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The microscopic Grueneisen parameters and the temperature dependence of the thermal
Grueneisen parameter of NaCl are calculated from a shell model with six parameters, five

of which are taken as pressure dependent.

tal elastic, optical, and dielectric data at absolute-zero temperature.
The discrepancy is primarily attributed to the experimen-

in 6—8% with experimental data.

tal error of the input data that are used to determine the parameters of the model.

All parameters are determined from experimen-

The results agree with-

Calcula-

tions have also been made for two versions of the rigid-ion model (RIM) which indicate that
the apparent success previously attributed to the Kellermann model is mainly due to cancel-
lation of errors arising from omitting second-nearest-neighbor interaction and electronic

polarizability.

I. INTRODUCTION

While the caloric equation of state and the tem-
perature dependence of the Debye temperature for
NaCl have been extensively studied theoretically
on the basis of the rigid-ion model (RIM) of Keller-
mann'+? as well as several versions of the shell
model®-® (SM), for the thermal equation of state
and the temperature dependence of the Grueneisen
parameter y, the only theoretical calculations avail-
able are based on the RIM.™** Moreover, the re-
sults of Arenstein ef al.!® which are the only theo-
retical data for the temperature dependence of the
Grueneisen parameter of NaCl are based on a

dubious procedure of determining the two repulsive
parameters for the nearest-neighbor short-range
interaction. These authors prefer to determine the
repulsive parameters from the bulk modulus and the
TO frequency and ignore the equilibrium condition.
The results refer to a series of different values for
the interatomic distance, and the quality of agree-
ment with experimental data depends on the proper
choice of one of these values. These “values have
been corrected to the actual lattice spacing at each
temperature” by Meincke and Graham!! who find
that the general shape of the ¥ vs T curve shows a
minimum near 11 °K and agrees qualitatively very
well with their own experimental values, but that
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the theoretical data above the minimum are up to
10% higher than the experimental results. On the
other hand, Barron et al.® determine for NaCl and
KC1 the volume derivatives of the moments of the
frequency spectrum v(z) [see Eq. (5.1) below] from
the experimental thermal expansion data of Rubin
et al. and of White, * and find fair agreement with
theoretical data based on the Kellermann model in
connection with the equilibrium condition and with
acceptable values of the remaining repulsive pa-
rameter. Except for the investigations of Fletcher
and Powell!? and of Morley, !* the above-mentioned
theoretical treatments are based on the quasi-
harmonic approximation!® and neglect the anhar-
monic contribution arising from thermal expansion
by using temperature-dependent input data for the
determination of the repulsive parameters. The
primary objective of the papers of Fletcher!? and
of Morley® is to study the anharmonic effects on
thermal expansion at high temperature, and since
the results are presented in the form of volume vs
temperature data they do not yield accurate infor-
mation on the Grueneisen function v(7T) and are not
suitable for studying the effect and limitations of
the lattice dynamical model underlying the theoret-
ical calculation.

For two other alkali halides, Nal and KBr, Cowley
and Cowley'® have calculated the microscopic
Grueneisen parameters (mode v’s) and the temper-
ature dependence of the macroscopic Grueneisen
parameter from a simplified version of the SM.

The agreement of their results with experimental
data is good for Nal at low temperatures (T/@=0.1
to 0.2, where ®=Debye temperature), but for

both materials the theoretical results are about

20% too high at high temperatures (7> @®). Itis
somewhat surprising that a better theoretical model
seems to give not as good agreement for the general
shape of the ¥ vs T curve than the RIM.

In view of this situation, questions concerning the
quality of the RIM arise. How good an approxima-
tion is the RIM for the Grueneisen parameter and
its variation with temperature ? Is its apparent
success real or caused by a cancellation of errors
due to various approximations? Can the agreement
between theory and experiment be improved by
using an appropriate version of the SM? Do an-
harmonic effects become important at intermediate
temperatures (T~ ®)?

