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move to a deeper position, i.e. , from near the conduc-
tion band toward the valence band.

'9All of the proposed mechanisms, should, generally,

lead to first-order kinetics.
C. P. Carnes, P. J. Drevinsky, and H. M. DeAngelis,

AFCRL Technical Report No. 70-0423, 1970 (unpublished).
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The exc~&&e energy for the Wannier exciton is calculated by solving a previously derived
two-body Hamiltonian H ~2&. The solution of the eigenvalue problem of H ~2' in the effective-
mass approximation is performed with a numerical diagonalization method. The values ob-
tained for the excb~nge energy in several II-VI compounds are between 10 and 20% of the
bin+~& energy of the pure bydrogenlike exciton. The comparison with experimental results
shows a satisfactory agreement.

I. INTRODUCTION

The influence of the electron-hole exchange inter-
action on the energy spectrum of the Wannier exci-
ton is generally said to be small for large exciton
radii. Therefore, this exchange interaction is
normally neglected in deriving a two-particle equa-
tion for the exciton from the X-electron Hamilto-
nian. In a previous paper, ' we presented a two-
body operator for the exciton which was also derived
from the N-electron Hamiltonian, but which included
an exchange term in the two-body picture. With this
term it became possible to handle the exchange en-
ergy of the exciton in the two-particle formalism.
We did this in the above-mentioned paper with a
perturbation calculation and our results were com-
parable to those of Makarov.

It is, however, not necessary to use a perturba-
tion method to compute the exchange energy of the
exciton. We will show that the calculation of the
exchange interaction can be performed on the same
footing as the calculation of the Coulomb interac-
tion. We obtain the exchange energy for the Wan-
nier exciton in the effective-mass approximation
(EMA) without fitting parameters. The physical

restrictions to the validity of the calculated values
are caused by the approximations used in deriving
the exciton Hamiltonian. The derivation of a two-
body Hamiltonian is only possible with the assump-
tion of one-particle excitations in the N-electron
picture. This assumption and the EMA have to be
discussed in order to decide to which crystals the
obtained results may be applicable.

In Sec. II, we shall first consider the main points
in formulating the eigenvalue problem for H ' '. We
shall see that there are two possible methods for ob-
taining the eigenvalue spectrum of H' ' in the EMA.
Only the diagonalization method will be described in
detail. Then, in Sec. III, we shall solve the eigen-
value problem of H' ' and, in Sec. IV, the results
will be discussed. In Sec. V, finally, we shall corn-
pare the calculated energy spectra for several sub-
stances with experiment.

II. EIGENVALUE PROBLEM FOR EXCITON
HAMI LTONIAN

In order to calculate the exchange energy of the
exciton, we solve the eigenvalue problem of the ex-
citon Hamiltonian H' ' which includes an exchange
term. This Hamiltonian has the form'

2 2
H = Ep+ k(rg) h (r2) —

& & ~

+ 6(r~ —rm) 5, , Z 5.~., , 5(r', —rz) dr', dr&

where Eo is the ground-state energy of the whole crystal in the Hartree-pock method and is here a con-
stant, and h(r&) and -h(rz) are the self-consistent one-particle Fock operators, 7

8 ~ 2
2 2»i =-2 &~+i'(ri)+~ . )-, -,

~

ls.(r, o)l dr-~~. ,„&.(ri oi)~ ~&'; ~v„'(r, o) ~ ~ dr, , (2)
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with y„(r&, o, ) the eigenfunctions of h(r, ) in the va-
lence band. Q means the summation over all va-
lence-band states, while P, is the sum over the spin
variable a. The integral is to be taken over the
crystal volume A. The fourth term in Eq. (1) is
the Coulomb term and the last one is the exchange
term; & is the dielectric constant.

