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Experimental evidence is presented concerning sweepout of majority carriers in p-typedoped
germanium photoconductors under high-resistivity conditions where the dielectric relaxation
time Tp exceeds the recombination time. This evidence demonstrates sweepout at signal mod-
ulation frequencies lower than the inverse dielectric relaxation time for the case of dc photo-
conductive gain greater than unity and gain saturation for signal modulation frequencies greater
than the inverse dielectric relaxation time. These experimental findings are shown to be in
general agreement with the predictions of a theoretical approach to semiconductor transport
in this regime based upon the frequency dependence of the Debye length in compensated ex-
trinsic photoconductors. This approach calculates the spatial dependence of the photoinduced
hole concentration in the sample for an assumed boundary condition of 4p = 0 at the anode.
This dependence is then used to predict an approximate maximum gain-bandwidth product in
the form GB=—1/7'~. I ack of exact agreement between theoretical curves and experimental
results can be explained by postulating an inhomogeneity in sample resistivity.

I. INTRODUCTION

Dielectric relaxation phenomena in p-type Hg-
doped germanium photoconductors under high-re-
sistivity cold-background conditions were first ob-
served by Williams. ' Dielectric relaxation appeared
as a slow response time not associated with RC
circuit effects or the recombination time of the
material (r). The appearance of a time constant
on the order of the dielectric relaxation time 7,
(under conditions where v, » r) was first associated
with inhomogeneities in the material. However,
further experiments showed that the falloff of re-
sponse with increasing signal modulation frequency
did not appear unless the dc photoconductive gain
was greater than unity. For chopped signal illumi-
nation, the photoresponse was observed to saturate
as the bias field was increased past the condition
for unity dc photoconductive gain. On the basis of
this observation, Williams associated the slow re-
sponse with a majority-carrier sweepout phenome-
non. This general interpretation is still believed
to be correct. In this paper, we will provide a
microscopic model for the transport processes
which are going on inside the photoconductive crys-
tal and compare this model with more extensive ex-
perimental observations. The relevant calculations
with the model are based on an assumed boundary
condition bp = 0 at the injecting anode.

Ryvkin has shown that for the case of steady sig-
nal illumination, the Debye length and effective
drift length in extrinsic photoconductors are both
extremely short for any reasonable degree of com-
pensation and applied electric field. Since the ef-

fective drift length is the range of influence of a
discontinuity, an effective drift length shorter than
sample dimensions means that the contacts cannot
influence the carrier concentration in the bulk of
the sample. This renders sweepout impossible.
It has recently been shown, using the same sort of
analysis as used by Ryvkin, that the Debye lengths
in compensated extrinsic photoconductors are de-
pendent on the signal modulation frequency. For
chopped signal illumination, the effective drift
length can become as long as the ordinary drift
length' for modulation frequencies less than the in-
verse dielectric relaxation time, so that sweepout
is possible for ac conditions. It was proposed that
this approach could be used to calculate the photo-
induced hole distribution inside the sample and that
if restrictive boundary conditions were applied at
the contacts, sweepout would occur even for signal
modulation frequencies less than the inverse dielec-
tric relaxation time as long as the dc photoconduc-
tive gain was greater than unity.

It is the purpose of this paper to examine the con-
sequences of the frequency dependence of the Debye
length in detail and to compare sweepout predictions
from this theory with detailed experimental obser-
vations on Hg-doped germanium samples which
have dc photoconductive gains well in excess of
unity.

II. THEORY

A. Material

An extremely simple energy-level model of a
compensated p-type semiconductor can be used to
describe an Sb-compensated Hg-doped germanium
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extrinsic photoconductor at low temperatures. In-
frared absorption and photoconductivity occur when

electrons are excited from the valence band to the
Hg acceptor impurity energy levels of density N,
at an energy AF. above the valence band. Any
shallower (unwanted) acceptor levels of density N,

'

are considered to be already completely ionized by
electrons coming from the compensator donor im-
purity (Sb) which has been added with density N~

Since in a practical photoconductor N„&N,', some
of the infrared-active Hg-doped centers are ionized
with density no=N~ J)I,' (A—~ «&,), even at T= 0 K
and cold backgrounds. The density no can be con-
trolled by varying the compensation density N~.

