavior
of j;(kR) at very small and very large R and is valid
for any approximate AT"*, The property (ii) is due
to the operator W being Hermitian'®; this orthog-
onality can be fulfilled rather accurately by the ap-
proximate solutions for rather small « only. For
example, for the developed AT1* of the present pa-
per (the fcc lattice) calculations show it to be well
fulfilled for all A only for x5 2.

C. Total Number of States in the Crystal

The multitude of AT** for the same « is impor-
tant not only for the accurate calculation of Q(a)
(see Table III),?° but also when the total number of
the electron states in the crystal is considered,
Since j; with 7 > 0—which may dominate in the de-
veloped ATt"* (see Ref. 20)—have a smaller num-
ber of zeros in a given interval for kR, than has
jo, We can expect that quantization of very developed
AT according to the boundary condition (16) will
not give more states than will give the quantization
of a single component j;. Therefore, for an aver-
age macroscopic crystal (R,~10°) the number of
states for an individual A is at most of the order of
about 10%, because, as has been pointed out, only
k not exceeding several units in magnitude contrib-
ute to the electron density of the crystal.?! The re-
mainder of about 10% electron states in the crystal
should originate from the multiplicity of solutions
AT1* for the same k as well as from A belonging
to the irreducible representations different from
T,.

Let us note that ATt* (R, k)=AT1* *(R, - «) and the
corresponding E*k)=E*(~ k), thus the states having
k are identical with those having - x and there is
no degeneracy associated with the sign of «.

VII. D(E) DEPENDENCIES AND THEIR COMPARISON
WITH THE RESULTS OF THE THEORY OF BLOCH

The method of the present paper can be compared
in essence with that of Bloch when the energy de-
pendence of the density of states is calculated by
both., In the present paper we do this for the exam-
ple of the fcc lattice and for two limiting cases:

(i) nearest-neighbor interaction between atoms, or
the tight-binding approximation; and (ii) almost-
free electrons. Bloch’s D(E) for case (i) is ap-
proached in the following way. First, the volume
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TABLE IV. Average density of states in different approximations versus E in the fcc lattice with the nearest-neigh-

S.
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bor, or tight-binding, interaction.

3

D(E) of Bloch

D(E) of the present D(E) of the present [cf. Eq. (54)
method calculated with method calculated for E and the
Energy 1=0, 4, 6, and 8; with I=0, 4, 6, relevant
interval m=52 and 8; m=62 argument]
(1, 29/30) 0.032 0.032 0.033
(29/30, 28/30) 0.061 0.061 0.061
(28/30, 27/30) 0.082 0.082 0.078
(27/30, 26/30) 0.098 0.098 0.106
(26/30, 25/30) 0.115 0.115 0.110
(25/30, 24/30) 0.132 0.132 0.127
(24/30, 23/30) 0.146 0.146 0.152
(23/30, 22/30) 0.161 0.161 0.160
(22/30, 21/30) 0.179 0.179 0.177
(21/30, 20/30) 0.192 0.192 0.192
(20/30, 19/30) 0.214 0.214 0.215
(19/30, 18/30) 0.230 0.230 0.224
(18/30, 17/30) 0.247 0.247 0.256
(17/30, 16/30) 0.263 0.263 0.258
(16/30, 15/30) 0.295 0.295 0.301
(15/30, 14/30) 0.305 0.305 0.307
(14/30, 13/30) 0.335 0.335 0.320
(13/30, 12/30) 0.359 0.359 0.363
(12/30, 11/30) 0.386 0.386 0.399
(11/30, 10/30) 0.415 0.415 0.410
(10/30, 9/30) 0.456 0.456 0.457
(9730, 8/30) 0.489 0.489 0.481
(8/30, 7/30) 0.531 0.531 0.533
(7/30, 6/30) 0.582 0.582 0.585
(6/30, 5/30) 0.632 0.632 0.632
(5/30, 4/30) 1.162 0.697 0.693
(4/30, 3/30) 1.785 0.777 0.777
(3/30, 2/30) 2.467 1. 055 0. 865
(2/30, 1/30) 3.19 1.64 1.01
1/30, 0 ) 4,07 2.25 1.16
0, —1/30) 5.21 5.11 1.56
(- 1/30, —2/30) 7.45 9.94 1.53
(-2/30, —3/30) 5. 02 4,22 1.58
(—3/30, —4/30) 5.34 5. 04 1.63
(—4/30, —5/30) 5.66 5.69 1.70
(- 5/30, —6/30) 6.34 6.21 1.73
(—6/30, —7/30) 8. 04 7.21 1.88
(—7/30, —8/30) 14.62 9.87 2.00
(—8/30, —9/30) 2.54 2.86 2.18
(—9/30, —10/30) 4,53 4.65 2.77
(—10/30,—11/30) 0 0 0
Total electron
charge in the 2.81P 2.47° 1.00°

