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The Raman effect due to phonons, Landau levels, and Stark ladder levels is analyzed theo-
retically. For the phonons, three mechanisms are identified, and their orders of magnitude
are estimated for both 4n=1 and 2. The ratio of the intensities can be of order unity, espec-
ially when the crystal has only one narrow band gap. The resonance Raman effect is particu-
larly strong in the band. For the electronic Raman effect from Landau levels, three similar
mechanisms canbe distinguished. The W =1 transition can occur only in crystals without a
center of symmetry, and has a strength comparable to the M=2 process. It can also occur
in case of broken symmetry, as in n-type Si. The Raman effect from a Stark ladder should
in principle give the Fourier components of the E-k curve. Finally, it is shown that effec-
tive-mass theory for donor levels is reliable only for materials with f & 5, irrespective of
m+.

I. INTRODUCTION

The Raman effect in solids has been the subject
of much experimental and theoretical research in
recent years. ' The theoretical approach has been
generally rather phenomenological, and it is felt
that as a result several characteristic features of
Raman scattering in solids have not received an
adequate explanation. For example, the ratio of
the intensities of the hn = 2 and ~=1 lines is often
surprisingly large, even off-resonance. Further-
more, existing theories have difficulty explaining
the large Raman cross section when the laser en-
ergy enters the continuum of excited states. Raman
scattering from conduction electrons in a magnetic
field (Landau levels) has been detected for nn = l,
2, but published theories only account for the hn = 2
process. The role of inversion symmetry has not
been elucidated.

W'e shall consider these points below and be more
specific about the effective-interaction Hamiltonian,
which is shown to arise from three mechanisms.
A complete theory would become very involved, and
therefore only the leading matrix elements will be
shown; complete calculations can easily be made
for each individual case. In addition to the in-
elastic light scattering from Landau levels, the
possibility of a Raman effect from conduction elec-
trons in a strong static electric field is also ana-
lyzed. In order for the band index to be a good

quantum number, in both cases the fields cannot
be too strong. Such a limit also exists for the val-
idity of effective-mass theory for donor levels
and is shown to imply that the dielectric constant
E must be substantially larger than 5, independent
of the magnitude of the effective mass.

II. PHONON SCATTERING

The interaction Hamiltonian of em radiation with
matter will be taken of the form

H„= Hz, + Ha = (e/mc) (A~ p+ A„' p),
where p is the momentum of the electron under
consideration and A~ and A„are the vector poten-
tials of the incident (la.ser) and Raman light beams,
respectively. These vector potentials can be ex-
pressed in terms of creation and annihilation op-
erators of photons according to

A~ = c(h/e& V)' (az + az, )

in the dipole approximation. In first approxima-
tion, the wave function is a product of electronic,
phonon, and photon wave functions. The P operator
in (l) gives matrix elements between the total elec-
tronic ground state tg) and the excited states I e ),
but it does not change the phonon quantum number.
The phonons enter into the problem in three ways.
Process (a) —the equilibrium positions of the ions
in I e) are shifted with respect to those in Ig).
Process (b)-the elastic properties of the lattice
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are different in 1e) and 1g), resulting in a change
in frequency of the phonons. Process (c)—the
electron-phonon interaction causes the total wave
function no longer to be a single product of an elec-
tronic and a phonon wave function, giving polariza-
tion of the electrons by the phonons.

The basis for all three effects is the electron-
phonon interaction; in the quasistatic approxima-
tion for the phonons, the one-electron operator can
be expanded in the amplitudes of the phonons 8&,

H, g ~=K«R«' F«(r)+2K«Zp R«G««. (r)R«. +

3H;"=A.R, +-,' Z, B.«R«R « . (4)

This implies that in the excited electronic state the
ions show a static displacement

5R, =A,/c,
where c is the appropriate elastic constant. For
instance in the diamond lattice the shift a(—,'-,'-,') of
the two interpenetrating fcc sublattices will change
by 6R. We take &R=O in the ground state 1g), so
that A, =O. The A„of (4) for an excited state 1e)
in which an electron of a valence-band state 1v ) is
promoted to a conduction-band state 1 c ) is given

by As= &--&vv.
The B term in (4) gives for each electronic exci-

tation 1e ) a change in stiffness for the phonons

ac,q
=B

which causes a change in frequency. Including the
off-diagonal elements C,&

of I', which can be both
intraband and interband, the total effective-inter-
action Hamiltonian is in second-quantized form

