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A method of the linear combinations of atomic orbitals for cubic crystals with an s orbital
on each atom is proposed, in which the Bloeh wave functions (equivalent to the basis functions
of the one-dimensional representations of the subgroup of lattice translations) are replaced by
basis functions of the irreducible representations of the cubic point group. The coefficient
functions of the atomic orbitals which enter into the new wave functions are solutions of the
Wannier-Slater equation for a given type of lattice and for interactions between atomic neigh-
bors. These functions meet the requirement that they vanish at the crystal boundary. For a
pure crystal, the electron density need only be analyzed at one representative atomic site.
Since a site like this can be put in the center of the system of coordinates, the needed coeffi-
cient functions can be the basis functions of only one irreducible representation, viz. , that
of the total symmetry of the cubic point group. They can be approximated in terms of a few
cubic harmonics belonging to the irreducible representation mentioned and in terms of spherical
Bessel functions equal in order to the cubic harmonics. Unlike the theory of Bloch, where
the wave functions and energies depend on a three-component vector parameter, the present
scheme introduces only one scalar parameter for the quantization of the electron states. This
enables one to reduce the integration generating the Green's function to a one-dimensional one.
The energies can be expressed as sums of powers of the quantum parameter and the band is
obtained as a set of states which give the nonvanishing contribution to the electron density of
the crystal. The band structure obtained from appmnmute solutions for the face-centered
cubic lattice is compared with that obtained from Bloch's method. In the tight-binding ap-
proach these solutions and Bloch's method give the energy dependencies of the density of
states which are close to each other over about two-thirds of the bandwidth. For almost-free
electrons, these dependencies are nearly coincident within the interval of the energy between
the band bottom and a certain level below the critical one in Bloch's band. With the same so-
lutions we obtain bandwidths which are identical with Bloch's in the tight-binding case, but
nearly double Bloch's in the case of almost-free electrons.

I. INTRODUCTION

The LCAO (linear-combination-of-atomic-orbit-
als) method of Bloch is a well-known approach to
electron wave functions and energies in crystals.
For the sake of simplicity, let us consider the
crystal as built up of one kind of atom distributed
periodically in space, each atom with only one
atomic orbital of spherical (s-type) symmetry. The
wave function is

@=5,A(R, )P(r —R,),

V(r) is the crystal potential, U(r —Rg) is the atomic
potential at 8». The integrals (3) are the constant
terms for all the electron states defined by the val-
ues 0„, k, , and k, . The energy E oscillates be-
tween two limiting values determined by the relation
E{k„,k~, k~). Examples of the energy expressions
for different lattices are given in textbooks. ' %e
can assume that

where P denotes the atomic s orbital and
w

X(R,) =N, e"
N~ is the normalization coefficient, k is the vector
in the reciprocal space, and 8; is the position vec-
tor of the atomic nucleus i in the crystal. The
function + fulfills the periodic, or Born-von Kar-
man, conditions at the boundary and is the eigen-
function of the operator of the lattice translations
[cf. Eq. (6)j. The energy of the electron is that
of the atomic state plus simple trigonometric func-
tions of the components of the three-dimensional
vector k, which are modulated by the integrals

Then we find

where N is the number of atoms in the lattice.
The yuryose of the present payer is to develop a

method which although based on the approximation
expressed by Eq. (l) seems to differ in its frame-
work from that of Bloch. The method to be pre-
sented here is limited to crystals of cubic symme-
try and involves only the sum of one kind of atomic
orbital, i. e. , those of spherical symmetry. Also,
for the sake of simplicity, in a large part of the
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paper the nearest-neighbor interaction, or the
tight-binding approximation, is assumed, i.e. , (3)
vanishes unless p and v are the same atom or
nearest-neighbor atoms, although this limitation
is inessential for the development of the method.
The main idea of the approach is the following.

First, we drop the requirement that the wave
functions of the crystal are the basis functions of
the one-dimensional irreducible representations of
the translations subgroup, but require them to be
the basis functions of the irreducible representa-
tions of the subgroup equal to the symmetry point
group of the crystal potential [in a special case
equal to that of a cube (0„)]. Then, assuming that
the LCAO approximation holds, i. e. , that Eq. (1)
is valid and the atomic orbitals of spherical sym-
metry are repeated in each lattice site, the wave
functions of the symmetry of the cubic point group
can be arrived at when A of such a symmetry are
given. Thus, instead of the A in Eq. (2) which ful-
fill the eigenequation for the translation operator

TA =tA, (8)

the eigenvalue t being e'" ' ' ~ "" we seek such A
as will be the basis functions of the irreducible rey-
resentations of the cubic point group

P A.=Z(P).,A„. (7)

P in an operator of the group, (P) ~ are the matrix
elements of this operator with respect to the basis
functions, and the indices m and k run over the
number of dimensions of a given irreducible repre-
sentation; see, e.g. , Ref. 2.

Second, the above requirement for A implies that
the boundary conditions for the wave function may
be different from the yeriodic ones, which are char-
acteristic of the function of Eqs. (1) and (2). The
new conditions that satisfy the A of the present pa-
per are introduced in Sec. III. Third, the peri-
odic potential of the lattice has to be taken into ac-
count. According to Sec. II this requirement is
met if the eigenequation

RA =EA (8)

is fulfilled. W in (8) is the Wannier-Slater differ-
ential operator for a given lattice3' and E is
equal —with an accuracy to a constant term —to the
energy of the electron state represented by the ap-
prox mate wave function (1). We seek instead of

(2) such solutions for (8) as fulfill (7), with the new

boundary conditions holding for 4 and consequently
also for A.

II. EQUATION

The usual assumption is that the Wannier-Slater
(WS) equation presented in Eq. (8) holds in the ab-
sence of a perturbation of the periodic potential of
the crystal only when A fulfillstheperiodicboundary
conditions, i. e. , when A is (2) for V&=0, where
V~ is the potential change due to the perturbation.
This assumption is based on the fact that the ma-
trix elements of the energy operator commonly used
for deriving Eq. (8) are the Fourier coefficients for
the periodic function of the energy in the space of
the vector k, and are thus related directly to the
solution of the eigenproblem with yeriodic condi-
tions at the boundary. This, however, seriously
restricts the problem represented by Eq. (8), which
can be derived —at least for all the cases we are
concerned with —without requiring the wave function
(1) to have specialized symmetry properties and
conditions at the boundary. The proof —suggested
by Friedel and exemplified by the case of a simple-
cubic lattice with the tight-binding approximation
for the crystal potential and one kind (s) of atomic
orbital-is the following.

We consider A as the continuous function of the
position R of the lattice sites. One side of the
equation is obtained by developing the A in a Taylor
series. We start from an atomic site R„ in the
crystal and express the sum of A in the sites R,
which are the nearest neighbors of 8„, in terms of
A(R„):

Q A(R„„)=Z A(R)+(a„„V)A(R)+ ", A(5)+ ~ ~ .
Vn fin

5 =On

(9)

The summation in (9) covers all R„„. The symbol a„„denotes the vector R„„—R„. The differential operator
(9) can be represented in a more condensed form. Since the lattice is symmetrical with regard to inversion,
all odd-power terms vanish in (9). For the simple cubic lattice, Eq. (9) becomes

tPt= g2m g 2tlt 8 2m 8 201~ (2~)) spam+ 2m+ 23m- A(R)
n

(10)

where q —the number of the nearest atomic neighbors —is 6; a= Ia I is the same for all en and equal to
the lattice parameter. Using the series expansion for cosine we have
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8 e& (. eZ A(R„)= — cos ia —+ cos ia —
~

+ cos
~

ia — A(R)n 8X y&
&

aZ
On

R=mn

The other side of the equation for A is obtained
from the tight-binding approximation. First, we
substitute Eq. (1) for 4' in the Schrodinger equation
H4'=E4', where H is —(A3/2m, )4+V(r), and V(r )
in the area near any R& can as usual be considered
as U(r —5&)+ V(r) —U(r —5&). Next, we multiply the
equation by the atomic orbital of R„and integrate
it over the crystal volume; we obtain

A(R„)[E—E —y(n)] = Q p (vn)A(R„„)

= p(n)Q A(R„„),

where P (vn) is the integral (3) for R„=R„„and 0„
= R„, and y(n) is (3) for R~=%„=R„. Since spheri-
cal symmetry is assumed for P, we have the same
P (vn) for all R„„, and thus the second equation in
(12) is valid with P (vn) abbreviated to a single P(n).
The usual approximation of Eq. (4) has been taken
into account. E is the eigenvalue of the atomic
orbital P. From (10) and (12) we obtain

[Z —Z'- y (n)]A(R„)

= —p(n) cos ia +cos ia

+cos ia A R . 13
Ã~Rn

This is a Wannier-Slater equation which determines
A in the case of a (perfect) simple cubic lattice.
It is repeated for each g inside the lattice and the
index n can be omitted because y (n) and P (n) are
the same for all n beyond the regions close to the
crystal surface.