We will be concerned here with lightly compen-
sated Hg-doped germanium photoconductor material
where N, =10' -10' cm and no=10' -10"cm '
measured at temperatures less than 27 K with cold
backgrounds. Under these experimental conditions
the hole recombination time 7 is controlled by the
ionized acceptor density and is typically on the
order of 10 6-10 ' sec (i. e. , 7 = 1/yno, where y is
the recombination coefficient). The hole density
and therefore the resistivity p and the dielectric
relaxation time r, =&p/4v can be controlled by
varying the effective infrared-background photon
Qux density J,. At cold enough detector tempera-
tures the hole density in the valence band Po can
be approximated by (J~/t)r if the background radia-
tion is completely absorbed (f is the sample thick-
ness). For the cold backgrounds of interest, the
resistivity is high (go& no), leading to a r, greater
than 10 3 sec. Table I provides a list of typical
values for important parameters in the experimen-
tal situation of most interest.

can be changed either by drift or diffusion toward
or away from that point, or by generation or recom-
bination with ionized impurity centers at that point.
The ionized impurity density n can vary with posi-
tion, but at a given position this density can only
be changed by generation or recombination since
the impurities are immobile. The no refers to the
density of ionized impurities that would exist with-
out the application of signal illumination, just as
Po refers to the hole density that would exist without
signal illumination.

We will derive a general solution for the hole
density P, analyze the case of partial signal illumi-
nation, discuss the most reasonable boundary con-
ditions for the case of uniform signal illumination,
and then calculate the effective gain of a photocon-
ductol .

Although a portion of the available experimental
evidence concerns the response to signal pulses,
the case of sinusoidally modulated signal illumina-
tion will be considered here since the analysis is
more straightforward. Maxwell's equations and
the continuity equation can be used to derive the
governing equation for the hole density in the sam-
ple. To get a realistic useful result, the conditions
for charge neutrality need to be relaxed and a bipo-
lar recombination rate r must be assumed (r = ynp)
In the small-signal case, where the hole density
induced by the infrared signal bp is less than the
hole density caused by the background flux and by
the thermal generation rate po (i. e. , hp «po), these
equations can be linearized and combined to form

o eEo ~&Po bpo
&x kT Sx [L~((o)]

B. General Solution

The approach which has been used to derive the
frequency dependence of the Debye length assumed
a one-dimensional continuous charge density model.
Any possible trapping effects due to the compen-
sated shallow acceptor states were neglected.

The hole density p at a given point in the sample

where

[~g,(X.—n, ) —(~PJ'S)](~„)
1 + f/) 7'g

( )
Ago(N, -no)7„1 . e

1 +'LOP 7'~ 7' p, kT (4)

T
p,

N~

no

t
J~

PO

7p

27 'K
2 x10 cm /V sec
2 x10"cm-'
4x10"cm-'
3x10"cm '
2 x10 sec
0.5 cm
2 x10 cm sec
3 x104 cm-'
10 2 sec
0.086 eV

TABLE I. Typical values for important experimental
parameters.

for sinusoidal signal generation hg= hgoe'"'. ' Here
p =~Poe'"', &n= canoe'" ~ p =po++p, n=no+~n

0 is Boltzmann's constant, T is the absolute tem-
perature, e is the absolute magnitude of the elec-
tronic charge, Zo is the applied electric field, p, is
the hole mobility, 7„=1/(ypo) is the recombination
time for the ionized impurity density under condi-
tions where hp =0, hg(N, n) is the signal genera--
tion rate, and v, is the dielectric relaxation time,
i. e. , r, =c/(4veppo) cgs, where e is the low-fre-
quency dielectric constant. Ln(~) represents the
frequency-dependent Debye length.

Since 7.„and v, both depend on the free hole den-
sity po, 7„can be written as
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where
R -=(ye/4vep)'~'

1 eEp 1
+ +

L) kT L «L'
1 1 i
L2 L~~f L'

(12)

Lp = ' (1+Re" '+Be" o)1+ (r/r„) +i(ot

where

L& 2 2kT 2kT LD co

This is a general solution valid for both high and
low backgrounds. The constants A and B must be
determined by the boundary conditions. For small
applied bias,

Zo"
I
2&~/'eL (~) I (9)

diffusion dominates and

1 eEp 1
L~ o 2kT Lo((o)

but for the case of most interest,

Zo» I»&/eL. (~) I

(10)

drift dominates, diffusion can be neglected, and

is a basic parameter of the material (it does not
depend on compensation level N„or background
flux Jo). Of course, p, is a functionof N, forneutral
impurity scattering, and y/p or (p, r) ' may have
some temperature and electric field dependence,
although this is usually not strong for tempera-
tures above liquid-helium temperature. For the
usual experimental situation the chopped infrared
signal cannot be simply represented by hgp cos(dt
as has been assumed so far, but must be repre-
sented by ng~(1+ cosmic) How. ever, since for the
small-signal case the equations are linear, the
principle of superposition applies and solutions for
different frequencies can be considered to be ad-
ditive, which allows the ac component to be con-
sidered separately without loss of physical content.