The main objective of the present paper is to pre-
sent answers to these general questions for NaCl
and, in addition, to establish theoretically the shape
of the Grueneisen function ¥(T) for NaCl at low tem-
peratures, which is at present still open to con-
troversy. While Meincke and Graham!! and Barron
et al.? in anearlier paper suggest the existence of
a low-temperature minimum of ¥ vs T near 11 °K,
White!” assumes that ¥ levels off below this tem-
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perature, and Barron and Batana!® conclude in a
recent paper that “an appreciable” low-temperature
minimum is highly unlikely. Barron’s conclusion,
however, is based on the RIM with nearest-neigh-
bor central forces. Since it is known'®? that in-
clusion of second-nearest-neighbor interaction
strongly affects the pressure derivative of the shear
modulus ¢4 and of the limiting value of the Gruen-
eisen parameter at T=0 °K, one must expect that
the second-nearest-neighbor interaction will also
alter the mode 7’s in the dispersive range, especi-
ally those of the TA branch in the [100] direction,
which should already contribute to the temperature
dependence of ¥ near 11 °K. In addition, these
modes depend on the electronic polarizability, which
is neglected in the RIM. Since both contributions
to the mode 7’s are dependent on wave number,
their effect on the macroscopic Grueneisen pa-
rameter will be temperature dependent, and it is
therefore conceivable that this may cause a min-
imum at low temperature. It is therefore another
objective of this paper to reinvestigate the existence
of the minimum on the basis of a more realistic
theoretical model which includes second-nearest-
neighbor interactions and electronic polarizability.

The model to be employed is the SM** in the
version used before by Peckham?® for calculating
the phonon dispersion relations in MgO. It takes
into account general first- and axially symmetric
second-nearest-neighbor interaction and includes
the polarizability of the anions only. The param-
eters of the model are determined from experi-
mental values of elastic, dielectric, and optical
constants and their dependence on pressure. The
mode ¥’s, the Grueneisen function y(7), and the
moments y(z) will be calculated (a) for this model,
(b) for the RIM corresponding to first-nearest-
neighbor central-force interaction only, and (c)
for a modified rigid-ion model (MRIM) based on
general first-nearest-neighbor and axially sym-
metric second-nearest-neighbor interaction. The
quasiharmonic approximation will be used, and
anharmonic effects will be partly eliminated by
referring experimental and theoretical quantities
to constant volume corresponding to 7=0 °K.

II. THEORETICAL MODELS

Since theoretical calculations based on various
forms of the SM have been very successful in de-
scribing experimentally determined phonon dis-
persion curves for alkali halides® ® and MgO, 2
and since notable improvements over the RIM were
obtained, it is to be expected that the SM will be
a good basis for calculating the pressure depen-
dence of phonon frequencies, or mode y’s, and the
macroscopic Grueneisen parameter as well. This
has been confirmed for nine alkali halides and for
MgO for the special case of the optical modes at
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the zone center and the acoustical and optical
modes at the [100] Brillouin-zone boundary. 2 The
present paper is an extension of this previous work
to the calculation of the mode ¥’s in the entire
Brillouin zone and of the mode average required
for the Grueneisen function ¥(7'). The same theo-
retical model will be used as before. #'% It takes
into account general first-nearest-neighbor and
axially symmetric second-nearest-neighbor inter-
action, and includes the polarizability of the anion
only. On the assumption that the repulsive forces
act through the shells only, there are six indepen-
dent parameters which are determined from experi-
mental values of the three elastic constants ¢4y,
C12, C44 from the static and optical dielectric con-
stants €, and €, respectively, and from the TO
frequency wy. The explicit equations have been
given before.»*#+2 For the calculation of the pres-
sure dependence of the frequencies the pressure
dependence of only five parameters is taken into
account and determined from experimental values
of the pressure derivatives of ¢y, €45, €44, €o,
and €,. One of the parameters, the core-shell
constant determining the electronic polarizability,
is assumed to be independent of pressure. Since
the pressure dependence of the shell charge is
taken into account, this assumption does not imply
that the electronic polarizability is constant. Good
agreement was found between experimental and the-
oretical data for the pressure dependence of the