The operator H' ' was derived from the N-elec-
tron Hamiltonian H'"' by an equivalence principle.
The equivalence of the two operators H'"' and H"'
was shown for the subspaces V' ' and q' ' of the
whole N-particle and two-particle Hilbert spaces,
respectively. Thereby, the basis of V'"' consisted
of all determinants with one conduction-band func-
tion and N —1 valence-band functions, the so-called
one-particle excitations. The basis of W& ' was
given by the two-particle products y, (r„o,)
& cpa'(ra, oa), with rp, a conduction-band function and
y„a valence-band function. The restriction of H'"'
to the subspace q'"' is a common approximation in
treating the exciton. One can say it defines the ex-
citon. Only in this approximation does there exist
an equivalent two-particle operator H' '. This one
is also restricted to a subspece, namely, V' '. We
can signify this fact by introducing the projection
operator

a( r, )- E, —(Sa/2m, ) v', ,

—a'(r, )- —Za —(+a/2m„) v'a .
(6)

P P(r r ) f P eh(tr14'ia) s l(ari-a'r2»-. . .dT d r'
&i, i'& 0

(8)

With these approximations, and after diagonalization
in spin space, the operator H' ' has the form

H '=H +Ac

with

Hc=P HcP (1O)

E, and Ea are the energies of the band edges, and
n, and m„are the effective masses of the electron
and the hole, respectively. In addition to the bvo
Fock operators the EMA also concerns the functions

y &(r„o,)=y a(r, )f„(o,) (i =1, 2; a=c, v) (V)

in the projection operator (4). Corresponding to
Eq. (6), we have to approximate the Bloch functions
by plane waves and get the resulting projection op-
erator

with

P = P,(1)P„~(2), (3) S~

2m, '
2ma elI' -F I

'

P (i) =Z y ~(r„o,)P f„y~~(r'„o', ) ~ dv', Ac=PAaP

(i=1, 2; n=c, v) . (4)

(The sum runs over all states j of the band a. ) This
operator projects on &' ' and makes certain that the
"first" particle (electron, r, ) is in the conduction
band (c), while the "second" particle (hole, ra) is
in the valence band (v). So P suppresses states
which have, e. g. , two electrons in the conduction
band and which are not exciton states. With this
operator, we obtain the correct two-particle opera-
tor

H"' =PH&2'P

which is defined in the whole two-particle Hilbert
space and is called the exciton Hamiltonian. In
constrast to otherwise derived exciton Hamiltonians,
it includes an exchange term. This exchange term
is considered fully in the following solution of the
eigenvalue problem of H' '.

Before diagonalizing H'~' we perform the EMA.
First we consider the Fock operators h(r, ) and
h(ra), which describe the electron in the conduction
band and the hole in the valence band, respectively.
Assuming isotropic band extrema (for anisotropic
effects see, e.g. , Dresselhaus'), we have approxi-
mately, for the Fock operators

2g2 ~ ~
~Q e'a"i-'a' e '"'"l 'a' ~ ~ dr', dna .

&i, i'& EFgga

(»)
E~ = E, —E, is the band gap; A, is the exchange term
of Eq. (1); 6, proceeds from the spin, and is 1 for
that triplet state which has no projection in the z
direction, and zero otherwise'; I/r», is a modi-
fied Coulomb potential caused by P.

After this preparation we are ready to solve the
eigenvalue problem

H 4 (rv ra) = Ee~ 4 (rg, ra)

of the exciton Hamiltonian H' ' given by Eqs. (8)-
(12). We solve this by calculating the matrix ele-
ments of F7@ in a known basis and then diagonaliz-
ing that matrix numerically.

It should be mentioned that there is another pos-
sible way to solve the eigenvalue equation (13). It
is suggested by the special form of the exchange
term A, in Eq. (1). The 5 character of A, enables us
to reduce the eigenvalue equation (13) to the defini-
tion equation of the Green's function of eigenvalue
problems. By means of the Green's function of the
hydrogen problem, one can obtain the solution of the
eigenvalue problem of H '. The results are identi-
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cal with those obtained by the diagonalization meth-
Od.

III. SOLUTION OF EIGENVALUE PROBLEM

As mentioned in Sec. II, we solve the eigenvalue
problem of H' ' by diagonalization of a matrix rep-
resentation of H~ '. First of all, we introduc~e as
usual, the average electron-hole coordinate R and
the electron-hole separation r with

We introduce now the new function

(r) -1&K/2& ~ rf (r)
and the abbreviations

v(r) =P(r) v(r)

and

P(T, )
&{K /2) r p(T) -1(K/2) r

(2o)

(21)

R=-, (r, +r,),

r=rg —rp ~

and call the new wave function 4',

e (R, r) = e'21(r„r2) .