An equation analogous to (13) can be established
in the same way for other lattices. For example,
for the face-centered cubic (fcc) lattice with s atom-
ic orbitals we obtain

(@ &0 —y)A(R„) = —p cos ia cos iaq . 8 .. 8

8X

+cos ia cos ia

+cos ia cos ia8

X ~ 4
8Z 8X

Nn

where q is 12 and a, P, and y are, respectively,
the value of the lattice parameter and the corre-
sponding integrals for the fcc lattice. The WS equa-
tion for lattices with interaction between atomic

I

neighbors more distant than the nearest ones can
be obtained in the same way.

III. BOUNDARY CONDITIONS AND
ELECTRON DENSITY

The boundary condition we assume is that the
electrons are enclosed in a large spherical crystal
block of the radius 8&, i.e. ,

@(r)=0 (15)

for )r I =8„. Then 0 will be much like the standing
waves in a spherical potential. box. Since 4 in (1)
is modulated everywhere by the same atomic func-
tions P, the condition of standing waves is valid for
A. we have

A(R) =0

for ) R) =B„. This raises the problem of the spatial
distribution of the electron density determined by
the new 4 and A. The answer is offered by the gen-
eral theorem, given for the free particles (elec-
trons) by von Laue' and extended to the electrons in
the field of the periodic lattice by Friedel, e which
states that the electron density per unit energy
range is practically independent of the form of the
conditions at the boundary providing that the dis-
tance from the boundary is greater than the electron
wavelength characteristic of the considered energy
range and that there is a sufficiently large number
of electron states within the energy range. This
density is constant in the free-electron case and is
periodic with the lattice in the case of a crystal.

Now let ~E be the energy interval. When Eq.
(4) is used the electron charge within ~ will be

Z„f 0'„*4„d rZ„Zg A (Rg, (u) A(R(, (u), (17)

where the summation over v runs over all the wave
functions having energies within the chosen interval.
According to the theorem of von Laue and Friedel
we expect also in the case of A of Eqs. (7) and (16)

Q„A (R~, (u)A(R~, (u) =Z„A (R2, (u)A(Rg, (a))

=Z„A (R„v)A(RB, v), etc. , (18)

providing R„Rz, %3, etc. , are nottoo closeto the
surface of the crystal, and 4E covers a sufficiently
large number of states.

Equation (18) offers an important simplification.
Because, when it is fulfilled, we can obtain the den-
sity of electron states in the crystal without calcu-
lating the solutions of the WS equation in the zohole
crystal area. We can leave it at calculating the
electron charge only at one atom, the situation at
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this atom being repeated throughout the crystal.
For example, we can choose this atom at the center
of the coordinate system and then investigate

Q„A*(0,(o)A(0, 4s) (19)

the problem is to solve the eigenequation

WA(B, «) = E(«)A(R, «), (20)

and its dependence on E. Then, of the functions A
belonging to different irreducible representations
of the cubic point group, we need only such solutions
as are the basis functions for the total symmetry
representation (I', ) of the group, because only they
can give a nonvanishing contribution to (19) (cf.
Sec. IV).

IV. CONSTRUCTION OF FUNCTIONS A

A. Method

This section presents the technique of solving the
WS equation. Our attention is focused on solutions
belonging to the irreducible representation I', (cf.
Sec. III and the following notes). Mathematically,

I

E(«) = (& —&' r)l-eP' (21)

in each case. The function A can be constructed
similarly for all cubic lattices. For simplicity,
ere put the lattice parameter a as equal to the unit
distance.

jh general, A can be considered as a polynomial
composed of the infinite number of terms arranged
as follows (Rs=X + Y +Z ):

where K is a parameter and A should be continuous,
shouM have the required symmetry, and should ful-
fill certain conditions at the boundary and be nor-
malized; S' is the differential operator given for
two cubic lattices in Eqs. (13) and (14), and

const;
K2R2.

K2 ~

K4R'
K' ~

KR.
7

K

KBR2.
etc. ;
etc. ;

K4R4 ~

«'(x'+ Y'+ z');
K'R4 ~

«'(X'+ Y +Z');
8R4,

«(X+Y +Z);
10R4.

«(X+Y+Z)
etc. ;
etc. ;

«R(X yY+Z);
«'(X'+ Y'+ Z');

K10RB.

«R(X +Y +Z)'
«"(X'+Y'+ Z');

KR.
«'R'(x'+ Y'+ z') ~

«'(x'+ Y'+ z') ~

12RB.

«4'Rs(X'+ Y'+Z')
«"(x'+ Y'+ z');

etc. ;
etc. ;
etc. ;

(22)

KR.
«'R'(x'+ Y'+ z');
«R(X+Y+Z);
«'(x'+ Y'+ z');

10R8.

«"R4(X'+ Y'+ Z').
«R(X+Y+Z)
«10(X8 Ys Z 8).

12RS.
7

«'R (X+Y +Z)'
«'R(X+Y+Z)'
«(X +Y +Z )'

14R8.

«"R'(x'+ Y'+ z');
«'R (X +Y+Z);
«&4(Xs+ Ys+Zs).

etc. ;
etc. ;
etc. ;
etc. ;

etc. ; etc. ; etc. ; etc. ; etc. ;

It is clear how the further terms can be added.
Rows having the same powers of K and equal orders
d =a+b+c of the polynomials expressed in terms of
X' Y Z' form multiple rows. The exception is the
first multiple row, which is made uy of the terms
K' and K"2R2.

The polynomials which depend on X, F, and Z and
enter into a given multiple row are completely anal-
ogous to the characteristic polynomials of type F,
of Von der Lage and Bethe. ' They are so chosen as
to enable any polynomial of type 1, and the order
characteristic of this row to be represented as a
linear combination of the polynomials in this row.
Only the yolynomials of type 1", are important be-
cause other irreducible reyresentations of the cubic
point group give exclusively terms which vanish at
0. js(«R) (23)

The action of W on any of the polynomials of the
type in (22) gives a linear combination of polynomi-
als of the same type. From this point of view, the
polynomials form a complete set and can be com-
bined to fulfill Eq. (20) to the arbitrary degree of
the approximation for the solution. This approxi-
mation is the better the larger the number of differ-
ential operators of different orders we include in
our W and the larger the number of polynomials
(22) which fit (20). However, for the normalization
and the establishment of the boundary conditions the
approximate behavior of A at large distances from
the origin of the coordinate system should be suit-
able and known. Thus we choose the following com-
binations of (22):
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4 ~ ~

(KH), 'j,(«R);

(KH}, 'j,(«R);

~ ~ ~

«'(KH), 'j,(«R);

«'(KH),"j,(«R);

~ ~ ~

«'(KH),"j,(«R);

~ ~ ~ ~

«4(KH), 'j,(«R);

~ ~ ~

~ ~ ~

etc. ;
~ ~ ~

7

etc. ;

~ ~ ~

0 ~ ~ y
~ ~ ~ ~ ~ ~

(KH),"j,(«R); «'(KH), 'j,( R«); «'(KH), 'j,(«R); etc. ;

~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~

etc. ; etc. ; etc. ; etc. ;

Qo, Q&, (X2, . ..,
in the expression

E(«)= Qo+Qg«+&2«+Qg«+ '' '2 4 6

(25)

(27)

as will make a possibly large number of columns
and multiple rows of polynomials in (22) satisfy

FgEq. (20). H '(«) in (25) is the normalization co-
efficient of the wave function which has coefficient
function A '. In the present, use is made only of
the orders l for which one cubic harmonic occurs
in the combination of (25), which permits us to
drop the index t. '

Practically, we calculate the coefficients c,
and ~& in the following way. First, we make all
the polynomials of the first column of (22} satisfy
(20). This is achieved with o.'o= 1, and holds for
arbitrary combinations of functions (24). The
same can be done with the second column of (22)
if we consider that all (KH), ',j,(«R) are the eigen-
functions of the Laplace operator with the same
eigenvalue —~ . Then, ~j is the negative value of
the coefficient of the Laplace operator in W. With
the sc lattice as an example, this gives —with Eq.
(21)-n& equal to —~.