TO frequency? which suggests that this assumption
is approximately valid.

be carried out for the RIM, with first-nearest-
neighbor central-force interaction (Kellermann
model) and for the MRIM with general first-nearest-
neighbor and axially symmetric second-nearest-
neighbor interaction, but no electronic polariza-
bility included. For the RIM the third derivative
of the interatomic potential is determined from

TABLE I. Elastic constants® (in 10! dyn/cm? and
their pressure derivatives® at room temperature and ab-

solute-zero temperature.
c dcf Oef dcy
“ \% Jp\d /Jr\ /r

T(K) cfy cd
300 0.4870 0.1311 0.1266 11.66 2.08 0.37
0 0.5733 0.1122 0.1331 11.62 1,91 0.29

2J, T. Lewis, A. Lehozky, and C. V. Briscoe, Phys.
Rev. 161, 877 (1967).

bCalculated from the values of (8C%1/8p)r given by
R. A. Bartels and D, Schuele [J. Phys. Chem. Solids
26, 537 (1965)] for 195 and 295 °K by fitting the partial
contractions of third-order elastic constants Cj;mm
== 3BT(8C 4y /0p) — by48y; + ;304 + 64,0, (all quantities
in tensor notation; BT =isothermal bulk modulus) to Eq.
(13.12) of Ref, 15 with the energy function according to
the Debye theory.
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TABLE II. Static dielectric constant €; and its rela-
tive pressure derivative €)= (1/€;) (9€,/8p)p (in 10712
cm?/dyn), optical refractive indexn=Ve, and its dimen-
sionless pressure derivative»’ =BT (9n/ 3p)p (at A=5893 11;
BT jsothermal bulk modulus), wy(in 108 sec™!), and near-
est-neighbor distance 7 (in A) at room temperature and
at absolute-zero temperature.

TCK) € €5 n n' wy 7y
300 5.909® —10.10*° 1.526° 0.28° 3.09¢ 2.814°
0 5.459 _—9.2f 15339 0.288 3.359¢ 2 793h

3B. W. Jones, Phil. Mag. 16, 1085 (1967).

’G. O. Jones, D. H. Martin, P. A. Mawer, and C. H.
Perry, Proc. Roy. Soc. (London) A261, 10 (1961).

°K. Vedam and E. D. D. Schmidt, Phys. Rev. (to be

published).
9R. P. Lowndes and D. H. Martin, Proc. Roy. Soc.

(London) A308, 473 (1969).
°M. Born and K. Huang, Dynamical Theory of Crystal
Lattices (Oxford U. P., Oxford, England, 1953), p. 26.
fRoom-temperature value from R. P. Lowndes and
D. H. Martin, Proc. Roy. Soc. (London) A316, 351 (1970).
8Room-temperature value from Ref. c.
"G. K. White, Proc. Roy. Soc. (London) A286, 204

(1965).

the pressure derivative of the bulk modulus, and
the pressure derivatives of the general coupling
parameters of the MRIM are determined from the
pressure derivatives of the elastic constants.

The input data for NaCl are listed in Tables I
and II for both room temperature and absolute-
zero temperature. Calculations have been carried
out for both sets of data in order to investigate the
error incurred by determining the parameters of
the model from room-temperature data. For cy,,
Ci3, Caa, €g, €., and wy all input data given for
T=0 °K are experimental values. The pressure
derivatives of ¢y;, €15, and cy were extrapolated
to T=0 °K from data at 295 and 195 °K.? The
pressure derivatives of €, and €, were assumed
as constant. Since the temperature dependence of
these pressure derivatives is only small?*# this
should involve an error of a few percent only. It
should be noted, however, that even for constant
pressure derivatives the mode 7’s turn out to
change as much as 10-20% from 0 to 300°K since
they depend also on the temperature-dependent
zero-pressure values of the input data. For the
atomic masses the same values as listed in Table
I of Ref. 22 have been used in the present paper.