(14a)

(14b}

(15)

= (1/v 0) e'*'"P(r)f(r) (23)

(1/nfl) efK R e1(K/2) ~ r —(r) (24)

Then we obtain the following alternatively used ex-
pressions:

P(r„r2) 4(R, r) =P(r) 4/(R, r) (22)

=(1/gg)e'g'ge' "/ 'rP(r)e ' g/ 'rf(r) (17)

with

P(r)= —& e e ' ' dr'.
0& j&

(18)

Further, we assume that 4' is of the form

4(R, r) =(1/Kn) e'""f(r) .

Then the eigenvalue equation (13) is transformed
into an equation involving only the coordinate r.
This is known for the part H, of H' '; see, e. g. ,
Knox. But the same is true if the projection opera-
tor P and the exchange operator A& are included.
For that purpose we first calculate the expression

P(r„r2)4(R, r)=P(r„r )(21//0) e'"' f(r)

so the projection operator P influences only the
separation coordinate r and reproduces the function
efRr R

Next we consider the exchange term. With Eqs.
(12), (16), and (19) we obtain

5(r) =P~(T) 5(r) = —Q e'f' .~ &r&

We see in (25) that /tc also reproduces e'"' and
changes only the r-dependent part. Thus Eq. (13)
is reduced to the only r-dependent equation

(25)

1 ( } efK R ef(K/2) r /}( ) (25)«K'

wherein 5(r) is the partial 6 function

( } Eo+ + ——&-2—&-—P(r)f(r)+ ' e""""5(r)=~ P(r)f(r),
g K' }f' . O'K e - - - 8Ke25 v(O)
8 p, 2 p 2v «y «K' exc (27)

with

1/!1 = 1/m, + 1/m„ (28)

functions are chosen for l+ 0:

U2(r} = U„, (r, 8, rp) =R„,(r) Y, (g, S1} . (3O)

1/v = 1/m, —1/m„. (29)

This reduction of the eigenvalue equation was the
reason for introducing the new coordinates R and r.

The next step is the selection of a complete basis.
The choice of a basis to calculate the matrix ele-
ments is arbitrary, and therefore our selection
might be determined only by convenience. It is
evident that we choose the complete set of~lane
waves e' ' /r'0 related to the coordinate R. Con-
cerning the coordinate r, we construct a special
basis. It consists partially of hydrogen functions
and partially of Slater functions. The hydrogen

S~,(r, S, y) =R„',(r) Y22(S, r/&)

s/s

(R+1)! [(n+1)s]'"

x e~/'L' 2r 1
r+1 e (4v)1/2 (31)

(For the explicit form, see, e. g. , Bethe and Sal-
peter. ") The Slater functions, which were sug-
gested by Hylleraas and discussed by Shull and
Lowdin' and also by Slater, ' are chosen for l=Q:
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where L are the I.aguerre polynomials

2 n+1
2 d d tf+g gL i(„) d2 d'dpi( (32)

(@, , H, @,) = 5„-, „- (v, .(r), H,
'
v, (r))

= 5„-, „-(v,.(r), H,'v, (r)}, (37)

The functions S„«and U„~ differ mainly in the ex-
ponential function which is always the same in S„«
while n dependent in U„«. For n=1, both functions
are equal:

S, (r, s, (())=U, (r, s, y). (33)

Since we are mainly interested in the n =1 exciton
state, this equality (33) is a reason for choosing the
above Slater functions.

The R„)(r) of Eq. (30) form a complete set of func-
tions for each fixed l and current n. The same is
true for the R„'0 of Eq. (31), which are orthonormal
with respect to n. Further, the S„«are orthogonal
to the hydrogen functions U„, with l&0, because the
spherical harmonic

1'M(4), (()) = 1/(4w)'i' (34)

We denote the state with the number q which in-
volves the six quantum numbers K and X =-nlm.

f, (0) vanishes for 1+0, and with Eq. (19}, so does
(),(0). For the value of v, (0) in expression (25), one
calculates slightly different amounts, but for l4 0,
v, (0) practically vanishes too. So, in this case, the
exchange term disappears in Eq. (27) and, aside
from the projection operator, this is a hydrogen-
like equation. Therefore, we use the hydrogen
functions in the case of l& 0, for which the matrix
of H' ' is almost diagona, l. For l =0, the exchange
term does not vanish, and the matrix is not diago-
nal, either for hydrogen or for Slater functions.
We prefer the Slater functions for the necessary
numerical calculation because they do not contain
a continuum as the hydrogen functions do and,
therefore, they are a proper basis for a matrix di-
agonalization method.