H~, ~
= H„+N' 5Z A&& c& c&~ (ao+ ao)

gPg

+N ' Z Z Z B&&c&«c&f, (a«a «+a«a.«)
g&e fr. q

+N Z E Z Z Cgy cy(g~«) cgj (s «+ o«) ~ (7)
q

The summation over q, q' includes all phonon
bands. Since

R«=Q«(~~+a «), (3)

where Q~ is the zero-point amplitude and g~~ the
creation operator of a phonon, (2) changes the num-

ber of phonons. The electron operators E and G

are such that, apart from a reciprocal lattice vec-
tor, (2) leaves the total wave vector unchanged.
Usually the wave vectors of the em radiation are
relatively small and can be neglected for the de-
termination of the electronic matrix elements.
This introduces the diagonal-matrix elements A
and 8 over the total electronic wave functions of
F and G, respectively, which give a change in the
phonon Hamiltonian for each excited electronic
state 1e):

which operates on single-product wave functions
with phonons which are independent of the electronic
states. The c's stand for fermion operators. The
band indices i, j also include the k, q dependence.
The electronic energy matrix elements A., B, C are
independent of the number of atoms ¹ The term
with A stands for the displacement effect, that with
B for the change in elastic properties, whereas C

represents the polarization of the electrons. If
not more than two phonons are considered, the off-
diagonal part of B can be omitted. The reason that
we expose the A. term explicitly, rather than in-
corporating it in C, is that A. is usually much
smaller than C. It is to be expected that F(r) is
largest inside an ionic core, where it is approxi-
mately —grad V(r), with V(r) the ionic (pseudo)
potential. This grad V is a predominantly odd func-
tion of r, and will therefore give a very small con-
tribution to the diagonal-matrix element, and thus
to A. On the other hand, if the atomic electronic
wave functions in i and j have different parity,
grad V will give a large contribution to C,&. The
magnitud of the latter will be at least (Q/d)h,
where d is the interatomic distance and 6 a band

gap. Moreover the optical-phonon admixture in
the electronic wave function is (C/b, )2; since in
most covalent semiconductors this is a few per-
cent, we estimate that C has the order of magnitude
of 0. 3 eV. Then A is caused by the part of F(r)
more midway between the ions; its magnitude can
be estimated by noting that the shift 6A is similar
to that in a Jahn-Teller system, which is usually
smaller than 10% of d, making it comparable to
Q of (3). This implies that A in (7) is about h&u~.

&=0.03 eV,

Then, for Sco~=0. 03 eV, C= 0.3 eV.
A. One-Phonon Processes (An=1)

We consider first the effective second-order
perturbation matrix elements of (7) for the hn = I
process off-resonance, to which both process (a)
and process (c) may contribute. For each (a) pro-
cess one intermediate electronic excited state must
be considered. If this has an energy 6, above the
ground state, the leading effective matrix element
between the initial and final state is

M~ ~N-~&a+ A/(~ @~)&

where matrix elements of A ~ p are left out and &~
is neglected in comparison with ~I.. After summa-
tion over the continuum of excited states A, , M«
(X ''~~, so that the transition probability is propor-
tional to ¹

For the (c) process, which changes the electronic
state, two electronic excited states must be con-
sidered, both having the same k. For each pair
there are 2. 3!=12 contributions to M«of which the
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FIG. 1. Diagram. of the
virtual transitions for hn
=2 a,ccording to the (c) pro-
cess. The sequence of 1
and 2 can be interchanged,
and also that of 3 and 4.

largest one will be

M,', ~ X-"'Z„C/(~, —hu) (n, —h~). (10)
For many semiconductors there exists only one
set «bands with a s~all +i in which case ~2
Otherwise (10) will be larger than (9).

B. Tao-Phonon Processes (An=2)

T"e (a) process gives &n = 2 in second order of
perturbation theory:

M f, CCN 'Z»A»/(b, , —h(g)». (11)

Because only q =0 phonons are involved, there is
only a summation over k, as for (9). The result

is therefore of order No and is infinitesimally small
for uniform lattices. For localized states, how-
ever, experimenta, l results~ up to bn = 10 in reso-
nance Raman scattering have been described with
this mechanism. '

For the (b) process, one obtains for each q,

M qq
~ N Zq 8/(hq —Ktu) .