III. MODE 7’s

The microscopic Grueneisen parameters (mode
y’s) are defined®®"® ag the logarithmic volume
derivative of the vibrational frequency w,(q) of
wave vector § and branch \:
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7,(@)=- <M >T (3.1a)

aInV

Converting the volume derivative into a pressure
derivative gives
( wa(d)
ap T

Here BT denotes the isothermal bulk modulus. The
pressure derivatives of the vibrational frequencies
will be derived below from the eigenvalues of the
dynamical matrix for the SM by means of the per-
turbation expansion with respect to pressure.

(3.1b)

T
7"@=wf@)

A. Perturbation Expansion for SM

The time-independent equations of motion for the
SM are, in reciprocal space, given by4

MAU=AU+BW, (3.2)

O=B'U+DW.

The coupling matrices A, B, and-D are 3sX3s
matrices where s denotes the number of ions per
unit cell. They can be separated into repulsive
and Coulomb interaction terms according to*

A=R+2ZCZ,
B=T+ZCY,
D-S+K+YCY.

(3.3)

The mass matrix Mis a diagonal matrix of order
3s, and Uand Ware 3s-dimensional eigenvectors
denoting the displacements of the cores and the
relative shell-core displacement, respectively.
All quantities depend on the wave vector §, and the
eigenvalues A=w? and the eigenvectors U and Win
addition on the branch indexAr=1,2,...,s

As described above, the various force constants
involved in these coupling matrices are derived
from experimental values of the elastic constants
Cy1, Cy3, Cyq Of the dielectric constants €5 and €,
and of the infrared dispersion frequency wgy. The
pressure derivatives of the eigenfrequencies can
be found in terms of these quantities and their
pressure derivatives by treating the pressure p as
a perturbation. Expanding the various matrices
and vectors according to

_A_=éo+é_1 P+(§éa)ﬁ2 ’

B=B,+B,;p+ (3B B)p?

IU

=Do+Dp+(FDp?
= = (3.4)
U=U +U1P+(%Hz)pz ’

Iﬁ

=Wo+r Wip+(3Wpp? |
A=ANo+ Ayp+ (G A%,
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substituting Eq. (3.4) into Eq. (3.2), and collecting
terms of the same power in p, one obtains for the
zero-order equations

MAgUog=AUo+B Wy,
0=BtUo+D, W,. 3.9
The first-order perturbation equations are given by
MA 1 Uo+MAgU1=A;U;+B; Wo+B Wy,

(3.6)
0=BiU¢+B;U;1+D 1 Wo+DoW;.

Eliminating W, and W, from the two equations (3. 5)
and (3. 6) gives

(MAo—Ao+BoD¢By) U,

—( MA1+A1

D _GI_B,B)EO- 3.7
It can be easily seen from Eq. (3.7) that the first-
order perturbation theory yields the perturbation

to the frequencies belonging to the mode §, A as
A@)=Us@)(A,-B,D;'Bi-B,D;'B}

+BoDg'D1DF' By Uo(P). (3.8)
Because of AGM) = [w,(§)]%, the mode ¥’s according
to (3. 1b) become

7@ =[BT/20,GN)] A, @) . (3.9)

B. Numerical Results and Discussion

The mode 7’s 7,(q) calculated from (3.9) for the
RIM and for the SM with all input data taken at
T=0 °K are shown in Fig. 1 as functions of the
wave vector for the directions [100], [110], and
[111].%" The most obvious differences between the
two sets of curves are that the total spread is about
25% smaller for the SM, and that the mode ¥’s of
the two TA branches in [100] and [110] which cor-
respond in the long-wavelength limit to the shear
modulus ¢4 are raised from negative to positive
values. Also the TA branch in [110] which cor-
responds in the long-wavelength limit to the shear
modulus ¢g=3 (€44 —Cy) is lower for the SM. The
only other branch that is higher for the SM is the
LA branch in [111]. Most other branches lie either
lower in the SM or remain essentially unchanged
(such as the LO branch in [111]). For several
branches qualitative differences occur. The max-
imum of the LA branch in [110] and the minimum in
the LO branch in [100] are absent for the SM, but
for the TO branch a deep and sharp minimum oc-
curs at the [110] Brillouin-zone boundary. In
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FIG. 1. Mode V’s
of NaCl vs wave vector
for RIM and for SM at
T=0"°K.
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several cases large differences in the slope of the
curves are present, such that the SM curves lie
higher near the zone center, and lower near the
zone edge, or vice versa, such as for the TA,
branch in [110] and the TO, branch in [110].