We calculate the matrix elements

H(2) (y H(8)@ )|C

separately for H, and Ac. Using (9!and (24), we
have for H,

(36)

of S„~ is orthogonal to the spherical harmonics
Y( (3, rp), l&0, of the hydrogen functions. So the
hydrogen functions (30) for le 0 and the Sister func-
tions (31) for l = 0 form a complete basis in the r
space. This basis supplies, together with the plane
waves e' '

/u 0, a complete orthonormal set in the
two-particle space.

The reason for constructing the mixed basis, con-
sisting of U and S, is the form of Eq. (27). Ne-
glecting the exchange term and the projection opera-
tor, it is a hydrogenlike equation and the solution
is given by

f, (r) -=f-„„(r)= e "'""'""U„(r) . (35)

with

H,
' =P(r) H,'P(r)

f2@2 jg 2 g2 K
H,'=&, +&, — ——V' —i v- —. (38)

2m, 2p. m, &r
'

5-„,-„means the Kronecker symbol. The approxima-
tion in Eq. (37) is not very serious. For example,
the expectation values of the operators H,' and H,

'

for the exciton 1s state differ by a factor of less
than 1-10, which is irrelevant considering the
other approximations made. In the case of the ex-
change term we calculate the matrix elements cor-
rectly and obtain, with (25),

(@ A @ )
( K'. K -g (0)- (0) (39)

The resulting matrix element is now

H,",'=5)(,x ((),.(r), H,'(),(r))+, '8,* (0)(),.(0)

k =yv/a(, (41)

where a, is the lattice constant and y is a number
which depends on the geometry of the BZ and ha, s
a value of about 1. The resulting expressions are
very extensive; we do not present them here. We
have diagonalized the matrix numerically on a com-
puter. The results given in Sec. IV are obtained
from matrices of order d=100. The change in the
values for the 1s exciton state resulting from diag-
onalizing a, matrix of d=90 and a matrix of d=120
was smaller than 0.01%. Therefore, using a ma-
trix of order d = 100 should be adequate to get cor-
rect values.

IV. RESULTS

First, we see from Eq. (40) that all matrix ele-
ments between states with a different total K vector
vanish. This is obvious for the Coulomb term.
But also the exchange interaction does not couple
states with different K vectors in our approxima-
tion. Further, we see that only exciton s states

(40)

~1th (19) and (35) we can deduce the v, (r) to our
basis functions and then calculate the matrix ele-
ments (40) explicitly. The only approximation we
make is the substitution of the sum over the first
Brillouin zone (BZ) by an integral in the k space
over a, sphere, which has the same volume as the
first BZ. The radius k of the sphere is given by
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with 5, =1 have a considerable amount of exchange
energy. The exchange energies of the other states
are negligible. This is in agreement with our pre-
vious results' and with Makarov. The s states are
shifted by the exchange interaction from the other
states which remain hydrogenlike. The final result
for the exciton energy, that is, the eigenvalue spec-
trum of the exciton Hamiltonian 8' ', is given by
the formula

g2g2

&me+ ma

(1 —5~ 5io 5~ 5io
(42)2e'&' 4 rP p'

Again 5,o means the Kronecker symbol. The quan-
tity

12
18
24
30
36
42
48
54
60
66
72

—0. 7284
—0. 7890
—0. 8257
—0. 8510
—0. 8686
—0. 8832
—0. 8946
—0. 9032
—0, 9099
—0. 9156
—0. 9026

—0. 2117
—0.2211
—0.2265
—0.2302
—0.2327
—0.2346
—0, 2362
—0.2374
—0.2383
—0.2391
—0.2397

—0. 0993
—0. 1023
—0. 1040
—0. 1051
—0. 1059
—0. 1066
—0. 1069
—0. 1074
—0. 1077
—0. 1079
—0. 1080

—0. 0574
—0. 0587
—0. 0595
—0. 0599
—0. 0603
—0. 0606
—0. 0608
—0. 0610
—0. 0612
—0. 0613
—0. 0614

TABLE I. Binding energies of the exchange-influenced
exciton states. The values for 1/p2 are calculated for
variable p and fixed b = 0. 5 and c = 0. 45. By multiplying
the given values for 1/p„with t" [cf. Eq. (43)j, one gets
the binding energies of the exchange-influenced states.