band per one
atomic site

3Figures I and m have the same meaning as in Table IV and V.
PThese figures differ only by about 1.5~3% from those given in Table V.

°See Eq. (49).
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TABLE V. Average density of states in the fcc lattice
with nearest-neighbor, or tight-binding, interaction as
produced by the contributions from different subbands.
Case: 1=0, 4, 6, and 8; m=6. Figures! and m have
the same meaning as in Tables I-IV. For comparison
with another approximation by the theory of Bloch see
Table IV.

Energy interval DoY(E) D%¥E) D¥E) D%Y(E) D(E?
1, 29/30) 0. 009 0.008 0.011 0.005 0.033
(29/30, 28/30) 0.017 0.015 0.020 0.010  0.062
(28/30, 27/30) 0.022 0.020 0. 027 0.013  0.082
(27/30, 26/30) 0.026 0.024 0.032 0.016  0.098
(26/30, 25/30) 0.030 0.028 0.038 0.019 0.115
(25/30, 24/30) 0.036 0.032 0.043 0.021  0.132
(24/30, 23/30) 0.040 0.036 0.047 0.023 0.146
(23/30, 22/30) 0.044 0.038 0.054 0.026 0.162
(22/30, 21/30) 0.048 0.044 0.058 0.029 0.179
(21/30, 20/30) 0.051 0.047 0.063 0.030 0.191
(20/30, 19/30) 0. 057 0.053 0.071 0.034 0.215
(19/30, 18/30) 0.064 0.056 0.073 0.036 0.229
(18/30, 17/30) 0.068 0.060 0.081 0.038  0.247
(17/30, 16/30) 0.072 0. 066 0.085 0.040 0.263
(16/30, 15/30) 0.081 0.072 0.096 0.046  0.295
(15/30, 14/30) 0.085 0. 075 0.097 0.048  0.305
(14/30, 13/30) 0.095 0.081 0.108 0.050 0.334
(13/30, 12/30) 0. 099 0.088 0.117 0.056  0.360
(12/30, 11/30) 0.110 0.098 0.121 0.057 0.386
(11/30, 10/30) 0.118 0.101 0.134 0.061 0.414
(10/30,  9/30) 0.131 0.112 0.144 0.068 0.455
(9/30,;  8/30) 0.146 0.120 0.153 0.070  0.489
(8/30,  7/30) 0.156 0.128 0.170 0.078  0.532
(7/30,  6/30) 0.178 0.141 0.181 0.083 0.583
(6730,  5/30) 0.196 0.155 0.192 0.088 0.631
(5/30,  4/30) 0.223 0.165 0.211 0.097 0.696
(4/30,  3/30) 0.260 0.181 0.232 0.103  0.776
(3/30,  2/30) 0.302 0.205 0.255 0.293  1.055
(2/30,  1/30) 0.38 0.22 0.28 0.76 1.64
(1730, 0 ) 0.48 0.24 0.53 1.00 2.25
0, —1/30) 2.64 0.28 0.79 1.40 5.11
(-1/30, —2/30) 6.66 0.31 1.05 1.93 9.95
(—2/30, —-3/30) s 0.35 1.41 2.46 4,22
(-3/30, —4/30) s 0.40 1.86 2.78 5.04
(—4/30, —5/30) s 0.47 2.37 2.85 5.69
(-5/30, —6/30) .. 0.52 3.04 2.65 6.21
(-6/30, —17/30) see 0.56 4,15 2.50 7.21
(-7/30, —8/30) see 0. 47 6.97 2,43 9. 87
(- 8/30, —9/30) s 0.19 see 2.67 2. 86
(-9/30, —10/30) cee 0.01 see 4.64 4.65