It would be difficult to give a detailed physical
explanation of the resulting differences in terms of
the differences of the two models, i.e., the pres-
sure dependence of the noncentral force and second-
nearest-neighbor interaction and of the electronic
polarizability. Since it is known that the pressure
derivative (8c,/8p) increases and (9c,/9p) de-
creases with increasing second-nearest-neighbor
interaction in alkali halides!®*? it is certain, how-
ever, that inclusion of the second-nearest-neigh-
bor interaction raises the TA branch in [100] and
the TA, branch in [110] near the zone center, and
that it lowers the TA, branch near the zone center.

In order to determine the effect of the temperature
of the input data, the mode 7’s were also calculated
for both models with the room-temperature input
data of Tables I and II. While in general the shape
of the curves was not changed very much, the
branches corresponding to large mode 7’s were
displaced toward higher values.

|

oy | op* _
(Eian )T—1+ {63+7—< o )T +(R 1)[

where 6,= - (81nB°/87T),/B is the Anderson-Gruen-
eisen parameter® and R=1+787T. Although the
quantity (4. 3) should be evaluated at V=V, and
at temperature T the constant value corresponding
tovolume V and temperature 300 °K should be used
since the difference is a quantity of higher order.

(001(L10)

(000)
(as2m)§g—s

IV. THERMAL GRUENEISEN PARAMETER

The thermal (or macroscopic) Grueneisen pa-
rameter 7 is defined as?®

’}’=ﬁBs/pCp ’

where B is the volume thermal expansion coefficient,
BS* the adiabatic bulk modulus, p the density, and
¢, the specific heat for constant pressure. Since
all quantities in (4. 1) are referred to zero pres-
sure and are temperature dependent, the Gruen-
eisen function ¥(T) is referred to constant pres-
sure, i.e., p=0. In order to facilitate comparison
with the theoretical results it is advantageous to
refer all quantities to constant volume V,, which
will be taken as the volume at T=0 °K. Following
Barron et al.® the linear approximation will be
used:

(4.1)

YV, T)=v(V,, T) [1+ @11?1/)1 (V—V:’Q]

(4.2)

Here V denotes the volume at temperature 7. The
volume derivative (8 1ny/91nV), can be expressed
through thermodynamic identities in the form?®:2%2°

/e (5), /o] e

[

The value calculated from the data in Tables I and

II and from the temperature derivatives of BS, B,
and c, listed in Ref. 31 is (81ny/81nV),=1.52.

This value is much larger than the value of 0. 3 given
by Barron et al.,? but it is of the same order as

the values found for all other alkali halides calcu-

(4.3
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lated from Eq. (4. 3) with the thermal and thermo-
elastic data listed in Ref. 31. It agrees also approx-
imately with the value of 1.46 calculated by Bassett
et al.* from a formula similar to (4.3). In that
formula the term (87/87T),, which may be expected
to be véry small, has been neglected. Since the
conversion of ¥ to constant volume is found to
amount at most to 3%, one may assume that the
value of 1.52 is sufficiently accurate for the de-
sired purpose.

For the comparison with the theoretical data the
thermal expansion data of White, }* who presents
his results also directly in the form of values for
¥, will be used. Since these values are calculated
from bulk-modulus data of Overton and Swim®? they
were converted to the bulk-modulus data of Lewis
et al. used in the present calculations. This cor-
rection amounts to an increase of ¥ by 2.1% at
room temperature, by a maximum of 4.2% at 150
°K, and by 3. 3% at and below 80 °K.