Now the matter becomes less simple. For ex-
ample, the four polynomials at the top of the third
column in (22) (two multiple rows) cam be made to
satisfy (20) by choosing the right o.a and coefficient

(KH), ' is a cubic harmonic of symmetry I', and
order l and j, is a spherical Bessel function of
order l. We seek such coefficients in the combina-
tion of (23) and (24)

A '=iv '(«)P)Z)Z c, , „(KH), ',j,(«R) «" (25)

and such

c4 p for (KH)4 ~j„so can the seven polynomials at
r .

the top of this column (three multiple rows) by
suitably choosing o'z (which will be different from
the previous) and the coefficients for (KH)4'j, and
(KH)6'j 6; and so can also the 11 polynomials at the
top of the column by choosing the right e2 and the
coefficients for (KH), 'j „(KH}8j» and (KH) 8'j»
etc. In all the cases (d & 10) examined in the pres-
ent paper the number of the functions (KH), ~j,
with l &0 needed in combination (25) to make Eq.
(20) satisfied by the polynomials taken from the top
of the third column in (22) equals the number of the
multiple rows less unity taken into account in the
column; a case in which the polynomials of Ref. 8
occur has to be classified separately because two
different (KH)&~~ have to be considered when we
seek to satisfy Eq. (20) for a complete multiple
row which has d = 12. The coefficient for the term
j 0 in (25) need not be determined; we put it as equal
to unity in each combination.

Coefficients can be similarly chosen to make the
polynomials in the columns following the third sat-
isfy (20). For the nth column in (22) (n &3), this
is done by calculating the coefficient n„& in Eq.
(27) and those for such functions « "(KH), 'j, of
Eq. (24) as have the power exponent m = n —3.
Then the coefficient &~ with p &n -1 as well as
those of the functions (24) with m &n —3, calculated
in the preceding steps, are put as constants into
the equations for &„& and c& „3. The number of
« '" ~'(KH), ~j, used in this operation was found to
be the same as for the third (n=3) column.

A characteristic point is that the number of the
parameters [the coefficients for the functions
«(KH), 'j, and those in Eq. (27)] used in the cal-
culations is clearly less than the number of the
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polynomials in (22) which we seek to make satisfy
(20). This number of polynomials equals the num-
ber of component rows times the number of the
columns after the second one. Ne can increase

accordingly the number of the parameters by re-
placing the dots in Eq. (24) with additional functions.
For example, we can choose the following combina-
tions of the polynomials in (22):

«'j,(«R); «'j,(«R); «'j, («R); etc. ;

«'j, («R); «4j4(«R); «'j, («R); etc. ;

«gp(«R);

+ +

~ ~ 4
y

«gp(«R);

K + +

etc. ;

K + + g6' etc. '
(28)

~ 0 ~ ~

«je(«R)'

K + + JB,'

K + +

0 ~ ~

«' jp(«R);

K4 — + — + — ~8

K + +

4 ~ ~

«'j, («R);

+ — + — g8,

K6 + - + j

etc. ;

etc. ;

etc. ;

The behavior of these combinations at large dis-
tances from the origin of the coordinate system is
also suitable for our purpose. Then the combina-
tion for A ' is supplemented with

S '=N '(«)KX Z c, , (KP), , j, («R)«~'
t' m

(28)

where KI' is the angle-dependent term in a given
function (28), and f' indicates the component row
into which the function belongs. [For example,
the coefficient for «'j, («R) is Fp f p ] But the in-
troduction of functions (28) is superfluous if we
consider that the coefficients c, , are exactly
zero, as was shown by numerical calculations
made for all the considered sets of multiple rows
and columns in the upper left corner of what would
be the complete Eq. (22) and for all kinds of cubic
lattices, "and also in the case of the interactions
between atomic neighbors more distant than the
first ones. This reduces the number of independent
equations to that of the coefficients in (25) and
(27) and, by simplifying the calculations, provides
a powerful tool for checking them.

Another characteristic point is that the equations
for the coefficients which make the polynomials of
the third column in ( 22) satisfy Eq. (20) are not
linear. The degree of the algebraic equation to
which the problem is reduced equals the total num-
ber of the components (KH), ', j, introduced into the

B. Problem of Convergence

The problem of the convergence of the method
can be examined in two aspects. First, we may
ask to what extent the individual solutions of (25)
and (27) can be considered as accurate. This—
with the whole problem confined to site 0-is re-
duced to an examination of the accuracy of

N '(«) =A '(0, «) (80)

development. Thus —after the equation has been
solved-the number of combinations in (25) equals
the number of the functions (KH), ', j, used in it.
Hereafter, we give the index ~ to different com-
binations of the sa.me (ÃH), ', . The inclusion in
calculations of more than three columns of the
polynomials does not increase the number of A ',
because the equations for the coefficients needed
for the polynomials in the columns beyond the third
are linear. The consequences will be important
in Secs. IVB-VII.

The cubic harmonics of I j used in the calcula-
tions are those in Ref. 7 with the normalization
factors omitted, excepting (KH) p ', which is three
times the non-normalized expression in Ref. V.
Table I gives the coefficients in (25) and (27) for
four multiple rows and various numbers of columns
considered in (22) for the fcc lattice. The detailed
data for c, , and &; for the sc lattice, and some
for the bcc lattice, will be published elsewhere. "'



NEW APP ROACH TO THE LINEAR-COMBINATION-0 F. . .
TABLE I. Coefficients c~ ~ and Q~ of Eqs. (25) and (27) for the fcc lattice when only /=0, 4, 6, and 8 are taken into

account. All coefficients c& &. ~ of Eq. (29) vanish for all &. The coefficient Qi =- 3 is used in the establishment of
all equations for c& ~, Q& and c

& q m.

Q2

C4, 0

C6, 0

C8, 0

3.612 657
—6.599 012
—5.715 378

2. 273 779

10~2

10
1Pi

3.448 426
—2.719073

V. 346 275
7.994031

10~2

10
1Pi

3.241 209
2. 176 445
1.015794

—l.308 137

10~2

10
1p2

2.890 003 10
1.047 368 101

—3.530 344 10
1.094 105 102

Q3.