Equation (1) is a general equation for the small-
signal case. However, in the discussions which
follow we will be primarily concerned with the cold-
background case where v, » r. Since for the ma-
terial of interest R is less than unity, r„, which
represents the response time of the ionized impur-
ities under conditions where ~ = 0, is usually the
longest response time of the system. Estimates
for R in Cu- and Hg-doped germanium with T& 2V K
and N, =10"-10' cm vary between 0. 1 and 0.01.
The R = 0. 03 has been chosen for all calculations
presented here. This corresponds to p = 2&& 104
cmo/'iI sec and a captured cross section of (o')
=10 -10 cm with a thermal velocity of v,„
=- Sx 10' cm/sec (y=(a) v,„)."

Equation (1) can be solved for vapo

where

1/R &u 7„
Lsff Zoi 1+ &p 1 +

and
r„/R' --'

L'=Zopf &o r+ op —
op1+co & 1+co

(14)

Figures 1 and 2 show the dependence of L,«and
L' on frequency. The solid line corresponds to a
low-background case with r,/7 = 10 and the dashed
curve corresponds to one particular high-back-
ground case, i. e. , v,/ r=0. 2. As long as r, » r,
the low-frequency behavior can be scaled in terms
of 7p and R 7p and is therefore insensitive to the
particular value of ~,/r

Fol ~ =0,

L~ff =ZopT(T/ran+1/R ) Zop, TR )

when v, &R 7..
This is Ryvkin's result for the dc effective drift

length. Since R is approximately 10 in Hg-doped
germanium, for dc signal illumination this effec-
tive drift length is very short. Qrdinary drift
lengths (Zopr) great, er than a few millimeters are
unusual since they can only be obtained with com-
pensation less than 10' cm and applied biases
greater than 100 V/cm. Thus for the usual experi-
mental conditions, the effective drift length at ~ = 0
is shorter than a few microns and is therefore much
shorter than the typical interelectrode spacing I.
of several hundred microns. Sweepout occurs when

a restrictive boundary condition appreciably re-
strains the hole density in the bulk of the material.
Since L,« is a measure of the range of the influence
of a discontinuity or boundary condition, sweepout
effects would not be measurable unless L,«were
comparable to the interelectrode spacing L. Sig-
nal saturation with applied bias is therefore not
usually observed with steady signal illumination.

Since Lo and L,«are screening lengths (in the
diffusion-dominated and drift-dominated case, re-
spectively), they are very much influenced by net-
charge build-up and decay processes in the materi-
al. The main effect of bipolar recombination (the
use of r = ynp rather than r =p/7) is to allow a def-
icit or surplus of ionized impurity states to partic-
ipate in this screening process. In the high-re-
sistivity cold-background case where np» Pp at
low signal frequencies most of the screening charge
is carried by the ionized impurities. Under dc
conditions the carrier densities adjust themselves
so that hole generation equals hole recombination.
Thus for a given signal generation rate ~g at a
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FIG. 1. Normalized plot of effec-
tive drift length vs signal modulation
frequency for the case of 8 =0.03.
Solid line represents the cold-back-
ground case with tp~~ t, whereas
the dotted line represents one par-
ticular warm-background case where
tp -0.2t.
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particular point we have nn = gg/@0 —(yggpo) gp,
which can become relatively large if for some rea-
son Ape bg/yno. This process places an upper
limit on the dc Debye length in high-resistivity com-
pensated extrinsic semiconductors. However, as
the signal modulation frequency increases to &
& (1/r„), the ionized impurity density can no longer
follow the signal, hn near the discontinuity de-
creases, and L~ and L,«become longer. This fre-
quency dependence is not caused by the frequency
dependence of the dielectric constant but rather by
the dependence of the recombination process. The
screening lengths are, of course, ultimately limited
by recombination of the holes themselves (i. e. ,
for ap &R(1/7, ) and r, & 7; LD - [(e/pkT)(l/7')] '
and Legg Zop 7 which is the ordinary drift length).