In Fig. 2 these converted experimental data of
White!"3® are shown as a function of temperature
for constant pressure and for constant volume V.
A Debye temperature of 320.9 °K as calculated
from the elastic constant data of Table I for 0 °K
has been used for the lower scale of the abscissa
in units of T/®. The difference between the two
sets of data decreases with decreasing temperature,
and below about 90 °K they become indistinguishable
in Fig. 2. The experimental data of Meincke and
Graham!! agree closely with those of White!” if
the same specific-heat data are used in their eval-
uation.® They are therefore not included in Fig. 2.
Additional experimental thermal expansion data
are available from Rubin ef al. ** and from Yates
and Panter3® which agree well with White’s data at
high temperature but show significant deviations
below 25 and 60 °K, respectively. The probable
total error of the Grueneisen parameter estimated
by Barron ef al.® from the thermal expansion data
of Rubin et al. and of White!* amounts to 11% for
T<10 °K, 6% for 10<T<20 °K, and 3% for T> 20 °K,
with most of the uncertainty at high temperature
arising from the bulk modulus.® These figures
should approximately also indicate the error of
the Grueneisen parameter data of White!” in Fig. 2.

In the quasiharmonic approximation'® the thermal
Grueneisen parameter is for constant volume given
by the weighted average of the mode ¥’s, 28

Y= % Cx(—(i, T)?’).((’l@ Cl(&, T) ,

where the weight factors ¢,(q, 7) are given by the
Einstein specific heat of the mode §, . The mode
average (4.4) has been performed for the RIM and
the SM as explained in Sec. II with the mode ¥’s
and the frequencies calculated from the input data
of Tables I and II for T=0 and 300 °K. In addition

(4.4)
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the calculations were performed for the MRIM with
elastic constants at T7=0 °K used as input. All
calculations were made with double precision on
an IBM 360. The summation in (4. 4) was extended
over 48 points in the basic triangular pyramid of
volume 4 of the Brillouin zone, corresponding to
a mesh width of Ag;=0.1 (2r/a). In order to check
the accuracy obtainable with this coarse mesh width
the calculations were repeated for the SM with 0 °K
input data with a mesh width of Ag;=0.05 (21/a),
corresponding to 260 points in the basic triangular
pyramid. The results for ¥ were found to differ
from each other at 300 °K by 0.002, at 200 °K by
0.003, at 100 °K by 0. 005, at 20 °K by 0.008, at
10 °K by 0.018, and at 6 °K by 0.057. One may
therefore estimate that the accuracy of all calcu-
lations is better than 1% above 20 °K, and about 2%
above 10 °K, and that larger uncertainties arise at
still lower temperature,

All theoretical results are plotted in Fig. 2 as
a function of temperature. For the SM calculations
with 0 °K input only the results for the finer of the
two mesh widths are shown. In addition, the low-
temperature 7, as calculated from the elastic data
of Table I by using the method of Brugger and
Fritz®" is indicated for the two SM calculations.
Since the results for the MRIM are based on the
same elastic constant data as the SM results with
0 °K input, the two curves should approach the same
low-temperature limit v,. Different values for 7,
are obtained, however, for the RIM results because
the RIM cannot exactly. account for the elastic con-
stants and their pressure derivatives. The values
of 7, obtained for the RIM with input data at 300and
0 °K are 1.074 and 0.911, respectively. At low
temperature (T/ @ <0.02) the theoretical data are

T(°K)—>

|? 310 IO‘O 300
ERET | L1t |
20 T T T 1T T 11777 T
- e e e RIM-300°K-]
g~ NaCl /e RIM-0°K
/ e SM-300°K
i Iy e SM-0°K |
ld
16— Y4 o 00, —
L g8 8o 4
I lafz —° O . — MRIM-0°K_]
120~ . ]
¥ =
e, o White (1965)
1.0~ 06T 0o o O Converted to Vo -
L ® White (1968) ]
0.8 ~
06 Ll Lol 1
001 o1 10 3.0
/O —
FIG. 2. Comparison of theoretical Grueneisen function

Y(T) of NaCl for RIM, MRIM, and SM with experimental
data of White (Refs. 17 and 35) (constant pressure O; con-
stant volume V,0,®).
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not accurate enough to establish the exact shape of
the ¥(T) curve because too few points are included
in the summation in (4. 4) over the center region of
the Brillouin zone which contains the only modes
that are excited at low temperature. Therefore the
conjectured course of ¥(7T) at low temperature has
been dotted in Fig. 2 for the two SM curves.