Total electron
charge in the band 0.43 0.21 0.84 0.99 2.47
per one atomic site

3Some figures in this column differ by unity at the
last decimal place from those of the corresponding col-
umn in Table IV in view of the rounded values for D°*(E)
in the present table.

of § of the first Brillouin zone is cut out by xy,
yz, and 2x planes and approximated by that of
62500 equal cubes. Then for E(%,,%,,%,) of Bloch
we have

E(kx’kyyk:)z(EB"Eo‘Y)/qﬁ ’ (53)
where E® is the Bloch energy and E° vy, q, and B

have the same meaning as in Eq. (21), thus—in the
case of the fcc lattice—
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E(e,,ky,k,)

= % (cosk, cosk, +cosk, cosk, +cosk, cosk,), (54)

and the interval

AE = F5 (55)

[

has been chosen., The value of (54) is between 1
attained for k,=k,=k,=0 and - 3 obtained on the
diagonals of the squares on the boundary of the first
Brillouin zone corresponding to the primitive trans-
lations used in Eq. (54). Since B is usually con-
sidered as negative, the maximum value of (54) can
be referred to the bottom, and the minimum to the
top of the energy band. Anapproximationto Bloch’s
D(E) can pe obtained when the number of cubes for
which the Bloch energies are enclosed in any of the
40 intervals of (55) is calculated for the interval
between 1 and - %,

The same magnitude of the energy interval as in
(55) also is assumed in the (approximate) calcula-
tions of the D(E) of the present method. These
D(E) are little affected by the value of the interval
between two neighboring values of k, assumed as
0.002. The number of the considered points of k
is determined by the magnitude of the intervals
(0,&%). The inclusion of points with k> k% will not
change D(E) significantly providing Eq. (51)is a
good approximation for Q(a). Two D(E), calculated
for rather developed approximations for ATr* and
E*, are given in Table IV. The contributions to
one of these D(E) made by individual subbands are
presented in Table V. D(E) can be considered as
accurate only in the interval 1> E > 0,15, because
the solutions with x <2 are the only ones which con-
tribute to D(E) within this interval, For E 0. 15—
and for the approximations in Table IV—important
contributions to D(E) come from states whose « is
much larger than 2. In this case the developments
for AT* and E* are very inaccurate and the re-
sults given in Tables IV and V can only be con-
sidered as a very poor approximation to D(E),

The limits of the energy band for the fcc lattice
can be obtained as the maximum and the minimum
value of E* inside the intervals of k between zero and
(52), if—for example —the more accurate of the
approximations in Table IV is used. One of these
values is attained by all E* at k=0 and equals 1.
The other is provided by E* at k = 3. 2 and equals
- 0.33. In the considered approximation, there-
fore, we obtain band limits identical with those
given by the theory of Bloch,?