Thus the effective drift length becomes as large
as the ordinary drift length for signal modulation
frequencies more than an order of magnitude lower
than the inverse dielectric relaxation time. Since
the ordinary drift length (Bop, 7) can be on the order
of millimeters (larger than L), saturation of photo-
current with increasing electric field (sweepout)
becomes possible. However, a restrictive boundary
condition is necessary for sweepout to actually
occur and the details of the process will depend on
the exact solution for hP. The constants A and 8
need to be determined. The value of L' as compared
to the interelectrode spacing turns out to be impor-
tant.

C. Case of Partial Signal Illumination

The case of uniform signal illumination is hard
to understand conceptually except as an extension

of the case of partial illumination. Since the solu-
tion in Eq. (V) is valid for both cases, let us there-
fore first consider the case of partial illumination
where all of the sample is illuminated by the signal
except for a small portion near the anode. In this
case, the boundary between signal illumination and
no signal illumination occurs not in the anode con-
tact region, but in the bulk region where the mate-
rial can be adequately characterized (see Fig. 3).
In this case, there is a region of no signal where
~ = 0 (region 1 of length I,), a transition region
of length - L,«where hP has yet to be defined
(region 2), and an illuminated region in equilibrium
(region 3 of length Ls) where, as expected,

ago(N, nf)) v[1+—(7/7„)]
[1+(r/v„)] '+ (g'v'

Ego(N, —no) 7 ~v singlet

[1+(~/7„)]'+a)'7'

If the length of the transition region L« is much
smaller than the interelectrode spacirig L (low
electric field case), the current in regions 1 and 3
and in the wire can be calculated by macroscopic
considerations. In the small-signal case, an in-
crease in signal illumination and conduction current
in region 3 causes a negative-charge build up in
the transition region. This charge builds up with
the dielectric relaxation-time constant and changes
the electric field and therefore the conduction cur-
rent density in region 1, J,&. Since the displacement
current density J~& in region 1 is large while the
electric field is changing, it combines with the con-
duction current density in the small-signal case to
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cancel any effect caused by the dielectric relaxation
time; therefore, even though there are charge-
buildup and decay processes within the sample,
as long as the transition region is small, dielectric
relaxation effects are invisible from the outside.
In the linear case, conduction and displacement
currents complement each other. See Appendix
for details.

Thus in the small-signal case (relevant to the
Hg-doped germanium experiments), no dielectric
relaxation effects can be observed unless the length
of the transition region becomes comparable to the
length of the illuminated region. With high-quality
semiconductor material, such as doped germanium,
for large-bias electric fields this situation is pos-
sible and a satisfactory analysis then requires a
microscopic analysis of the transition region using
Eq. (7).

For Eq. (1) to completely describe the hole den-
sity in the illuminated region (regions 2 and 3), the
constants A and B have to be determined. For an

gp A ~Ã/Ir $ for x&0 .
If we match bp and sbp/sx at x= 0 (a discontinuity
is impossible due to diffusion),

infinite sample, A must be zero in the illuminated
region since physically the hole density cannot con-
tinue to increase a,s g- . For a, finite sample,
A need not be identically zero, but as long as ReL,
is small compared to L [t.e. , (kT/eEQ) « I], the
boundary condition at the cathode contact does not
greatly perturb the hole density in the bulk of the
material, and A can be set equal to zero for most
purposes.

The burden of the problem is thus to determine
a reasonable value for B. This is not difficult in
the case of partial signal illumination. Considering
g ~ 0 to be illuminated with signal, bpo can be ex-
pressed as

apo= ' . (1+Be"i 2) for x)0Ego(N, —nII) 7'

1 + T/'Tq + 4r 7
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FlG. 2. Normalized plot of L '

vs signal modulation frequency for
the case of R =0.03. Solid line
represents the case where w~ = 1047,
whereas the dotted line represents
the case where 7~ =0.27.
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SIGNAL ILLUMINATiON
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FIG. 3. Schematic of a sample
partially illuminated by signal radia-
tion.

x=0

1/I,.„+f/L'
errr/rr/ ~ 1/r. „+r/r'). '.

a-- [1-f(ur/eZ, ) (1/I. ')] . (21)

leis Q LekP pq is Iimited by the ordinary drift length,
i.e. , by Eop, 7.