C4 1

C6, 1

C8, 1

Q4

C4~ 2

C6, 2

C8~ 2

C4 3

C6, 3

C8

C4 4

C6, 4

C8

QZ

C4, 5

C6, 5

C8~ 5

Q8

C4 6

C6 6

C8, 6

—1.684 30
—3.336 87
—1.039 53

2.365 47

4.377 00
4.875 69
1.41121
6.91313

—V. 450 47
—6.854 37
—2. 346 52
—1.076 27

1.521 19
1.170 79
3.907 82
1.837 92

—6.680 03
—1.950 05
—6.530 57
—3.036 19

—1.040 4
3.249 2
1.086 7
5.060 6

10
10~2

10"

1p-5
10"
10-'
10~2

10~7

1p
1p 2

1pm 2

1p-8

1P 4

10
10

1p-10
10-'
1p 4

1p-4

1p-10
1p-6

1P 4

1p-5

—1.858 61
—3.988 56
—8.127 91
—l.670 10

5.980 17
3.99331
1.838 91
1.15045

—1.23297
—1.028 63
—2.976 84
—1.064 60

1.493 03
1.581 67
5.715 38
2.964 17

4.070 53
—3.11176
—1.001 24
—4.322 64

—1.018 1
5.381
l.837
8.826

10"
1Qm2

1p-1
10-'

10-'
10
1P-1

10 1

1p-6

10
10~2

j Q
2

10-'
10 4

10"3

10~3

10-10
1p-5
10"
10-'

10~10

10-'
1p 4

1P-5

—l.505 67
—5.495 37

2.695 77
—1.925 27

4.039 18
—2.509 77

1.VV6 84
—2.617 68

—6.966 45
—1.998 20

1.368 37
—6.306 77

8.906 02
—1.548 32

1.13332
4.822 31

—6.863 86
—1.166 4

1.001 9
1.137 8

9.7
—9.21

8.87
1.60

1p
10~2

1p 2

1p-1

1P-5

10
10~2

10

10
1P 4

10~3

10 4

1P-9
1p-5

10
10-'

10~11

10-'
1p-5
10-'

10~13

1p-8

10~7

1P-6

—1.083 19
—3.041 13

4.188 97
—1.448 25

2. 281 83
—3.416 69

2.358 43
—9.996 01

—3.15600
—2.413 60

1.341 60
—5.950 13

2.920 81
1.531 52
8.080 41
3.486 39

3.278 83
9.573
4. 828
1.991

5, 3
5.83
2.84
1.09

10
1pa2

jp-1

10-'
10
1Qm2

10~2

10~7

4

10~3

10 3

1p-9
1p-5
1p-5

10 4

0~7

1P-6
1P-5

10-13
1p-8

10~7

1P-6

and of E(v) within a certain interval of z. It is
found in Sec. VI that only solutions with K below a
certain constant value, usually much smaller than
10, are important for our purposes. In this case,
relatively good individual [N"'(v)] and E(z) can be
obtained even with the aid of only a few terms in
(25) and (27). This can be checked by calculating
[N"'(z)]' and E(g) in terms of a certain number of
the powers of v used in (27) and (30), and by com-
paring the results with those obtained in the next
(more developed) approximation. The convergence
is usually very good for small ~ (2-2. 5 or less);
for larger K it is the better the larger not only the
number of the powers of K but also the number of
the terms (KH), 'j, used in the calculations.

In the second step, we may ask how many of the
solutions of (25), or of the components (KH)", ', ,
have to be taken into account. Their number can
be established by finding how many (KH), ,j, are
needed for a fairly satisfactory approach to the
total electron charge in the crystal; see Sec. VI.
For fcc solutions having large powers of K, we find
this number to be larger than 4, but probably not

A i(tc, 8, p, R~)

prom. dhng the relation

aR~&. 2l(l+I)

K

(32)

very much so.
For the case of the sc crystal, in which the in-

terval of K corresponding to the electron states is
evidently larger than in the fcc crystal (see Sec.
VI; Ref. 16), more individual solutions as well as
more terms in each of them are necessary for a
good approximation.

V. ELECTRON STATES AND THEIR DENSITY

According to Eq. (16) we require that A ' vanish
at the surface of a crystal block equal to a sphere
with the radius A~. ' Since A~ is large-e. g. , - 10
when expressed in terms of the lattice parameter
taken as the unit distance-we have with good ap-
proximation
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is valid. If the number of the spherical Bessel
functions used for A ' and consequently also the
values of I in (31) are small, the relations (32) and
(31) do not hold only when z is very small. For
the larger K, which fill a much larger interval be-
cause the electrons in a crystal block are very
numerous, '~ the expression (31) can be considered
as exact. " The zeros of the whole function (31)
coincide with the zeros of the component functions

j, and are identical for all /, considering that the
I in the combination (31) are of the same (even)
parity. Hence, the quantization of A ' can be re-
placed by that of a single component of A"~, e. g. ,
jo(zR). The quantum condition is then

KR&= nm, n= &, 2, 3, . . ., etc. ,

and the density of states per unit K is"
dn Rq
dK

(33)

(34)

A similar reasoning can be applied to the func-
tions for I;4 I;, providing they can be considered
as sufficiently accurate when composed of not too
large a number of j, .

Now we normalize the relevant 4; using Eq. (4)
we obtain

f 4*edT=+, A ' (It„v)A '(R, , g) =1 (38)

for any K. Providing A does not change too rapidly
along the distance between two neighboring atoms,
the summation in (35) over the lattice sites can be
replaced by integration over the volume of the
crystal sphere. Then

where the summation over I and t includes all the
(non-normalized) cubic harmonics in I, except that
whose l= 0, and I, , is

I, ,=(4 v)

' J de J

dousing

[(KH), ', ]

The density of crystal states, D'(z), per unit
range of K and per volume of one crystal cell, can
be obtained by multiplying Eq. (34) by the number
of the electron charge provided by the cell at the
central atom, thus 1, times this atom's contribu-
tion

[A'& (0, ~) ]' (ao)

to the total charge carried by an orbital having the
quantum parameter e . In view of (30)—and owing
to the requirement that (38) or (38) be unity-we
have

D'(~) = [N '(~)]'R,/n =( ]. (I/2v')x'v, , (40)

where the expression within the square bra, ces is that
given in Eq. (38); v, is 1 for the sc crystal and 2 for the
fcc crystal, if the primitive translations from Sec.
II are used and the lattice pa, rameter a is put equal
to the unit distance (cf. also Secs. IVA and VIA).

The density of states D'(E) as a function of ener-
gy and per unit of volume (e. g. , v, further below)
can be obtained from the relation

GIv'~(~)l /2~'v. ]

x4vR, [1++,Q, (Q c, , ~'™)'I,,], (38)

g.Ar~*(R„~)A"(R„~)
= (I/v, )J [A L(R, /()] dQ (38)

D'(E) = (~E)-' f D'(~) d~ . (41)

f 'q', (~R)R'dR (37)

The integral (3'7) vanishes at the lower limit owing
to the behavior of j, at small R. At the upper
limit-R„being very large-all j, can be approxi-
mated by [sin(KR)]/tcR (we notice that all I in A '
are even numbers). We obtain

sin KR R2 dR
1

R
sin2KR

K R 2K 2K

which at R=R~ gives (I/2~ )R~ because sinvR, =O
at the boundary. Thus the right-hand side of Eq.
(38) is

because A ~ is real; v, is the volume of the atomic
cell and 0 = 3 &R„. In view of the orthogonality re-
lation between (KH), ', having different I, or the
same l and different t, any component of the in-
tegral (36) is proportional to

The integration in (41) is extended over this interval
(or intervals) of a for which the energies are with-
in the interval

(E ——,'hE, E+2 hE) . (42)

It should be noted that Eqs. (40) and (41) are re-
lated to only one A & solution. But we have many
A i (see Sec. IV and Sec. VI) for any z and each
can contribute to the electron density at 0. Thus
the total crystal density of states per unit range of
K and per unit of volume is

D(~) =Z, D"(~), (40')

where the components are (40)'s for different X. In
the same way the total density of states in the crys-
tal as a function of E and per unit of volume is

D(E) =Z D"'(E), (41')

where the components are those of Eq. (41). The
results of the calculations of D""(v) are discussed
in the Sec. VI; those for D(E) in Sec. VII.
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TABLE H. Positions of inflection points of D {K)
for fcc and sc lattices in different approximations. The
m figure at the top of each column indicates the largest
power exponent used in the development of Eq. {25).

fcc lattice; l=0 and 4 taken into account

m=o
no

inf lee tion
points

m= 1

15
13

m=2 m=3 m=4
7. 1 5. 8 5, 2

10.6 7. 2 8. 7
5. 0
6. 7

m=6
4. 9
7. 1

fcc lattice; l=0, 4, and 6 taken into account

m=o
no

inflection
points

m=1
14
21
44

m=2 m=3
6. 0 4. 9
6. 9 5. 0

13 8. 1

m=4
4. 1
4. 6
6. 4

3. 9
4. 0
5. 6

m=6
3.6
4. 0
5. 2

fcc lattice; L=o, 4, 6, and 8 taken into account

no
inflection

points

m=1
14. 5
13
19
14

m=2
5. 7
5. 1
7. 6
6. 7

m=3
4. 2
4. 2
5. 7
5. 3

m=4
3. 8
3. 5
4. 9
4. 8

m=5
3.4
3. 4
4. 5
4. 5

m=6
3.3
3. 1
4. 3
4, 3

sc lattice: l =0 and 4 taken into account

no
inf lee tion

points
m=7

11
ll

m=1
54
36

m=8
ll
10

m =-2

24
23

m=9
10
10

m —3
21
34

m = lO

10
9. 6

m=4
18
15

m = ll
9. 8
9

m=5
14
13

m =12
9. 6
9.2

m=6
12
11

m =13
9.4
9. 1

sc lattice; E = 0, 4, and 6 taken into account

m=o
no

inf lee tion
points

m=1
52
76

158

m=2
18
18
17

m=3
13
13
11

m=4
12
11
10

m=5
11
10
9. 0

m=6
10.5

9.2

8. 5

an interval or intervals of energy, there is also in
the present method a zone for the energies of elec-
tron states.