P 1/p2 —1/p2 —1/p3 1/p 2

G = pe'/2e ff = (p/me'}&& 13.5 eV (43) p 00 —1.0000 —0.2500 —0. 1111 —0. 0625

a = (cm/p, )as = (cm/p)x 0. 529 A (44)

„-31(
-0.7—

-0.8—

-0.9—

Zn

-1.0 I

30
I

42
I

ss

FIG. 1. Exciton binding energy for the exchange-
influenced 1s state as a function of the parameter p for
fixed values b=0. 5 and c=0.45. The units are exciton
Bydbergs [cf. Eq. (43)j. In the pure hydrogenlike case
the binding energy is —1. The difference bebveen
—1/p~ for a particular p and —1 is the exchange energy
of the exciton. For some II-VI compounds the p values
of Table QI are entered.

is sometimes called one exciton Rydberg and dif-
fers from the Rydberg energy of the hydrogen atom
by a factor of p/mto. p„ is a number which corre-
sponds to the principal quantum number n but is
slightly different from integers. It is discussed in
detail below. For l+ 0, the term with p„disappears
and the remaining expression for the exciton energy
is just the normally used formula for the Wannier
exciton. But for E =0, we now have a changed value
for the binding energy which is given by the last
term in Eq. (42). Therein the p„ is not an integer
but is somewhat larger than the corresponding n.
Aside from the main quantum number n, p„depends
on the three parameters p, b, and c. Here, p is
the product of the exciton radius

with the "radius" k of the first BZ [cf. Eq. (41)]:

P=ak (45)

It is a fixed value for each substance and varies for
some typical II-VI semiconductors from 20 to 50.
The parameter

(45)

is the product of the exciton radius a and the ab-
solute value of the total wave number K of the ex-
citon;

c = (p,/m, ) b = [m„/(m, + m„)] a K (47)

p=yva/a, , (4S)

is b multiplied by a fraction of effective masses.
For an optically excited exciton, the K value is very
small and the calculated values for the parameters
b and c are about 1. They have almost no influence
on p„. So only the parameter p is important here.

The dependence of the binding energy on the pa-
rameter p is given in Table I and in Fig. 1 for fixed
values b and c. In Fig. 1, we see tha, t for large p
the value -1/p, approaches —1. The difference be-
tween the value on the curve and —1 is a measure
of the exchange energy, which thus becomes smaller
for large p. On the other hand, p is large in sub-
stances with large exciton radii [cf. Eq. (45)]. So
it is verified that the exchange interaction becomes
small for large exciton radii.

For small exciton radii, i. e. , small p values,
the exchange energy increases and reaches consid-
erable amounts. But there we come to the limit of
the described model. The size of the exciton in the
1s state should involve at least three lattice sites.
With Eqs. (41) and (45) we have
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TABLE II. Parameters used to calculate the exchange
energy.

TABLE III. Calculated and measured values for the
exciton exchange energy in some II-VI compounds.

Sub-
stance

Cds
CdSe
ZnO
ZnSe
ZnS

Struc-
ture~

8.2

9
7
8.6
7

pim'

0. 14
0. 09
0.21
0. 12
0. 17

(A.)d

31
53
18
38
22

e
&mc
(meV)

28
15
58
22
47

Sub-
stance

Cds
CdSe
ZnO
ZnSe
ZnS

Struc-
ture~

26. 2

46. 3
19.0
41.5
25. 0

A

(%)

16.4
10.8
20. 4
11.6
17.0

Ac
(me V)

4. 6
1, 6

11.8
2, 5
8. 0

2. 3
0. 8
5.9
1.25
4. 0

d
)exit

2, 5
0.4
5. 6
1.0
4. 0

5 means hexagonal (wurtzite) structure and c means
cubic (zinc blende) structure.

We used an averaged dielectric constant & obtained
from &p and E„(Ref. 14) by Haken's formula (Ref. 2).

'Reference 14.
dCf. Eq. (44).
Cf. Eq. (43).

and for a/a, = 3 we find a P of about 10, which is the
lower limit for application of the above energy
formula (42). But in practically all semiconductors,
the P value is much larger, as seen in Table II.
Therefore, if the parameters m„m„, e, and k
are known, we can state the value of p and then ob-
tain the exchange energy of the exciton from Table
I. Unfortunately, the parameters m„m„, and &

are not well known. So the determination of the ex-
change energy contains some uncertainty. On the
other hand, if the exchange energy is known by ex-
periments on excitons, one can obtain the values for
the reduced effective mass and for &.