In this case there is an extra summation over q of
the square of (12), so that the integrated intensity
is proportional to ¹

For the An=2 (c) process, three excited elec-
tronic states are involved. Two of the transitions
are induced by H„ thereby creating one phonon
with wave vector q and one with —q. For each q'

the leading term of the part depending on II, of the
effective second-order matrix element is

M;, cclV-'Q»C'/(z, h~)—(n, h~)—(a, -I&a) (12)

v here we can take the same state for 1 and 3. It
is even possible to avoid the high-energy gap n»
and to have only interactions between states in the
conduction band and in the valence band at &&. After
passing to (k, &), an electron must be able to return
to (k+ q) in the valence band. This state must there-
fore be vacated by a previous transition. Thus we
consider two electrons simultaneously. Denoting
the electronic state byg~, ez, etc. , or for brevity
g, e' (see Fig. 1), we find for the effective matrix
element

( g'g I H„ I
g' e' ) (g' e'

I H, I
ee' ) ( ee' I H, I eg' ) (eg '

I H~ I gg' )
(E e —E - I'(g ) (E —E + E ~ —Ep —2K(g) ) (E —E —K(gp J.)

Many more terms exist corresponding to permuta-
tions of the four matrix elements. For instance,
in Fig. 1 processes 3 a,nd 4 can be interchanged,
and also 1 and 2. In a complete calculation all
terms must be included. The H, part of (14) is then
approximately proportional to

M ~~X ' Z» C /(LP~ —@ & ) A~,

where 6 and C still depend on k and q.

x"'dx
(x —L) (x —2+a) '

where I =@(dL, —F» and Q= 8& —6&+@(d&,' this 6 ls
assumed to be constant; the result will not depend
critically on this assumption. The integrals will
be performed using

C. Summation Over States
f(x) d
X —0

f(.) dx+ Arf(a),

In all cases M« is to be sumn:ed over all excited
states k. Special features occur when the laser
frequency enters a continuum of excited states.
This problem has been treated before for a para-
bolic band. We shall consider the bn =1 transition
for both the (a) and the (c) processes.

The density of states is assumed to be propor-
tional to x'~, where x = E —F». , up to x = ~. Then
near or in the band, the leading terms are

where I' denotes the principle value. In Ref. 4 the
imaginary part was not taken into account. For all
values of L the result can be mritten as

M„o: (A/If(o») [(—f.)'~' (8'(u» —f,)'~»]—

For h~~ &E, i. e. , J &0, allterms are rea, l and the
square roots tend to cancel. For 0 & I «&~ or 6,
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respectively, one of the square roots is real and
the other imaginary; the absolute magnitude of each
of the terms is then constant in that region. For
L &S(d~ the A term will decrease in a symmetrical
way, but the C term will stay constant up to b. in
the band; in most practical cases this limit will
not be reached by the laser frequency.

Depending on the signs of A and C the two con-
tributions can either add or subtract. Recently the
interesting case of a zero in the Raman-scattering
intensity at a frequency below resonance has been
reported. ' It was suggested that cancellation of the
resonance term and a nonresonant term took place.
It seems more likely that two resonance terms,
such as A. and C, are involved. In Fig. 2 an ex-
ample is given in which the squares of the (a) and

(c) terms have been added. It is seen that the
Raman intensity is higher inside the band than out-
side. Existing theories predict the opposite. The
high intensity in the band has been observed in
CdS.

D. Ratio of the An=1, 2 Intensities

We now estimate the ratio of the intensities I2/I,
of the An =2 and ~n=1 Raman lines off-resonance.
For the 612=2 processes we integrate (12) and (15)
over the parabolic band, as in (18), and find

B
2 (~ k )1/2

(A ~k~)1/2+ (A @ )1/2 2(g )1/2 2

(8'(g)2

(19)

where 6, is now essentially the band gap. It is
clear that for off-resonance in (18) the C term
dominates if b2= 6„. then M«= C/(6, )'/2, and its
square is much larger than I2 of (19), i. e., I,» I2.
if however, a2» (a, —hru), then, due to the C term
alone,

which can be of order unity. Of course the hn =2
Raman spectrum is smeared out over the phonon
band, so that its integrated intensity must be com-
pared with that of the sharper ~n=1 Raman line.