We can distinguish on D' (g) inflection points to
the right of which the decrease of D""becomes very
rapid for developed A 1'~. The abcissas z, ~ of these
points calculated in successive approximations, as
well as D"~ themselves, exhibit a tendency to con-
verge [see respectively, Table II and Figs. l(a)-1(d)].
%hen, for the fcc lattice, the approximation for
A 1' and convergence of z~ are rather satisfactory,
we have

[cf. Eqs. (56) and (58)]; (b) the functions A '" re-
sponsible for Eq. (44) have been calculated with the
same primitive translations as those used for (45)
(cf. the beginning of Sec. IV A); and (c) Eq. (45) de-
notes the limiting value of lkl or z, which can be
accepted quasicontiouously by the electron states
in the fcc crystal of Bloch starting from lkl =0. In
the idealized case of very accurate A~1'~ we may
expect the maximum value of z, for the fcc crystal
to come close to that of Eq. (45). '8

The above reasoning is supported also by the cor-
respondence between the meaning of the maximum
of lkl and the maximum of z for the behavior of
A, respectively, in the theory of Bloch and the pres-
ent one. The existence of a certain maximum z
which can be accepted by electron states implies
that the wavelength A= kg ' of the coefficient func-
tion A 1'~ at large distances R cannot be less than
a certain critical length. This prevents A"'~ from
oscillating too rapidly, in agreement with the as-
sumption made in deriving the equation and the
properties for A"~'~ (cf. also Sec. VIB). But this
result also is fully consistent with the LCAQ theory
of Bloch. For, an arbitrary vector k' in the recip-
rocal space can be represented as the sum k+K&,

where K& is the vector of the reciprocal lattice and
k is the vector inside the first Brillouin zone, or
on its surface. The property K& ~ R; = 2&5&; gives

zk" Rf = f(k'Rl+2~59f) = elk R

and thus (2) or (47) cannot have a wavelength
shorter than that obtained from the maximum value
of k on the surface of the first Brillouin zone. '7

The next point of importance is the maximum
which a single atom at R,. and the band of the crys-
tal states can contribute to the total electron charge
of the crystal. If the atomic orbitals fulfill Eq. (4),
this value is given in the LCAQ theory of Bloch
simply as

Q(R() =Z"„(I/N) e '"'"~ e'"'"~

x f y~(r R, )y(r— R. , ) d~ —(48)

K] =4. 3. (44) equal to

Let us note that the maximum value in (44) is not
far from the maximum value of lkl for the first
Brillouin zone of the fcc lattice

(—' ~5)~ = 2. 51, (45)

which holds if (1, 1, 0); (1, 0, 1) and (0, 1, 1) are
taken as the primitive translations. This is the
expected result if we take into account that (a) the
functions of Eq. (24) are —similarly to Eq. (2)—the
free-electron eigenfunctions with

(46)

(1/N)Z „I=1- (49)

because the summation is extended over all the
states of the Brillouin zone. Equation (49) is
fundamental for an explanation of the experimental
data for solids. In our calculations —confined to
I'& and related to site 0—we should have the same
result for Q and we consider the discrepancy of
Q(0) from 1 as the measure of the inaccuracy of
the set of solutions used for it.

The maximum contribution to the electron density
can be calculated when all quantum states whose
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TABLE III. Values of Q(5) [see Eq. (50)] for fcc and

sc lattices in different approximations. The figures m
have the same meaning as in Table II.

fcc lattice; l =0 and 4 taken into account

the energy band can be obtained as the extreme val-
ues of E~ within the intervals (0, «„"). This is done

in Sec. VII for the fcc lattice as an example.

B. Property of Orthogonality
m=1
187

m=2
21.6

m=3 m=4
7.30 15.8

m=5
8. 60

fcc lattice; l =0, 4, and 6 taken into account

m=o m=1 m=2 m=3 m=4 m=5
857 76. 2 15.8 7. 88 5. 15

m=o m=1
218

m=2
12.6

m=3 m=4
5.40 3.71

m=5
2. 89

sc lattice; l =0 and 4 taken into account
m=0 m=1 m=2 m=3 m=4

2560 302 671 99.6
m=5
49. 1

m=7
26. 7

m=8 m=9 m=10 m=ll
22. 6 19.9 18.2 16.9

m=12
15. 8

sc lattice; l = 0, 4, and 6 taken into account

m=0 m=1 m=2 m=3 m=4
20100 132 50. 1 32. 1

m=5
24. 9

fcc lattice; 1=0, 4, 6, and 8 taken into account

m=6
10.9

m=6
4. 02

m=6
2. 50

m=6
33.9

m =13
15.0

m=6
21.0

Two LCAO functions, either (i) with different «,
or (ii) with the same «and different X, are orthog-
onal. Owing to Eq. (4) and the assumptions charac-
teristic for the derivation of Eq. (36), the orthog-
onality of 4' becomes equivalent to that of A~~'~.

The property (i) can be deduced from the behavior
of j,(«B) at very small and very large It and is valid
for any approximate A"". The property (ii) is due

to the operator 8' being Hermitian'; this orthog-
onality can be fulfi11.ed rather accurately by the ap-
proximate solutions for rather small K only. For
example, for the developed A ~' of the present pa-
per (the fcc lattice) calculations show it to be well
fulfilled for all & only for K & 2.

C. Total Number of States in the Crystal

wave functions do not vanish at 0 are taken into ac-
count. Thus

Q( 0) =Z, f, D""(«) d« (5o)

since, in principle, the densities of all states —also
those of very large K —can add up significantly to Q.
This is so in the case of free electrons for which
Q(0) is infinity. The values of Q(0) in differentap-
proximations for A ~' are given in Table III. We
see that for little developed Ar'' (m = 0) the values
for (50) are still infinite. However, when the terms
with m & 0 are introduced in (25), we have a zonal
(band) structure, i. e. , Eq. (50) can be written

Q(o) =Z„f "D"'(«)d«, (51)

where K~ are finite values.
From Figs. 1(a)-1(d) it is evident that for well

developed A ~'~ these values should not be much

larger than the abcissas of the inflection points dis-
cussed at the beginning of this section. In fact,
when «, of Eq. (44) are put as the upper limits of
the integrals (51), the difference between (51) and

(50), calculated for the case of solutions corre-
sponding to (44), is only about 12% of (50). For
K" somewhat larger than K&, viz. ,

« =3.V; « =3.5; «„=4.55; « =4. 6 &
(52)

this difference diminishes to about 1.5%. Another
characteristic point is that for well developed A &'~

the difference between (51), or (50), and (49) de-
creases distinctly (Table III), and E~(«) also can be
rather accurate within the intervals (0, «„"), which
enables the density of states per energy unit to be
calculated from Eqs. (41) and (41'). The limits of

The multitude of A '" for the same K is impor-
tant not only for the accurate calculation of Q(0)
(see Table 1II), but also when the total number of
the electron states in the crystal is considered.
Since j, with /»0 —which may dominate in the de-
veloped A "~'" (see Ref. 20)—have a smaller num-

ber of zeros in a given interval for KB„ than has

j0, we can expect that quantization of very developed
Ar'~ according to the boundary condition (16) will
not give more states than will give the quantization
of a single component jo. Therefore, for an aver-
age macroscopic crystal (Rs-10 ) the number of
states for an individual X is at most of the order of
about 10, because, as has been pointed out, only
K not exceeding several units in magnitude contrib-
ute to the electron density of the crystal. ' The re-
mainder of about 10 electron states in the crystal
should originate from the multiplicity of solutions
A ~' for the same K as well as from A belonging
to the irreducible representations different from
r, .