The present scheme can be compared more ac-
curately with that of Bloch for almost-free elec-
trons. This approximation assumes that V(¥ ) and
U(T) tend to zero, so that the electrons in the lat-
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TABLE VI. Density of states D(E)7? in the fcc lattice for the almost-free electron approximation. Present theory
in the case ofl =0, 4, 6, and 8; m =6 (figures ! and m have the same meaning as in Tables I-V) vs the theory of Bloch.
Only the values corresponding to states below a critical point in the theory of Bloch [| k| =3v/37=2.72] are considered.

w2k-1D%* (k) Total value
from columns
with A=1
to A=4; Bloch
K A=1 A=2 A=3 A=4 cf. Eq. (59) [ef. Eq. (57)]

0.05 1.37714212 1072 1.20308190 10~% 1.64721202 107 8.12563978 10~ 5.00000002 10-2 0.050 000 00
0.10 2.67394198 1072 2.40636221 1072 3.29443718 1072 1.62525867 1072 1.00000000 10-! 0.100000 00
0.15 4.01005966 10°2 3.61003671 1072 4,94168836 1072 2,43821534 102 1.50000000 10~ 0.150 00000
0.20 5.34516001 10°2 4.81429582 10°% 6.58897788 1072 3.25156635 10" 2.00000000 10 0.200000 00
0.25 6.67891479 10~2 6.01932217 107% 8.23631734 1072 4.06544579 102 2.50000000 10! 0.250000 00
0.30 8.01100498 1072 7.22528801 1072 9.88371712 1072 4,87999005 10-2 3.00000001 10! 0.300000 00
0.35 9.34112254 10~ 8.43235289 10~% 1.15311864 107! 5.69533826 107 3.50000000 10-! 0.350000 00
0.40 1.06689723 10! 9.64066181 10™% 1.31787327 107! 6.51163319 102 3.99999999 107! 0.400 000 00
0.45 1.19942738 10°! 1.08503429 107! 1.48263617 107! 7.32902172 1072 4.50000001 10-! 0.450 000 00
0.50 1.33167620 107! 1.20615058 107! 1.64740769 10! 8,14765547 10-% 5.00000000 10-! 0.500000 00

0.55 1.46361893 107! 1.32742401 107! 1.81218792 107! 8,96769168 10°% 5.50000003 10~ 0.55000000
0.60 1.59523256 10°! 1.44886138 107! 1.97697669 107! 9,78929384 107 6.00000001 107! 0.60000000
0.65 1.72649596 10-! 1.57046726 10! 2.14177352 107! 1,06126327 10! 6.50000000 10! 0.65000000
0.70 1.85738986 10~! 1.69224385 107! 2,30657761 107! 1,14378868 107! 6.99999997 10-! 0.70000000
1.98789691 10! 1.81419091 10-! 2.47138780 107! 1,22652438 10°! 7.49999998 10~ 0.75000000