The high-frequency [+&R(l/r, )] expression for
Lese

Thus ~ =0 corresponding to 8 = —1 is the correct
boundary condition for partial signal illumination
if I

L'
I is large enough [i.e. , as long as inequality

(11) is satisfied and drift dominates diffusion, as
is usually the case in the frequency range of most
interest]. This is to be expected since holes, gen-
erated by the signal, drift away from the boundary.
The hole density at a particular region is deter-
mined by the balance of generation, recombination,
and drift in and drift out of that region. There are
essentially two processes by which the hole density
can increase from ~0= 0 at the interface to the
bulk equilibrium value bp, ~

= Ago(N, —np) v/(1+ 7/T-„
+ia&v) The f.i.rst process involves the buildup of
electrical charge in the transition region. This
net charge causes a change in electric field with
distance [i.e. , Z- Z0+nZ, where nZ=(4p/e)
x J Q' dx; Q' is the charge density]. For a positive
signal-generation rate, this net charge is negative
and the gradient in electric field caused by this
charge acts upon the equilibrium hole density P'0

to increase ~0. A total ".harge per unit area of

e/1 go(N —no) "Zo//. 7n

1 + T/7'z + rr M T
(22)

is necessary to increase APO from zero to hp, ~ by
this process.

The other process by which hpo can increase from
0 to ~,~ is by ordinary recombination, i.e. , holes
which are generated at x=x' and drift to the right
can be replaced by holes which were generated by
the signal to the left of x' and which recombine at
g= g'. Thus the length of the transition region
where AP builds up from APo =0 at the interface to

L«, = Z, / [(1/~)+ (1/r, )]-' (23)

g0( a n0) r
(1

- x/regf - err/Er)
1 + 7/ T„L+(dT

(24)

which for ~«1/7, considering the real part, can
be approximated as

nP~= Age', v{[1—e "/ «f cos(x/L')] cosset

—e ""«sin(x/L') sin(gt] . (25)

In the region where L,«& IL'1, i. e. , between
~ = 1/7„and ~ =1/r„ the solutions are very com-
plicated with hpo rising from zero and overshooting
APy qp only to fal l back again, whereas the charge
density Q' shows evidence of damped charge density
waves with the dispersion relationship plotted in
Fig. 4. See Figs. 5 and 6 for an example of the
time evolution of Q' and Ap at the particular signal
frequency where L,«= —10L'; i.e. , where
=,0 (1/r, ) The solution. s are very complicated.
It is particularly surprising that the introduction of
a restrictive boundary condition can force ~pa to be

demonstrates these two processes. For high back-
grounds (r, & r), L„,= Zop„7w ihhc, means that
charge processes are limiting even at high frequen-
cies and L,~, never becomes as long as the ordinary
drift length. For low backgrounds (v, & 7), L„,
= Fop, 7. at high frequencies, so that ordinary hole
recombination limits the effective drift length for
this case.

We will now examine how the solution for LhP in
Eq. (7) demonstrates these transport concepts.
For A = 0 and 8 = —1, ~0 can be written as
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D. Case of Uniform Signal Illumination

It is conceptually more difficult to treat the case
of uniform signal illumination because the boundary
between signal and no signal occurs in the contact
region which is hard to characterize theoretically.

larger than hp„ in selected parts of the sample.
Nevertheless, these solutions are physically con-
sistent. The oscillatory wavelike structure occurs
because near x=0, I ~n) & I LP„I and for + & 1/7„,
hn lags Dg, which means that most of the charge
density is 90 out of phase with the generation rate.
The length of the transition region, i. e. , the de-
cay rate of the oscillatory structure, is controlled
by L,«, which is limited either by the buildup of
charge in phase with hg or by hole recombination,
whichever is shorter, whereas the period of the
oscillatory structure (i. e. , L' )is controlled b. y the
charge density out of phase with Ag. In quantita-
tive terms,

f Q', dx=- hgp(N, —np) Epp, TTp (26)

as long as L,«&E0pT and

fL'
Qpdx= ngp(N, —np) EpT

0

which is just the charge required to change A/0
from zero to AP„. In the high-background case
(~, & v), hole recombination does not limit L,«
even for ~ » B(1/7, ). Charge-buildup processes
dominate for all frequencies and L,«saturates with
increasing frequency to E0p, Tp not E0p, T.