Let us note that A ~' (R, «) =A ~' (R, —«') and the
corresponding E («) = E (- «), thus the states having
K are identical with those having —K and there is
no degeneracy associated with the sign of K.

VII. D(E) DEPENDENCIES AND THEIR COMPARISON
WITH THE RESULTS OF THE THEORY OF BLOCH

The method of the present paper can be compared
in essence with that of Bloch when the energy de-
yende'nce of the density of states is calculated by
both. In the present paper we do this for the exam-
ple of the fcc lattice and for two limiting cases:
(i) nearest-neighbor interaction between atoms, or
the tight-binding approximation; and (ii) almost-
free electrons. Bloch's D(E) for case (i) is ap-
proached in the following way. First, the volume
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Average density of states in different approximations versus E in the fcc lattice with the nearest-neigh-
bor, or tight-binding, interaction.

Energy
interval

D(E) of the present
method calculated with

l=0, 4, 6, and8;
m=5'

D(E) of the present
method calculated

withl=o, 4, 6,
and 8 m=6~

&(E) of Bloch
[cf. Eq. (54)
for E and the

relevant
argument]

(1,
(29/3O,
(28/3O,
(2v/3o,
(26/3O,
(25/3O,
(24/3O,
(23/3O,
(22/3O,
(21/30,
(2O/3O,
(le/3o,
(18/30,
(17/3O,
{16/3O,
(15/30,
(14/30,
(13/30,
(12/3O,
(11/30,
(10/30,
(9/30,
{8/3O,
(v/3o,
(6/30,
(5/3O,
{4/3o,
(3/3O,
(2/3o,
1/30,

2e/3o)
28/30)
2v/3o)
26/3O)
25/30)
24/30)
23/30)
22/3O)
21/3O)
20/30)
19/3O)
18/30)
17/30)
16/30)
15/30)
14/30)
13/30)
12/3O)
11/3O)
10/30)

9/3O)
8/30)
V/3O)

6/30)
5/30)
4/30)
3/3O)
2/3O)
1/30)
o )

Q ~ 032
0. 061
0. 082
0. 098
0. 115
0. 132
0. 146
0. 161
0. 179
0. 192
0.214
0. 230
0. 247
0. 263
0. 295
0, 305
0. 335
0. 359
0. 386
0.415
0. 456
0.489
0.531
0.582
0.632
1.162
1.V85

2. 467
3.19
4. 07

0. 032
0. 061
0. 082
0. 098
0. 115
0. 132
0. 146
0. 161
0. 179
0. 192
0. 214
0.230
0.247
0.263
0.295
0.305
0.335
0.359
0. 386
0.415
Q ~ 456
0.489
0. 531
0. 582
0. 632
0. 697
0. 777
1.055
l. 64
2. 25

0. 033
0. 061
O. 078
0. 106
0. 110
0. 127
0. 152
0 ~ 160
0 ~ 177
0. 192
0.215
0.224
0.256
0.258
0.301
0.307
0.320
G. 363
0, 399
0.410
0. 457
0.481
0. 533
O. 585
0.632
0.693
0.777
0. 865
1.01
1.16

(o, - 1/30)
(—1/3O, —2/3O)
(- 2/3O, -3/3O)
(-3/3O, -4/3O)
(—4/30, —5/30)
(- 5/30, —6/30)
(- 6/30, —7/30)
(- 7/30, —8/30)
(- 8/30, —9/30)
(- 9/30, —10/30)

(-1O ~30, —11/3O)

5.21
7. 45
5. 02
5.34
5. 66
6.34
8. 04

14.62
2. 54
4. 53

5. 11
9. 94
4. 22
5. 04
5. 69
6, 21
V. 21
9.87
2. 86
4. 65

1.56
l. 53
1.58
l. 63
1.70
1.73
l. 88
2. 00
2. 18
2. 77

Total electron
charge in the
band per one
atomic site

2. 81' 2. 47 1.00

Figures l and m have the same meaning as in Table IV and V.
These figures differ only by about 1.5-3% from those given in Table V.
See Eq. (49).
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TABLE V. Average density of states in the fcc lattice
with nearest-neighbor, or tight-binding, interaction as
produced by the contributions from different subbands.
Case: i =0, 4, 6, and 8; m=6. Figures E and m have
the same meaning as in Tables I-IV. For comparison
with another approximation by the theory of Bloch see
Table IV.

E(k„,k„k, )

= —,
' (cosk„cosk, +cosk, cosk, + cosk, cosk„), (54)

and the interval

Energy interval L) c~1(E) Dc~2(E) Dc~3(E) Dc~4 (I g(E)a 4E =—1
30 (55)

(1,
(29/30,
(28/30,
(2v/3o,
(26/30,
(2s/3o,
(24/30,
{23/30,
(22/3O,
(21/30,
(20/30,
(i9/3o,
(18/30,
(17/30,
(16/30,
{15/30,
(14/30,
(13/30,
(12/30,
(ii~30,
(10/30,

(9/30, ',

(8/3O,
'

(V/3O,
(6/30,
(5/30,
(4/3o,
(3/3o,
(2/3o,
(1~30,

(o,
(- 1/30,
(—2/3o,
(-3/30,
(- 4/30,
{-5/30,
(—6/30,
(- V/3O,

{—8/30,
(—9/30,

29/3O)
2S/3O)
2v/3o)
26/30)
25/30)
24/30)
23/3O)
22/3O)
21/3O)
20/30)
19/30)
18/30)
17/30)
16/30)
15/3O)
14/30)
13/30)
12/30)
11/30)
10/30)

9/3O)
S/3O)
v/3o)
6/30)
S ~30)
4/30)
3/3O)
2/3O)
1/30)
0 )

—1/30)
—2/3O)
—3/3O)
—4/30)
—5/30)
—6/30)
—7/3O)
—s/3o)
—9/30)
—iO/3O)

0 ~ 009
O. 017
0. 022
0. 026
0. 030
0. 036
0. 040
0. 044
0. 048
0. 051
O. 057
0. 064
0. 068
0. 072
0. 081
0. 085
O. 095
0. 099
O. 110
0. 118
O. 131
0. 146
0. 156
0. 178
0. 196
0. 223
O. 26Q

O. 302
0. 38
0. 48

2. 64
6. 66

~ 4 ~

0. OQS

0. 015
0. 020
0. 024
0. 028
0. 032
0. 036
0. 038
0. 044
0. 047
0. 053
0. 056
0. 060
0. 066
0. 072
0. 075
0. 081
O. 088
O. 098
0. 101
0. 112
0. 120
0, 128
0, 141
0. 155
0. 165
0, 181
0, 205
0. 22
0. 24

O. 28
0. 31
0. 35
0.40
0. 47
0.52
0. 56
0. 47
0. 19
0. 01

0. Oil
0. 020
0. 027
0. 032
0. 038
0. 043
0. 047
0. 054
0. 058
0. 063
O. 071
0. 073
0. 081
0. 085
0. 096
0. 097
0, 108
0. 117
0. 121
0, 134
0. 144
0, 153
O. 170
O. 181
0. 192
0, 211
0. 232
0. 255
O. 28
0. 53

0. 79
1.05
1.41
1.86
2. 37
3. 04
4, 15
6. 97

0. 005
0. 010
0. 013
0. 016
0. 019
0. 021
0. 023
0. 026
0. 029
0. 030
0. 034
0. 036
0. 038
0. 040
0. 046
0. 048
0, 050
0. 056
0. 057
0, 061
0. 068
0. 070
0, 078
0 ~ 083
0. 088
0. 097
0. 103
0. 293
0.76
1.00