0.75
0.80 2.11800165 10! 1.93630570 10! 2.63620250 107! 1.30949013 10~! 7.99999997 10-! 0.800 000 00
0.85 2.24769052 10-! 2.05858290 10°! 2.80101975 107! 1,39270678 10~! 8.49999992 10-! 0.850 000 00
0.90 2.37695179 10-! 2.18101457 107! 2.96583713 107! 1,47619643 10°! 8.99999991 10-! 0.900 000 00
0.95 2.50577549 10°! 2.30359007 10! 3.13065169 107! 1.55998253 10°! 9.49999977 10-! 0.950 000 00
1.00 2.63415348 10°! 2.42629603 10~' 3.29546005 107! 1.64409000 10-! 9.99999953 107! 1.000 000 00
1.05 2.76207921 10°! 2.54911620 10~! 3.46025827 107! 1.72854551 10~! 1.04999992 1.050 000 00
1.10 2.88954779 107! 2.67203130 10! 3.62504177 107! 1,81337747 10! 1.09999983 1.100 000 00
1.15 8.01655595 10°! 2.79501886 10-! 3.78980556 107! 1.89861637 10! 1.14999967 1.150 000 00
1.20 3.14310213 107! 2.91805293 10-! 3.95454386 107! 1.98429495 10-! 1.19999938 1..200 000 00
1.25 3.26918640 107! 3.04110358 10! 4.11925050 10! 2.07044846 10°! 1.24999889 1.250 000 00
1.30 3.39481078 107! 3.16413632 10! 4.28391847 107! 2,15711481 10-! 1.29999803 1..300 000 00
1.35 3.51997944 107! 3.28711122 107! 4.44854031 107! 2,24433512 10°! 1.34999661 1.350 000 00
1.40 3.64469924 107! 3.40998166 10! 4.61310793 10! 2.33215373 10°! 1.399994 25 1.400 000 00
1.45 3.76898045 107! 3.53269266 107! 4.77761259 107! 2.42061888 107! 1.49999046 1,450 000 00
1.50 3.89283782 10-! 3.65517857 10! 4.94204499 107! 2,50978293 10-! 1.49998443 1.500 000 00
1.55 4.01629210 107! 3.77735988 107! 5.10639567 107! 2.59970294 10°! 1,54997506 1.550 000 00
1.60 4.13937198 107! 3.89913898 107! 5.27065422 107! 2,69044107 10°! 1.59996062 1. 600 000 00
1.65 4.26211718 107! 4.02039478 107! 5.43481031 107! 2.78206542 107! 1.64993877 1.650 000 00
1.70 4.38458229 107! 4.14097532 107! 5.59885353 107! 2.87465051 107! 1.69990616 1.700 000 00
1.75 4.50684175 10-! 4.26068828 10! 5.76277323 107! 2,96827817 107! 1,74985814 1.750 000 00
1.80 4.62899662 10°! 4.37928903 10-! 5.92655919 107! 3.06303850 10-! 1.79978833 1..800 000 00
1.85 4.75118347 10-1 4.49646483 107! 6.09020157 107! 3.15903063 10~! 1.84968805 1. 850 000 00
1.90 4.87358565 10-! 4.61181580 10! 6.25369160 107! 3,25636418 10°! 1.89954572 1.900 000 00
1.95 4.99644771 107! 4.72483052 107! 6.41702155 107! 3.35516039 10°! 1.94934602 1.950 000 00
2.00 5.12009434 10°! 4.83485633 10~! 6.58018544 107! 3,45555388 10°! 1.99906900 2.000 000 00
2.05 5.24495367 107! 4.94106347 107! 6.74317991 107! 3.55769415 10°! 2.04868911 2.050 000 00
2.10 5.37158718 10! 5.04240217 10-! 6.90600390 107! 3.66174764 10~! 2.09817408 2.100 000 00
2.15 5.50072771 10~ 5.13755308 10~! 7.06866052 107! 3.76790034 107! 2.14748416 2.150 000 00
2.20 5.63332712 107! 5.22487059 107! 7,23115746 107! 3.87636025 107! 2.19657154 2. 200 000 00
2.25 5.77061675 107! 5.30232131 107! 7.39350766 10! 3,98736055 107! 2.24538063 2. 250 000 00
2.30 5.91418432 10°! 5.36742048 107! 7.55573081 107! 4.10116343 10-! 2.29384990 2.300 000 00
2.35 6.06607204 10°' 5.41717250 107! 7.71785455 107! 4,21806401 10°! 2.34191630 2.350 000 00
2.40 6.22890245 10! 5.44802440 10! 7.87991541 107! 4 33839569 107! 2.38952379 2.400000 00
2.45 6.40604200 10~ 5.45584783 107! 8.04196026 107! 4.46253566 10! 2.43663857 2.450 000 00
2.50 6.60181379 10! 5.43597003 10~! 8.20404805 107! 4.59091188 10-! 2, 48327437 2. 500 000 00
2.55 6.82177845 10°! 5.38328353 107! 8.36625079 107! 4.72401123 107! 2.52953240 2.550 000 00
2.60 7.07310308 10-! 5.29246993 107! 8.52865465 107! 4.86238857 107! 2.57566161 2,600 000 00
2.65 17.36504933 10°! 5.15837710 107! 8.69136106 107! 5.00667844 107! 2.62214658 2.650000 00
2.70 7.70960363 10-' 4.97658275 10~! 8.85448761 107! 5,15760828 107! 2.669828 22 2,700 000 00
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tice move in a field of an almost constant potential,
and the coefficient functions—when considered as
continuous functions in space—become the wave
functions for the electrons. Then, in Bloch’s case,
we have the exact eigenenergies