III. SCATTERING FROM LANDAU LEVELS

In semiconductors subjected to a static magnetic
field B, Raman lines of comparable intensity have
been observed7 with frequency shifts of ~, and 2&,
(&n= 1 and 2, respectively), where &d, is the cy-
clotron frequency. The existing theories only pre-
dict the M = 2 transition. We shall show that in
crystals without center of symmetry the M = 1
transition can occur. As in the preceding theories,
we shall only identify the type of matrix elements
responsible for the effect, and not go into details

RAMAN

a,n-

(a) + (c)

QJL
I

FIG. 2. Raman intensity as a function of the laser
frequency (d~. The density of the excited states in N(E).
Curve (a) is for the displacement effect (a), whereas
curve (a)+(c) includes the (c) process, where the inter-
ference has been neglected.

of special crystals. In particular we shall not take
into account spin-orbit interaction, since this
mechanism does not in itself lead to a Raman ef-
fect.

Also it will appear that in this case three sep-
arate mechanisms can be distinguished, which bear
a strong resemblance to those of Sec. II. Because
only electrons are involved, the parameters are
calculable for a known band structure. This may
then help to visualize the phonon Raman effect.

We shall assume that ps B«E2/E„where /12 is
the Bohr magneton, F» the band gap, and E~ the
bandwidth. Under this condition the electron can
be described by a linear superposition of Bloch
wave functions of one band only with energy E, (k).
Jones and Zener have shown that for large k a
wave packet can be formed, the centralk of which
satisfies

2
~ eg]

@
' —8E)

s(Ik )
' " s(R2k)

with R22= bc/eB for B = 50000 G, R2=-100 A. The
equations (20) have the form of classical Ham1lton
equations of motion with R2k„and kk„(or similar
combinations) as conjugate coordinate and momen-
tum, respectively. According to Dirac, ' systems
satisfying such equations should be quantized by
assigning to their conjugate variables a nonzero
commutator, which d'or this case is

[k„, k, ]=i/R', .

By substituting —iR2 &/Sk„ for k„ in E,(k), a new

Schrodinger equation for each band i is obtained:

(21)

Ef k„, &02
~ ux tv (22)

Here k, is a constant of the motion and occurs as
a parameter in (22). A similar equation could have
been written down for k~. As in regular q-P space,
we accept all solutions of (22), even if they have
appreciable values for small k, for which (20) is not
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justified. We shall only consider solutions near
an extremum in E„and assume that F. is analytic
in k, so that it can be expanded up to quadratic
terms in k. This excludes degenerate bands as
occur, for example, in the diamond structure.
Then,

Z(k) =-,'I' [(k'„/m, ) + (k,'/m, )]

= -
k~(g, [(m2/m ~)~ ~2 (k„RO)2+ (m, /m2)'~2 (k, Ro)2] .

For this E(k), Schrodinger's equation has harmon-
ic-oscillator solutions $„(k„b,), with b, = (mz/
m, );'i Ro. For the calculation of the matrix ele-
ments of (1) we need the r-dependent wavefunction

similar to the 8 term in (7). In this case there is
no summation over k or q, and therefore the N '
is missing. In contrast to (7), it is possible to
know the coefficient in (28) exactly. As in (8), it
is of the order of the harmonic-oscillator quantum

(oc.

@. k pEffect

Next, we will consider the effect of the k depen-
dence of the P-matrix element for the Bloch func-
tions in (25). In P;& only u of

rp =up(r) e"'
enters. In lowest approximation one takes the
k = 0 value. For small k one can approximate u~

as

C'„,(r) = f g„(k„b,) p;-„(r)dk„. (24) u,.;=u,o+(@/m)E, [k p„/(Z, —Z,.)]u... (28)

Here p;„" is the Bloch function of band i, which also
depends on k„ for which (21) holds. For a clas-
sical cyclotron orbit, k„would be a function of k„.
Because p conserves k,

(j, m ~H„~ i, n) = (e/mc)A f y*. (k, b, )

x(J y&-„py;-„dr) g„(k„b;)dk„, (25)

where we have assumed that both bands i and j have
an extremum for the same value of k(= 0). For i =j,
the r integral gives (m/m*)hk, and the k„ integral
gives a nonzero result only if m —n =+ 1. This de-
scribes the ordinary cyclotron absorption.