The usual model of an Ohmic contact assumes a
lower resistivity and a lower electric field in that
region which would affect the magnitude of the local
L,«and L' near the contact. If the photosensitivity
of the contact region is markedly poorer than that
of the bulk, for whatever reason, the op = Ois most
likely still a good boundary condition. If the photosen-
sitivity near the contact is not poor, then we areun-
able, at present, to justify this assumption. In
order to proceed we will, nevertheless, assume
that a correct characterization of the contact region
will result in bp being approximately zero at a posi-
tion in the bulk near the contact when drift-dominated
conduction prevails in the bulk, i. e. , when inequal-
ity (11)holds and I

L'
I » kT/eEp.

This ambiguity as to boundary condition does not
occur in discussions of ambipolar sweepout (in-
trinsic conductivity) since, in that case, one is
concerned with drift of the minority carriers and
the excess majority carriers near the contact tend
to make the recombination time of the minority
carriers small in that region. Further, a contact
which is injecting for the majority carrier is auto-
matically blocking for the minority carrier. Thus
An, = 0 is a good boundary condition for p-type ma-
terial where n, is the conduction-electron density.
In this paper we are concerned with extrinsic photo-
conductivity and majority-carrier sweepout. The
contact region is therefore an area of conceptual
difficulty.

Lampert and Bose have developed a model for
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FIG. 5. Plot of charge density (in arbi-
trary units) vs distance from the signal

il 3 14 15
illumination boundary at various times.
These curves are for the signal modulation
frequency where I gf f 10 I I '

) .

an Ohmic contact (invisible to dc currents) and have
used a macroscopic point of view to deduce a con-
tact controlleci time constant associated with a
charge-buildup process for the conduction cur-
rent. Their calculation as it is stated in Ref. 9
cannot be correct because it leads to a time con-
stant that is in fact nonlinear in that it depends upon
relative signal strength even in the small-signal
case (it becomes longer as hp/po-0), which is an
unphysical result.

Lampert and Bose have proposed a modification
of the calculation in Ref. 9 by having the swept-out
negative charge concentrate initially at the cathode
metal-semiconductor interface (n-type material),
corresponding to an assumed initial rigidity of the
contact. ' This leads to a linear process with a
contract-controlled time constant somewhat shorter
than that calculated in Ref. 9. Since they do not
present a complete picture of the time evolution of

the contact we do not consider their argument con-
clusive.

E. Effective Gain

The assumption of a bP = 0 boundary condition at
the anode in the case of uniform signal illumination
allows for a calculation of effective photocurrent
gain defined as

G=- Mr/hg(N, —no) eL, (28)

where M~ is the rms total photocurrent caused by
the signal illumination and hg(N, —no) is the rms
generation rate per unit length produced by the
signal.

The effective gain G is a measure of the photo-
response. In the absence of sweepout, G has the
usual value of Go= Eop7/L. In-the , case of high-
resistivity extrinsic material, G = Go for steady sig-
nal illumination; however, as we shall see, G can
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FIG. 6. Normalized plot of &p vs
distance from the signal illumination
boundary at various times. These
curves are for the signal modulation
frequency where L,zq =10 I I '
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decrease for higher signal modulation frequencies.
A calculation of M~ including displacement current,
drift current, and diffusion current for a constant
applied bias in terms of the signal generation rate
will allow us to calculate the effective gain G:

1 E 86E
GXL 4g Bt

0

1 1
+ ePP0 &EdX+ eP Eo~~ dX

. kTp, 9+p+ dX .
BX

0

(30)

Since for a constant applied bias voltage I0 AEdx
= 0, the first two terms can be ignored. Thus

(31)hJp = hP dX+
eP.E0 L kTP.

0

where bP" is hP at x=L. Neglect of the last term
(the diffusion term) is justified if eEQAT» 1/L,
which is the case for the experimental conditions
of interest where E&1 V/cm, L &100 p, and
T& 30'K.

Use of the solution for bp in Eq. (25) leads to

AJr =Agp', rRe epEO 1 — '
. (1 —e ~ ~« ' ~

) . cos~t

—Ag+, wIm epEO 1 — (1 —e ~ "' ' ~
) . sin&et, (32)

than L, the addition of a specific boundary condi-
tion at the cathode should make very little differ-
ence to Figs. 7 and 8. However, there may be
some change in the asymptotic solutions. For in-
stance, the imposition of a hP = 0 boundary condi-
tion at the cathode would make G-O as G0-~ for
~ & I/7, There i.s no physical reason to believe
that hP =0 at the cathode is correct.