E' = (7%/2m,)|k | 2 (56)

practically within the whole Brillouin zone and ex-
act

D(E)=D/(E)= (VE/2"2r%0,= ([ | /21%) 0,  (57)

within the interval of the energies between the bot-
tom of the band and the energy E; for which the
Fermi surface for free electrons touches the bound-
ary of the first Brillouin zone; in Eq. (57) we have
put Z =m,=1. For E> E, the relation D(E) of Bloch
declines sharply from the free electron D(E) to
zero; see, e.g., Ref. 23.

In our method we also know exactly the energies,
since the wave functions, which in the case of the
irreducible representation I'y are equivalent to so-
lutions (25), are the eigenfunctions for the Laplace,
or kinetic-energy, operator. Thus E(k) are

E' (k) = (53/ 2m,,)r? (58)

and identical with Eq. (56) providing Eq. (46) holds.
The almost-free electron D(E) can be obtained from
AT1* because the site 0 can be again considered as
the representative point for the electron density.
We then have for all energies (E<E, and E > E,)

dn Ak 5 AT @, 0)]2 = kD D)
A

D(E)= — —
(E) dx dE? 5

(59)

which takes account of Eq. (58) (with 7Z =m, =1);
the formula for individual D®* is given in Eq. (40).

Equation (59) and the exact D(E) in Bloch’s Eq.
(57) can be compared in the interval

0<|k|=k<$V3m, (60)

which corresponds to the interval (0, E,), because
2V3 7 is the shortest distance between the center
and the boundary of the first Brillouin zone for the
fce lattice if the primitive translations used in Secs.
IVA and VI A and in Eq. (54) are considered. This
is done in Table VI where the corresponding ap-
proximate D®* and v, =2 are taken into account.

In Fig. 2 we compare the almost-free electron
D(E) of the present method, calculated in different
approximations, with that of Bloch in the wide range
of energies (larger than that corresponding to «
=1k|= 1). The discrepancy between the two kinds
of D increases with the energy, and so the band
width for almost-free electrons in the present
method, when approximated similarly as was D(E)
in Tables IV-VI, is about twice that of Bloch. How-
ever, it may become close to that of Bloch in the
case of very developed AT1'*; see Sec. VI
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FIG. 2. D(E)7* for the almost-free electrons in the
fee lattice plotted in a semilogarithmic scale. Present
theory in different approximations [case =0, 4, 6, and
8; the numbers of the curves have the same meaning as
in Figs. 1(a)—1(d)] and the theory of Bloch (curve B).
The width of the almost-free-electron band of Bloch has
been taken as the unit of energy. A more detailed com-
parison between D(E) of the present scheme and that of
the theory of Bloch for E<E;, where E; is the energy at
the critical point of D(E) of Bloch, is given in Table VI.

Let us note that according to the von Laue-Frie-
del theorem the distribution of the electron density
vs E does not depend on the position of the lattice
site. Thus, the D(E) curve for almost-free elec-
trons calculated at site 0 is repeated in each crys-
tal site not too close to the crystal boundary. Since
the width of D(E) is proportional to the square of
the maximum value of « for which the nonvanishing
contribution to the electron density exists, this val-
ue of kK may be expected to be repeated in the crys-
tal space in the same way as D(E).

VIII. FINAL OBSERVATIONS

Apart from the factors discussed, the following
points are characteristic of the solutions in the
present method:

(i) Both the coefficient function and the energy
depend on the structure of the crystal lattice and—
when not only the nearest atomic neighbors are tak-
en into account—the strength of the interaction be-
tween neighbors; in Bloch’s theory only the energy
varies between cases, whereas the coefficient func-
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tion (2) for a single band is the same for all lattice
types and all kinds of atomic interaction.