1.40
1.93
2. 46
2. 78
2. 85
2. 65
2. 50
2. 43
2. 67
4. 64

0. 033
O. 062
0. 082
0. 098
0. 115
0. 132
0. 146
0, 162
0. 179
0. 191
0. 215
0. 229
0. 247
0. 263
O. 295
0. 305
0. 334
0. 360
0. 386
0. 414
0. 455
0. 489
0. 532
0. 583
0. 631
0. 696
0. 776
1.055
1.64
2. 25

5. 11
9. 95
4. 22
5. 04
5. 69
6. 21
7. 21
9. 87
2. 86
4. 65

Total e1ectron
charge in the band 0.43
per one atomic site

0. 21 O. 84 0. 99 2. 47

Some figures in this column differ by unity at the
last decimal place from tho~e of the corresponding col-
umn in Table IV in view of the rounded values forD~'"(E)
in the present table.

of 8 of the first Brillouin zone is cut out by xy,
yz, and zx planes and approximated by that of
62500 equal cubes. Then for E(k„,k„,k, ) of Bloch
we have

E(k„,k, , k, ) = (E —E' —y)/qP, (52)

where E is the Bloch energy and E, y, q, and P
have the same meaning as in Eq. (21), thus-in the
case of the fcc lattice—

has been chosen. The value of (54) is between 1
attained for k„=k,=0, = 0 and —3 obtained on the
diagonals of the squares on the boundary of the first
Brillouin zone corresponding to the primitive trans-
lations used in Eq. (54). Since P is usually con-
sidered as negative, the maximum value of (54) can
be referred to the bottom, and the minimum to the
top of the energy band. An approximation to Bloch's
D(E) can be obtained when the number of cubes for
which the Bloch energies are enclosed in any of the
40 intervals of (55) is calculated for the interval
between 1 and —3.

The same magnitude of the energy interval as in
(55) also is assumed in the (approximate) calcula-
tions of the D(E) of the present method. These
D(E) are little affected by the value of the interval
between two neighboring values of ~, assumed as
0. 002. The number of the considered points of ~
is determined by the magnitude of the intervals
(O, v ). The inclusion of points with v& s will not
change D(E) significantly providing Eq. (51) is a
good approximation for Q(0). Two D(E), calculated
for rather developed approximations for A i'" and
E, are given in Table IV. The contributions to
one of these D(E) made by individual subbands are
presented in Table V. D(E) can be considered as
accurate only in the interval 1& E & 0. 15, because
the solutions with a & 2 are the only ones which con-
tribute to D(E) within this interval. For E & 0. 15-
and for the approximations in Table IV—important
contributions to D(E) come from states whose v is
much larger than 2. In this case the developments
for A ' and E are very inaccurate and the re-
sults given in Tables IV and V can only be con-
sidered as a very poor approximation to D(E).

The limits of the energy band for the fcc lattice
can be obtained as the maximum and the minimum
value of E inside the intervals of a between zero and
(52), if—for example —the more accurate of the
approximations in Table IV is used. One of these
values is attained by all E' at x =0 and equals 1.
The other is provided by E4 at I(;=3.2 and equals
—0. 33. In the considered approximation, there-
fore, we obtain band limits identical with those
given by the theory of Bloch.

The present scheme can be compared more ac-
curately with that of Bloch for almost-free elec-
trons. This approximation assumes that V(r ) and

U(r ) tend to zero, so that the electrons in the lat-
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TABLE VI. Density of states D(E) 7t in the fcc lattice for the almost-free electron approximation. Present theory
in the case ofl = 0, 4, 6, and 8; m =6 (figures 1 and m have the same meaning as in Tables I-V) vs the theory of Bloch.
Only the values corresponding to states below a critical point in the theory of Brooch [I kl = 2WS ~=2.72] are considered.

0.05
0.10
P. 15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

A, =I
l.377 142 12 10
2. 673 941 98 IQ"2

4.010 059 66 10
5.345160 01 10 2

6.678 91479 10
8.011004 98 10"
9.341 122 54 10"
l.066 897 23 10
l.199427 38 10
1.331 676 20 IP"

~2K iDCpX(g)

1.203 081 90
2.406 362 21
3.610 036 Vl
4.814 295 82
6.019322 17
7.225 288 01
8.432 352 89
9.640 661 81
1.085 034 29
I.206 150 58

A, =3
10 ~ 1.647 21202
10 3.294 437 18
10 4.941 688 36
10 2 6.58897788
10 8.236 31734
10 9.883 71712
10" l.15311864
10 2 1.31787327
10 l.482 636 17
10" 1.647 407 69

A, =4
10 8.125 639 78
10 I.625 258 67
10 2.438 215 34
10 3.251 566 35
IO-' 4.06544579
10 4. 879 990 05
10 5.695 338 26
10 6.511633 19
10 V. 329 021 72
10 8. 147 655 47

Total value
from columns

with &=I
to &=4

cf. Kq. (59)
10" 5.000000 02 10
10" l.000 000 00 10
10"2 l.500 000 00 10
10 2 2.000 000 00 10"i

10" 2. 500 000 00 10"
10"2 3.000 00001 10
10 3.500 000 00 10"
10 3.999 999 99 10"
10"2 4.500 000 01 10"
10 ~ 5.000 00000 10"

Bloch
[cf. Eq. (57))

0.050 000 00
0.100 000 00
0.150 000 00
0.200 000 00
Q. 250 000 00
0.300 000 00
Q. 350 000 00
0.400 000 00
0.450 000 00
0.500 000 00

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
l.00

l.463 618 93 10",
1.595 232 56 10"
l.726 495 96 10
l.857 389 86 10
1.987 896 91 10
2.118001 65 10
2. 247 690 52 10"
2.376 951 79 10
2.505 775 49 10"
2.634 15348 10"

l.327 424 01
1.448 86138
1.570 467 26
l.692 243 85
l.814 19091
1.936 305 70
2.058 582 90
2.181014 57
2.303 590 07
2.426 296 03

10 l.812 187 92
10 1.976 976 69
10 2, 141773 52
10 2.306 577 61
10 2.471 387 80
10 2. 636 202 50
10 2.801 01975
10 2.965 837 13
10 3.130 651 69
10 3.295 460 05

Ip-' 8.96769168
10 9.789 293 84
10" l.061 263 27
10 l.143788 68
10 I, 226 52438
10 1.309490 13
IO-' 1.392 7O678
10 l.476 19643
10 l.559 982 53
10-' I.64409000

10 5.500 000 03
10" 6.000 000 01
1P 6.500 OQO 00
10 6.999 999 97
10 7.499 999 98
10-i 7.999 999 97
10 8.499 999 92
10 8.999 999 91
10" 9.499 999 77
IO-' 9.99999953

IO-'
10-i
10"
10
IP i

10"
10
10
10 i

IO-'

0.550 000 00
0.600 000 00
0.650 000 00
0.700 000 00
0.750 000 00
0.800 Qoo 00
0.850 000 00
0.900 000 00
0.950 000 00
1.000 000 00

1.05
l.10
I.15
l. 20
I.25
1.30
1.35
I.40
1.45
I.50

2.762 079 21
2.889 547 79
3.016 555 95
3.143 102 13
3.269 18640
3.394 810 78
3.51997944
3.644699 24
3.768 980 45
3.892 837 82

10 2.549 11620
10-' 2.67203130
10" 2.795 018 86
10 2.918052 93
IO-' 3.O411O358
IO-' 3.16413632
10" 3.287 11122
10 3.409 981 66
10 3.532 692 66
Ip" 3.655 178 57

10 3.460 258 27
10 3.625 041 77
10" 3.789 805 56
IO-' 3.954543 86
10" 4.119250 50
10 4. 283 91847
10- 4.448 540 31
10 ' 4.61310793
10 4.777 612 59
10 4.942 044 99

10-' 1.72854551
10 l.813377 47
10 1.898 61637
10" l.984 294 95
10 2.070 448 46
10" 2. 157 11481
10" 2. 244 335 12
10 2.332 153 73
10-' 2.42061888
10 2.509 782 93