It is now appropriate to attempt to explain in an
approximate manner the physical basis for gain-
saturation curves in Figs. 7 and 8. Gain saturation
occurs when the average value of hp0, i. e. ,
(1/L) fo bPodx, is decreased from AP„. Significant
sweepout can occur for Go&1. For L,«&I. [i.e. ,
op &R(l/r, )/Go and Go&R ] ~o throughout most of
the sample is equal to hp„and no sweepout occurs.
For v &R(l/v;)/Go~', L,« is greater than L and the
structure in bp0 caused by the boundary condition
at the anode extends throughout the sample. For
signal frequencies just above R(l/7, )/Go, L'
«L,«so that this structure is rapidly oscillating
in space (see Fig. 6), and the effect on the average
of hp0 is negligible so that sweepout has yet to
degrade the effective gain. For higher signal fre-
quencies, L' becomes comparable to L and the
cancellation becomes poor. This can have either
a positive or negative effect on G, depending upon
whether the cathode comes at a high point or a low
point in hp. This is the cause of the irregular
structure in G vs v seen near &u= (I/r, )/Go in Fig. V.

When L' is greater than L, i. e. , ~ & (I/v, )/Go, the
net effect of the structure in bp vs x can only be
negative, real sweepout occurs, and G falls off at
3 dB/octave, eventually saturating to the value of
~ for (o» 1/v.

The irregular structure in G vs for (d just be-

where, for

1/7„& (o &1/(~r, ),
we have

' [I+R'/~&'~,'] [I+&'r,'(I+R'/~'~, ') ']

L =E p. 7.
('d T&

4 0 1 + ~2~ 3 (1 +R2/~2T2)-2 (34)

From Eqs. (28) and (32)
2 2 2 2

3+ 3 4 3+ 4 &2L/L
0 L+ L2 + I2

L +L L L2e «cos —+2~ e «&L2 L' L

&: cos —+ 2—e ~ «& sin — (I + ~'7 ~) '~' .L L4 -LIL . L
L' L

(»)
For the case of 7, & 7, G is plotted vs ~ for vari-

ous values of G0 in Fig. 7, and vs G0 for various
values of ~ in Fig. 8. These figures demonstrate
the sweepout effect. For Go &1/R, at low frequen-
cies the effective gain is just Go = Eop, 7/L but as the
signal frequency approaches I/r~, sweepout occurs
and the effective gain is less than unity for & & 1/7, .
With Go»1, G saturates to —,

' for w» (I/r, ) If.
r, were shorter than 7 (high backgrounds), the gain
curves would saturate to a value of —,'(v/7, ). As Go
approaches 1/R (- 10~) some sweepout degradation
in G also occurs for ~ =0. G at ~ =0 is in fact
limited to —,'(1/R ) for Go»1/R .

In the calculation for G, the A was set equal to
zero [corresponding very approximately to a bound-
ary condition at the cathode of ada/8@=0 for &o

& (I/v, )/Go]. Since L, is typically much smaller
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low (1/T, )/G, hereafter called the gain structure,
depends upon the sharp structure in bp vs x (see
Fig. 6). This structure in Lp was derived for the
case of drift-dominated transport, i. e. , for

Ro»
I
SkT/«o(1d)

I
(36)

which for

1/7„&(o & [(1/T) (I/~p)]'/2, Tp & T

can be reduced to

(3V)

P. T~ T, 4jgT

(1 + 2T2)1/2 eg2

The gain structure occurs for Go) 1 with

(ss)

L» 4k T/eE2 . (40)

If diffusion were important, a much smoother
bp-vs-x curve would be expected; thus the neces-
sary sharp structure in ~p vs x can be washed
out by diffusion for small samples and small ap-
plied fields. Any inhomogeneities in T or Tp in
the sample will cause the observed G-vs-~ curve
to be an average of the appropriate calculated
curve. This averaging would make it impossible
to observe the gain structure.