It is apparent that the SM curve with input data
referred to 7'=0 °K shows the best agreement with
the experimental data, both in absolute magnitude
and in the shape of the curve. At low temperatures
this theoretical curve is too high by about 0. 06 (6%),
and at high temperature by about 0.13 (8.4%). Be-
low 22 °K the theoretical curve drops below the
low-temperature elastic limit of 1. 08, and a shallow
minimum of depth 0. 06 occurs at about 7/®= 0. 045
(T=15 °K). Apparently this minimum is caused by
the decrease of the mode ¥ of the TA mode in [100]
from 0. 125 at the zone center to 0.055 at the zone
edge (Fig. 1). At 15 °K the specific-heat contri-
bution from the TA mode at the [100] zone edge,
amounts to only 20% of a fully excited mode, but
because of the large density of states at the zone
edge, the total contribution of all modes near the
[100] zone edge to the thermal Grueneisen param-
eter may indeed be larger than that from the long-
wavelength modes. The theoretical curves for the
RIM seem to decrease monotonically with decreas-
ing temperature and approach the low-temperature
elastic limit of 1.074 (RIM-300 °K) and 0. 911
(RIM-0 °K) without any indication of a minimum.
This confirms the conclusions of Barron and Ba-
tana'® that for the RIM®® no significant minimum (of
depth 0.1 or larger) should occur. Contrary to the
results for the RIM the data presented here for the
SM indicate, however, the existence of a shallow
minimum?®® of depth 0. 06.

Possible reasons for the discrepancies between
the SM curve referred to 7=0 °K and the experi-
mental data are the experimental error of the
Grueneisen parameter, the limitations of the SM
itself, and the experimental error of the input
data of Tables I and II. Since the conversion to
constant volume amounts only to a small correction
of maximally 3. 2% one might expect that anhar-
monic contributions of the zero-point motion oc-
curring for constant volume are still smaller. As
Thomsen® has recently shown these contributions
correspond to fifth- and higher-order anharmonic
terms, and it is therefore very unlikely that they
are present below the Debye temperature and con-
tribute substantially to the discrepancy between
experimental and theoretical data.

The theoretical curve based on the RIM at 0 °K
lies at temperatures higher than 12 °K above the
SM curve and shows a steeper increase with in-
creasing temperature and reaches a constant value
at a much lower temperature than the SM curve.
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The high-temperature limit is higher by an amount
of 0.11 than the SM curve and the deviation from
the experimental data is twice as large as for the
SM.

While the curves for the RIM show a weak max-
imum at about 140 °K, the curve based on the
MRIM with input for 0 °K shows a pronounced
maximum of 1.46 at 70 °K. The MRIM curve
rises much more slowly with increasing temper-
ature than the SM and RIM curves and lies at low
temperatures (<50 °K) above, and at high temper-
ature below, the SM curve. The high-temperature
limit is smaller by 0. 13 than the experimental data.

Comparing the three models considered shows
that by including first-nearest-neighbor noncentral
and second-nearest-neighbor central forces the
value of ¥ is increased at low temperatures and
decreased at high temperatures, but that including
the polarizability of the ions has the opposite ef-
fect. At low temperature (below 15 °K) the two
contributions cancel so that the RIM is a better
approximation. At higher temperatures the two
contributions cancel only partly and the first ef-
fect dominates. This cancellation of the various
contributions appears to be the main reason why
the simple RIM was believed to be quite adequate
for describing the temperature dependence of the
thermal Grueneisen parameter. In addition, the
surprisingly good agreement found by several
authors!®!1:1® seems to have been caused by the
fact that the repulsive parameters were deter-
mined from the long-wavelength limit of the TO
frequency, and not from the bulk modulus, and
that the equilibrium condition was ignored, so that
these data refer to a crystal under hydrostatic
compression.