For the Raman effect we take i4j. U the k de-
pendence of the r integral is neglected, the k„ in-
tegral can still be nonzero if b& & b& and (m —n) is
even. We shall consider this case first.

A. Anisotropic Mass Effect

The nonorthogonality of $„(k„b&) and g„(k„b,) in
(25) is completely analogous to effect (b) in Sec.
II and can be treated in the same way. That is,
we shall construct an effective Hamiltonian which
gives the same result 3s the nonorthogonal wave
functions. We use the Landau levels of the excited
state le) as the basis set. Their energy operator
is, according to (23),

H, = ,'@~„[b.'k2+ (R,'/b-2) k,'] =-.'@~„(('+n'), (28)

with $ =b, k„and 'g=(R /b, )k„so that [$, g]=i. For
the ground state Ig), we find

H, =-,'k~„[(b,/b, )'~'+ (b, /b, )'q'] . (2V

With $ = at + a, and q = i(at, —a, ), the off-diagonal
part of (2V) is the effective Hamiltonian operating
on Landau levels in the excited band I e ):

H, —,@(o,[(m„m„/m„m„)
—(m~ ~ m~/m2, m, )~ ~2] (at a" + a, a ), (28)

where the matrix elements p, &
are to be taken for

k =0. The result (29) is identical to that of an extra
term (k/m) k ~ p in the Hamiltonian; k„and k~ then
act as operators on the Landau-level states. For
an isotropic effective mass one then obtains in ad-
dition to (1)

H, = (@/mRO) [(P.—i0, )a', + (p„+ip, ) a,] . (30)

One might object that the k p operator has already
been used for obtaining Z(k), necessary for the
definition of the Landau levels; in this case we use
it only in conjunction with the radiation interaction
operator A ~ p. The present procedure bears a
strong resemblence to the (c) effect of Sec. II, and
the analysis is henceforth the same.

We shall show for the Landau levels that (10) will
not exist if the crystal has a center of symmetry
(diamond). By including both the interaction with
the radiation and (30), M« in (10) contains the prod-
uct of three matrix elements of P. When the center
of symmetry coincides with the origin of the coor-
dinate system V(r) is even, and the Bloch functions
can be chosen to obey y, ~ ( —r) =+ y, -„.(r). Thus,
instead of changing the sign of k one may reverse
r in the wave functions. If the sign of p was also
reversed, the matrix elements with 1~ would be
equal to those with —k. However, P occurs in (10)
an odd number of times, so that M«(k)+M«( —I~)

=0.
The coefficient of a, in (30), corresponding to

the C term in (V), is of the order of magnitude
2'@ /mdRO For 8 = 50 00.0 G it is about 0. 1 ep,
wherea, s km, in (28) will usually not exceed 0. 01 eV.

C. Displacement Effect

Sometimes the energy of the conduction band of
a semiconductor has extra minima; for Si they oc-
cur along the cubic k axes at about 0. 85(2v/a). In
both the valence bands and the higher conduction
bands extrema occur 3t the zone edges, which are
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=A ~ p«(k) [j)„(k„be) .
The electronic part of the second-order matrix
element between Landau states n and m is

The k dependence of the central part of the integrand
in (32) will cause cyclotron-quantum jumps. As in
Sec. II, we can introduce the k p operator for the
variation with k of the matrix elements of p. In
addition there is the k dependence of E,(k) which
is described by the diagonal matrix element of
k p,

E,(k) =E,(0)+k ~ -' =E, (0)+—k p22 .
dk ' m

(32)

The off-diagonal part can be represented by H, of
(30), and for bn =1 the result is similar to (10}.
Because of the asymmetry introduced by 5k& this
pr. ocess is now allowed. The ellipsoids in k space
contribute independently. Ea,ch true wave function,
consisting of a linear combination of these six
wave functions, would be symmetrical, but their
overlap is so small (= e"[22"0' ), that there is no
transition from the one cyclotron orbit to the other
in finite times. Thus the possibility of a M =1
cyclotron Raman effect in n-type Si is due to broken
symmetry.