V. COMPARISON WITH EXPERIMENT

In order to determine the exchange energy

'See Ref. a of Table II.
Cf. Eq. (45).

Cf. Eq. (49).
Reference 15.

we list the calculated values for A —in column 4
in percentage of the binding energy and in column 5
in meV. One-half of this value, j, corresponds to
the measured j„„.These values originate from
pressure measurements by Langer et al. " The
agreement between the calculated values j and the
measured values j,~„ is fairly good considering
the approximations made and the uncertainty in the
experimental parameters. The equality of the mea-
sured and calculated values for ZnS must be con-
sidered accidental.

The main result of these calculations is the fact
that the exchange energy for Wannier excitons
reaches values of 10 to 20k of the binding energy.
Even for excitons with very large radii (cf. Cdse
in Table II) the exchange energy has a reasonable
value of about 10% of the binding energy. Thus the
influence of the exchange interaction on the energy
spectrum of the Wannier exciton is larger than
estimated before and should not be neglected.

p, e 1 1
2gR g2 pF p2 (49) ACKNOWLEDGMENTS
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A new method to investigate the direct-exciton spectrum in semiconductors with degenerate
bands is described. This method, which solves the effective-mass Hamiltonian using symmetry
arguments and second-order perturbation theory, gives a general and accurate description
of exciton states in semiconductors. Direct excitons in group-IV elements, III-V compounds,
and II-VI compounds are investigated. For Ge and GaAs, the binding energy is in excellent agree-
ment with previous calculations. For all other substances, our treatment represents the first
theoretical investigation. The results are in satisfactory agreement with available experimental
data.

I. INTRODUCTION

Diamond and zinc-blende semiconductors have
been studied extensively in recent years and a large
amount of information is now available both experi-
mentally and theoretically. Special attention has
been given to the optical properties because they
are one of the best tools for investigating band
structures and electron states. Near the funda-
mental edge, the optical spectra of these semicon-
ductors exhibit structure which is interpreted as
due to direct-exciton formation. In large-gap semi-
conductors, additional structure due to indirect ex-
citations is observed at lower energies.

The first observation of direct and indirect exci-
tons was made in Si and Ge. ' Since then, structure
due to exciton formation has been observed in many
zinc-blende III- V and II-VI ' compounds. These
effects are generally small, owing to the large di-
electric constants and small effective masses of
these materials. For InSb, these effects are so
small that they have not yet been observed in optical
spectra. In this case, however, exciton effects
have been observed in magneto-optical experiments
and the exciton binding energy can be estimated.

In contrast to such abundance of experimental
data, little theoretical work has been done up to
date. Most of these theoretical investigations have
been concerned with the exciton energy spectrum
and the optical absorption in a model semiconductor
with simple valence and conduction bands. In this
case, the Wannier exciton Hamiltonian can be re-
duced to that of the hydrogen atom and exact solu-
tions are easily obtained. Optical selection rules

and the absorption coefficient have been investi-
gated in detail too. Even though these investiga-
tions are useful from the theoretical point of view,
they cannot be applied directly to the interpretation
of most of the experimental data because degenera-
cies often occur in the energy bands. All crystals
with the diamond and zinc-blende structure have a
degenerate valence band at k = 0, where the exciton
is formed, and therefore the theory for simple
bands cannot be applied.

A formal theoretical treatment of excitons in the
case of degenerate bands has been done by Dressel-
haus. The resulting Hamiltonian is formally simi-
lar to that describing impurity states for degener-
ate bands and, owing to its complexity, no exact
solutions have been obtained. McLean and Loudon
have obtained an approximate solution for the
ground state of the direct and the indirect excitons
in Ge and Si using the variational technique pre-
viously introduced by Kohn and Schechter' in their
treatment of shallow acceptor states. The same
method was also used by Abe, "who considered
the direct exciton in Ge and GaAs. So far, no one
has considered the exciton series originating from
the split-off valence band whose effects in optical
spectra have been experimentally observed. '
Furthermore, no calculations have been done to
compute the energy of excited states which have
been experimentally observed in some of the III-V
compounds' and II-VI compounds. ' The reason for
these facts is that the variational technique, which
involves elaborate computations for the ground
state, becomes practically impossible when applied
to excited states or to the split-off exciton series.