The curves calculated for the SM and for the
RIM from room-temperature input data are found
to lie considerably higher than the corresponding
curves referred to 0 °K. In order to compare
these data with experimental results the latter
should be referred, however, to the volume Vg
at 300 °K. This would raise all experimental points
referred to V, at 0 °K by an amount of 0.05 which
is smaller than the differences between the two
sets of theoretical curves referred to 7T=300 and
0 °K. This discrepancy illustrates the importance
of eliminating thermal effects by referring the in-
put data to T=0 °K.

V. VOLUME DERIVATIVES OF MOMENTS OF THE
FREQUENCY SPECTRUM

Barron et al.® have shown that the temperature
dependence of the Grueneisen function ¥(T) can be
used to determine for integevr values of # the vol-
ume derivatives of the moments {(w") of the fre-
quency spectrum of the lattice vibrations which
are given by
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— FIG. 3. Volume derivations
v¥(n) of moments of frequency spec-
trum vs n for NaCl from theoreti-
cal models and from experimental
— data of Rubin et al. and White

N (Ref. 14), Barron et al. (Ref. 9),
““~~ and Meincke and Graham (Ref. 11).
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After carrying out the differentiation this quantity
can also be written in view of (3.1) as

70)= 2 [ @I n@)/ D@7 (5.2)
The advantage of these quantities over the Gruen-
eisen function ¥(7') is that they are temperature
independent and directly related to the properties
of the frequency spectrum. They can also be ob-
tained from the coupling parameters without solving
the secular equation. .

The quantity ¥(z) has been calculated from (5. 2)
by direct summation for the three models dis-
cussed above, both for room-temperature and for
zero-temperature input data, for integer values
of » from ~ 3 to +8. The results are compared in
Fig. 3 with the data calculated by Barron et al.®
from experimental thermal expansion data of Rubin
et al. and White, * and with the data calculated by
Meincke and Graham!! from their own experimental
data. The experimental data in Fig. 3 are not
referred to constant volume V;, and are based on
different bulk-modulus data than those used in the
theoretical calculations. No attempt has been
made, however, to correct for these differences
since they are smaller than the estimated experi-
mental errors shown.

It is apparent that of all theoretical curves shown
the SM curve with zero-temperature input agrees
best with the experimental data. For positive
values of » the agreement is within the large esti-

mated experimental error, but for negative values
of n the deviations are larger. These discrep-
ancies are probably due to the limitations of the
theoretical model and the experimental error of the

input data.

VI. SUMMARY AND CONCLUSIONS

It has been shown that a six-parameter SM, in
which five parameters are taken as pressure de-
pendent, is capable of reproducing the Grueneisen
function y(T) below and up to the Debye temperature
within 6-8%. The discrepancy seems to indicate
the limited accuracy with which the parameters of
the model which describe the interatomic forces
can be determined from experimental elastic,
optical, and dielectric data, even if these are de-
termined at or extrapolated to absolute-zero tem-
perature. Referring the input data to T=0 °K has
been found to be important. Conversion to constant
volume decreases the experimental data at high
temperature and increases the discrepancy with
the theoretical data from 5 to 8%. On the basis
of the theoretical results it is also possible to ex-
pect a shallow minimum of the Grueneisen function
near 15 °K.

It has also been shown that the RIM of Keller-
mann, if used properly in connection with the
equilibrium condition and the bulk modulus, is
much less satisfactory than the SM used here.
Qualitatively, however, it does represent the
general shape of the ¥(T') curve quite well. This
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is shown to arise from the partial cancellation of
two errors of opposite sign due to the omission of
second-nearest-neighbor repulsion and electronic
polarizability.
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