In this case it is not necessary to go to two dif-
ferent excited states, as in (10). Because of the
nonzero p», one excited state can give the total
contribution, as for the 4 term in (7). The p2» can
be used for either the k ~ p or A p operators, cor-
responding to the variation with k or the E(k) and

P«parts in (31), respectively. In this way there
are six contributions to H„„+» which, in case all
p's are in the same direction, sum up to

01 Bee 0 dk [g2 (g )2]2

For & = 50000 G the term R0'(dz, /dk) is expected
to be of order 0.01 eV.

thus shifted from that of the state under considera-
tion by 5k = 0. 15(2v/a). This shift can give a Raman
effect for Landau levels in the same way as does
the displacement effect (a) of Sec. II for phonons.

For this large 5k, the excited Bloch states with
k values within +80' from the central k of the con-
duction electron state comprise many Landau lev-
els. Their quantization is therefore unimportant,
and we shall consider only matrix elements of
A p between Landau-level states and pure Bloch
functions of the excited states:

A ~ f g„(k,' I),) dk„' f p&, ( r) p y2, 2 ( r) d r

~;,~ 4C,2/~[~2- (@~)2] (~&=2) . (34)

It was estimated from (30) that CI, =O. 1 eV.
As in (19), we shall estimate the ratio I2/I, for

the (b) and (c) processes. Not too far from reso-
nance for a crystal without inversion symmetry,
using (10), (12), and (34), we have

I~ A2 —h(g)
2 C~ B~

I1 +1 +1 CL ~1
(35)

which for h2» 6, can easily exceed unity.

IV. RAMAN EFFECT FROM STARK LADDER
LEVELS

Next, we consider the light scattering in the pres-
ence of a, strong static electrical field E„=F/e, di-
rected along one of the principal axes of the crys-
tal. It has been shown by Wannier that under such
circumstances quantization of electron states oc-
curs with an energy spacing @w, =I'a. The prob-
ability of tunneling across a band gap F» is

(-,'g )2 exp[ —(-', p ') E'/E, Ea]

where

E, = (k 2/2m) (v/a)2

The preexponential factor given by Houston'~ is
about (2&) . If

Fa«E2/E, ,

the electron can
of one band with
Introducing H(k,

(38)

be described by a Bloch function
a wave vector k obeying Ik„=E.
x) =z(k) -Fx,

~ 8H
@k = ——,z y

SX =
ek„

(37)

where X stands for the average value of x for a
wave packet. Equations (37) form a set of Hamilton
equations of motion. These should be quantized ac-
cording to

[x, k„]=2,

so that X=id/dk„and

(38)

a= E(k) —,
of which the time-independent eigenfunctions are

(39)

ll, (a.)=(—') XP(
—' f [&-e,(k,')]d).'.),

(40)

D. Ratio of An=1, 2 Intensities

For the An= 2 processes we shall consider only
mechanisms (b) (anisotropic mass) and (c) (k p).
The (b) effect (28) is identical to (12), where B
=@~,=0.01 eV. For the k p effect we need to con-
sider again only one band on the other side of the
gap, although now three electrons must be taken
into account; the result is similar to (15):
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where W is the energy. Because of translational
symmetry, W -naE must also be an allowed en-
ergy, with n an integer. In a, box of length I, =Na
the potential varies by NaF, with the same spread
in W. Since there can be only N different states
for each band, the allowed energy levels are sep-
arated by aE, and form the Stark ladder. Then,

4„,(r) = g„,(k„)p„(r)dk„.
-v/a

(42)

For the Raman effect we must again calculate the
A p matrix elements between states in different
bands. Usually aE is relatively small, so that
many states of the excited band overlap with the
ground state (42). We therefore ignore the quan-
tization in the excited band, as we did in (31). The
total second-order matrix element then is

n'/ a
-ink a

nO
e -ff/a

p„(k)p„(k)
E (k) —E (k) —k(d

dk„, (43)

which is very similar to (31). When 5&v is much
smaller than the band gap, the central part of the
integrand in (31) or (43) contains

, m, m 3 828
m* h Bk

The Raman effect for conduction electrons can
thus be visualized as being caused by the modula-
tion of the effective mass during the acceleration
produced by either a magnetic or an electrical
field. For bound electrons, as treated in Sec. II,
it is the stiffness which is modulated, in that case
by lattice vibrations.