(ii) Unlike in Bloch’s method, functions A are
real; they meet the corresponding requirement of
Ref. 24 for the coefficients in the best LCAO func-
tion for a given many-atomic system.

(iii) For the energy intervals for which the pres-
ent method here affords accurate solutions, the dis-
tribution of the electron density in relation to ener-
gy (the density of states) is close, or very close,
to that of Bloch, This holds both for the tight-bind-
ing and the almost-free electron approximations,

It should be noted that for energy intervals corre-
sponding to small k the accurate density of states
can be obtained already with fewer components A
than used in Tables IV-VIand Fig. 2, i.e., fewer
than four,

(iv) Unlike the wave functions and energies of
Bloch, which depend on the %,, k,, and 2, compo-
nents of the vector E, those in the present method
depend only on one (scalar) parameter k. More-
over, the energy can be expressed as a sum of the
powers of this parameter. This may be expected
to hold not only for the solutions of I'; but also for
those of the representations I'; # I';. Then, for a
perturbation problem, the integration generating
the Green’s function for (cubic) crystals is reduced
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to a one-dimensional one and—for solutions with
energies within the band—we can classify the states
into such as have wave functions which remain finite
for large distances from the perturbation center
and such as have those which fall off exponentially
as these distances grow; both kinds of states may
be important for the scattering problem.® The in-
tegration limit can be extended to infinity practical-
ly without loss of exactness (cf. Sec. VI). Inthe
Bloch theory, the corresponding classification of
states was possible only for the free-electron-like
[E®(k ) isotropic] systems; the Green’s function

for crystals and energies within the band could be
reduced to a one-dimensional integral, and then
calculated, only for a sc lattice with nearest-neigh-
bor interaction,®
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Details of the K x-ray emission spectra of K* and C1” in KCl are discussed. It is shown that
the valence hole is effectively localized to one atomic site during the lifetimes of both the po-
tassium and chloride 1s holes. This localization is found to be an appreciable factor in the
processes contributing to the emission. Calculations of the relative intensity of the cross-tran-
sition lines, of the type 1sg™— 8pc,~!, KB;, are reported. The results of the calculations
agree, to within 40%, with the observed values. The widths of the valence emission lines, due
to the transitions lsK"—- 3pc{1 and lsC{i—' 31501'1, KBy, 3 are considered. Because of the local-
ization of the final hole state, both initial and final hole states of the KBy j transition see the
same crystal potential, and thus there is no first-order broadening due to spatial variation of
that potential. This is not the case for the cross-transition line KB;. A model due to Dexter
is then used to show that the corrected width of the KB line should be about 0.5 eV greater than

that for KBy 3. This corresponds to the observations made by Deslattes.

INTRODUCTION

The K x-ray emission from the constituents of
KCl1 have been among the most studied spectra in
the field, One of the prime reasons for this is the
ready accessibility of these spectra to present ex-
perimental techniques. Also playing a part in the
motivation for these studies is the fact that KCl is
a typical ionic crystal; understanding the emission
processes from KCl is almost a prerequisite for
unraveling the spectra from more complicated
ionic crystals. In the interpretations, it has been
helpful that the constituent ions are isoelectronic
with argon, the most studied by x rays of the rare

gases.

The room-temperature experimental data from
KCl1 are reproducible and do not warrant further
investigation at this time. =% Also, the interpreta-
tion of the main features of the spectra are well
substantiated. The present discussion uses that
interpretation as a starting point for considering
some details of the spectra.

The most intense line in each spectrum is KB, s,
which is due to transitions 1s~!—~ 3p -1 essentially
within each ion.! 7% This line in the chlorine
spectrum has a full width at half-maximum, re-
ferred to hereafter simply as width, of 0.4+0.1
eV after instrumental, K-state, and spin-orbit