10 1.049 999 92
IO-' I.O9999983
IQ I.149 999 67
10 1.199999 38
10" 1.249 998 89
10 I.299 998 03
10 1.349 996 61
10" 1.399 994 25
10 I.499 99Q 46
10"i 1.499 984 43

l.050 000 00
l.100 000 00
1.150 000 00
I.200 000 00
I.250 000 00
1.300 000 00
1.350 000 00
l.400 000 00
1.450 000 00
l.500 000 00

l. 55
l. 60
l.65
1.70
1.75
1.80
l.85
l.90
l.95
2.00

2.05
2. 10
2. 15
2. 20
2.25
2.30
2. 35
2. 4Q

2.45
2. 50

4.016 292 10
4. 13937198
4. 26211718
4.384 582 29
4.506 841 75
4.628 996 62
4.751 18347
4.873 585 65
4.996 447 71
5.120 094 34

5.244953 67
5.371 58718
5.500 727 71
5.633 327 12
5.770 616 75
5.91418432
6.066 07204
6.228 90245
6.406 042 00
6.601 81379

IO-' 3.77735988
10 3.899 13898
10-' 4.02039478
10" 4.140 975 32
10" 4.260 688 28
10" 4.379 289 03
10 i 4.49646483
IO-' 4.6118158O
10 4.724 830 52
10 4.834 856 33

10" 4.941 063 47
10 5.042402 17
10 5.137 553 08
lo-i 5.224 870 59
10 5.302 321 31
10 5.367 420 48
10 5.417 172 50
10 5.448 024 40
10 5.455 847 83
10 5.435 970 03

IO-i

10
IO-'
IO-'

10 i

10"i
IP-i
IO-'
I0» f

I(}%i

10
10"
10"
IO-'

IP i

10
IOW i

IO-'
Ip&f

10

5.106 395 67
5.270 654 22
5.434 810 31
5.598 853 53
5.762773 23
5.926 559 19
6.090 201 57
6.253 691 60
6.417 021 55
6.580 18544

6.743 17991
6.906003 90
7.068 660 52
7.231 15746
7.393 507 66
7.555 730 81
V. 717 854 55
V. 879 91541
8. 041 960 26
8.204 048 05

IO-'
10"
IO-'
IP-i
10-i

Ip~l

IQ~i

I0~i

10

IQ~i

10
IQ~i

10
10
10
Iow i

I0~i

10

2. 599 702 94
2.690 441 07
2.782 065 42
2.874 650 Gl
2.968 278 17
3.063 038 50
3.159030 63
3.256 36418
3.355 160 39
3.455 553 88

3.557 694 15
3.661 747 64
3.767 900 34
3.876 360 25
3.987 360 55
4.10116343
4. 218 06401
4.338 395 69
4.462 535 66
4. 590 91188

10 I, 549 975 06
IO-' 1.59996O62
10-' 1.64993877
I(} i 1.69990616
10 l.749 858 14
10 l.799 788 33
10 1.849 688 05
10 1.899 545 72
10" l.949 346 02
10 l.999069 00

10" 2.048 689 11
10 i 2.098 174 08
10 ' 2.14748416
10-' 2.19657154
10 2. 245 380 63
10 2.293 849 90
10 2.341 91630
10 2.389 523 79
10" 2.436 638 57

2.483 27437

l. 550 000 00
l.600 000 00
l.650 000 00
l.700 000 00
l.750 000 00
l.800 000 00
1.850 000 00
l.900 000 00
I.950 000 00
2.000 000 00

2.050 000 00
2. 100 000 00
2.150 000 00
2. 200 000 00
2. 250 000 00
2.300 000 00
2.350 000 00
2.400 000 00
2.450 000 00
2. 500 000 00

2. 55
2. 60
2. 65
2.70

6.821 778 45
V. 073 10308
V. 365 049 33
V. 709 603 63

10 5.383 283 53
10 5.292 469 93
10 5.158 377 10
10 4.976 582 75

IO»i

I(} i

10
IO-'

8.366 250 79
8.528 654 65
8.691 361 06
8.854487 61

10" 4.724 Oll 23
10 4.862 388 57
10 5.006 678 44
10" 5.157 608 28

10 2.529 53240
10 2.575 661 61
10" 2.622 146 58
10 2.669 828 22

2. 550 000 00
2. 600 000 00
2.650 000 00
2.700 000 00
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tion (2) for a single band is the same for all lattice
types and all kinds of atomic interaction.

(ii) Unlike in Bloch's method, functions A are
real; they meet the corresponding requirement of
Ref. 24 for the coefficients in the best LCAO func-
tion for a given many-atomic system.

(iii) For the energy intervals for which the pres-
ent method here affords accurate solutions, the dis-
tribution of the electron density in relation to ener-
gy (the density of states) is close, or very close,
to that of Bloch. This holds both for the tight-bind-
ing and the almost-free electron approximations.
It should be noted that for energy intervals corre-
sponding to small w the accurate density of states
can be obtained already with fewer comyonents X

than used in Tables IV-VI and Fig. 2, i.e. , fewer
than four.

(iv) Unlike the wave functions and energies of
Bloch, which depend on the k„k„and k, compo-
nents of the vector k, those in the present method

depend only on one (scalar) parameter z. More-
over, the energy can be expressed as a sum of the
powers of this parameter. This may be expected
to hold not only for the solutions of I", but also for
those of the representations I', 4 F,. Then, for a
perturbation problem, the integration generating
the Green's function for (cubic) crystals is reduced

to a one-dimensional one and —for solutions with
energies within the band —we can classify the states
into such as have wave functions which remain finite
for large distances from the perturbation center
and such as have those which fall off exponentially
as these distances grow; both kinds of states may
be important for the scattering problem. ' The in-
tegration limit can be extended to infinity practical-
ly without loss of exactness (cf. Sec. Vl). In the
Bloch theory, the corresponding classification of
states was possible only for the free-electron-like
[& (k) isotropicj systems; the Green's function
for crystals and energies within the band could be
reduced to a one-dimensional integral, and then
calculated, only for a sc lattice with nearest-neigh-
bor interaction.
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Details of the K x-ray emission spectra of K' and Cl in KCl are discussed. It is shown that
the valence hole is effectively localized to one atomic site during the lifetimes of both the po-
tassium and chloride 1s holes. This localization is found to be an appreciable factor in the
processes contributing to the emission. Calculations of the relative intensity of the cross-tran-
sition lines, of the type 1sK 3pc&, &P&, are reported. The results of the calculations
agree, to within 40%, with the observed values. The widths of the valence emission lines, due

to the transitions 1sK 3pc~ and Isc~ 3pc~, &p~ 3 are considered. Because of the local-
ization of the final hole state, both initial and final hole states of the &p~ 3 transition see the
same crystal potential, and thus there is no first-order broadening due to spatial variation of
that potential. This is not the case for the cross-transition line &Q5. A model due to Dexter
is then used to show that the corrected width of the 5P& line should be about 0.5 eV greater than

that for KP~ 3. This corresponds to the observations made by Deslattes.

INTRODUCTION

The E x-ray emission from the constituents of
KCl have been among the most studied spectra in
the field, One of the prime reasons for this is the
ready accessibility of these spectra to present ex-
perimental techniques. Also playing a part in the
motivation for these studies is the fact that KCl is
a typical ionic crystal; understanding the emission
processes from KCl is almost a prerequisite for
unraveling the spectra from more complicated
ionic crystals. In the interpretations, it has been
helpful that the constituent ions are isoelectronic
with argon, the most studied by x rays of the rare

gases.
The room-temperature experimental data from

KCl are reproducible and do not warrant further
investigation at this time. ~ 3 Also, the interpreta-
tion of the main features of the spectra are well
substantiated. The present discussion uses that
interpretation as a starting point for considering
some details of the spectra.

The most intense line in each spectrum is KP& 3,
which is due to transitions 1s ~- 3p essentially
within each ion. '& ' This line in the chlorine
spectrum has a full width at half-maximum, re-
ferred to hereafter simply as width, of 0.4+0. 1
eV after instrumental, K-state, and spin-orbit