In the limit (d- 0, (43) becomes

M „"= n —- E, k cosnk„a dk„, 44
-I/ a

so that in principle the Fourier components of the
E-k curve can be obtained from a set of Raman
lines produced by the Stark ladder. In case co can-
not be ignored, the more general (43) must be used,
and should be complemented with a similar expres-
sion with opposite u.

It is interesting to compare the strength of (44)
with that for the light scattering in a magnetic field.
For E„=10 eV and a = 3 A, (43) is about 4m. The
effective second-order electronic matrix element
due to (30) is p, ~CI, /(h& —k(d), which is about

y „,.(k„) = (a/2v)"'

«exp ( —i e, —((/pf)
' E, (e',(de'„]. (el(

The r-dependent wave function is

2m/(&, -%u), where the energies are expressed
in electron volts. Therefore the Raman-scattering
cross sections per electron in an electrical and in
a magnetic field may be of the same order of mag-
nitude. In the magnetic case it depends on the
strength of the magnetic field, but for the Stark
ladder, M is independent of the electrical field.
For small fields, however, the effect is completely
obscured by scattering.

V. EFFECTIVE-MASS APPROXIMATION FOR
IMPURITY LEVELS

An electron in a lattice with a wide shallow per-
turbing potential U(r) can be treated in a way which
is very similar to that discussed in the preceding
sections. If U is many atom distances wide, a wave
packet of wave functions of one band can be formed
of which the position R and the (large) wave vector
K are well defined. The force in the x direction
on the electron is —SU/aX, so that with H(K, R)
= E( K) + U( R),

9 9
(46)

similar to (37). The quantization condition then is

[X, K„]=i or K„=
BX

which gives the usual effective-mass formalism.
The solution is $(R), which can be Fourier ana-
lyzed:

y(k) = f $(R)e '"'"dR,

from which we find the eigenfunction as a function
of r:

C(r) = f y(k)qr„(r) dk

a~ ~U~ .,«E', /E, . (49)

This condition is, of course, not satisfied for the

= f p(R) dR f e'"' 'uI(r) dk. (47)

If R is a lattice point H„, the last integral is just
the Wannier function a((r —R„). For a slowly vary-
ing function g(R), as for a donor state, the integral
over R can be replaced by a sum over lattice points:

C(r) =N-"'Q„q(R. ,)~(r -R„) . (46)

Equation (47) is, however, also valid for a rapidly
varying wave function g(R), as for metals, where
(48) does not apply. The unperturbed wave func-
tions are then q'"'~. This means that the scatter-
ing by a shallow extended perturbation potential in
a metal can be calculated as for free electrons with

the true dE/dk.
So far we have assumed that the electron stays

in the same band, as in Sec. IV. Instead of (36)
we now have the condition
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= —e /«R, (R & R,) . (50)

The first-order perturbation in the energy ~ is
given by

AE/
~
E

~

=2(R,/Rq) with Rz ——«5 /m*e . (51)

We want (51) to be small with (49) obeyed:

ae /«R, «E~/E, .
For a two-band model,

E,/m+ = 2~'(n/ma)' .

(52)

potential —e /«R of a charged impurity. We shall
show that in spite of this the effective-mass theory
may still be approximately valid. For that purpose
we shall truncate the Coulomb potential, so that
(49) is satisfied. For instance

U=-e /«R (R&R,)

For a= 8 A, (52) is e«luivalent to

«& 2(m/
~

E
~

)-"' . (58)

Taking arbitrarily I AE/E I
= 0. 05, (58) gives

q&5 (54)

as the condition for the effective-mass approxima-
tion to be valid for a donor level. Note that this
condition is independent of m*. For R~ = 50 A,
from (51) R,= 8 A, so that the use of « is still
justified. A value & & 10 is probably already safe,
so that the effective-mass approximation predicts
the correct energies of the donor states for the
majority of semiconductors.
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