Extreme caution should be exercised in attempt-
ing to find simpler approximate formulas for the

(d
1 vp (39)

Go

so that the necessary inequality for the neglect of
diffusion in the important frequency region tfecomes

gain expression in Eq. (35). However, two asymp-
totic approximations are useful. When 1.,«» I.
and I

L'
I » L, i. e. , &d & R/(T, G12/ 2) and I/(T, G2)

«u& G2/T for G2»1,

G
0-')'+ [l(L.„/L')]']'"

(1 ~ 2T2)1/2

which for R(1/T, ) «u & (I/Tv;)'/2 leads to

G= 02)'+ [|(I/», )] ]'", (43)

which is independent of Go and saturates to —,
' for

10 & 1/7, . This value of —, is maintained for higher
modulation frequencies up to w = G2/T, where life-
time effect starts to degrade the effective gain.

For I
L'I » L„„ i.e. , 1/T, «&o «1/T,

G= G2 [1—G2(l —e '/ o)] . (43)

Thus for high frequencies, G is independent of ~
and saturates to —,

' for large G0. These results are,
of course, dependent on the boundary conditions
that were used to calculate bp. As we have already
mentioned, if a hP = 0 boundary condition had been
imposed at the cathode as well as the anode, G

would go through a maximum and eventually ap-
proach zero for increasing Go.

If hP =0 (making 8 = —1) were not strictly adhered
to at the anode, a somewhat different behavior would
ensue. Suppose B= —1+5 where 5 was real, then
for 1d &(I/T, )/G2, &o &R(l/7, ), up &1/T, and G2» 1,

G=([GQe+-.'(I -5)]2+[2(1/~Tp) (1 -5)]2]'" (44)

and, for a»& 1/T, ,
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quency greater than 1/T„and drop to TJ~ for
(0 = 1/Tp

The introduction of sweepout limitations clearly
introduces a new dimension to considerations of
photoconductor gain greater than unity in extrinsic
semiconductors.

For a bP =0 boundary condition at the a,node,
sweepout will limit the effective dc photoconductive
gain to —,'(1/R + 7/r, ) for values of Go greater than
1/R + T/r, Th.is upper limit is the same one as
would be derived by restricting Go to values which
would avoid space-charge injection. In the case
where Go & (1/R2+ T/r, ), sweepout will not influence
the dc photoconductive gain; however, it will limit
the bandwidth leading to a gain-bandwidth product
of 1/T, Swe.epout will provide the limitation on
gain-bandwidth product whenever

10

10 10 10
Eop(1/T 1+/. Tp) (47)

G
0

FIG. 8. Normalized plot of photoconductive gain vs Go

for different values of signal modulation frequency.

G= Go[1 —Go(1 —g) (1 —e '~eo], (45)

which does not saturate to —,
' for large Go but rather

to —,'+ (Go--,')6, so that for this boundary condition
G can continue to increase with increasing electric
field Go, even for high signal frequencies. Com-
plete gain saturation with increasing electric field
will not occur unless hp =0 at the anode becomes
the correct boundary condition. Unfortunately, if
the bounda. ry condition involved a transition region,
it is conceivable that the proper value of B was fre-
quency and/or electric tield' dependent.

We can use Eg. (42) to form an approximate
gain-bandwidth product when Go & 1. For Go & 1/R,
G at m=0 is Go and if G= —,'Go at e=»~» the gain-
bandwidth product is

Go~i(2 = 1/+p . (46)

As Go- 1/R2, G will be degraded from Go at ~
= 0 but the gain-bandwidth product will remain
1/r, . This result is very reminiscent of the work
of Rose and Lampert who considered a. somewhat
different physical process (a limit on G set by
space-charge injection) and derived a photocon-
ductor gain-bandwidth-product limitation of M(1/T, )
where M represents the ratio of stationary (trapped)
to free charge. " The M would have to be unity in
our case for the two expressions for gain-band-
width product to agree. However, straightforward
application of Rose's concepts to our situation
(considering the limit on space-charge injection)
would suggest that at a& =0, M = T„/T (not unity),
and that M would seem to decrease for signal fre-

Under the usual (background-limited) experimental
conditions, at low operating temperatures w, is
related to v by

r, = et/4vJ~Tep. ,

so that sweepout can only be observed if

Eop, 1 4~e p7tb
I 7 Et

(48)

(4g)

Thus sweepout can only be observed with high mo-
bilities, delicate compensation to increase 7; and
cold backgrounds. See Fig. 9 for the ca,se of Hg-
doped germanium. At high effective backgrounds
where 7, is shorter than 7; the high-frequency value
of L,«decreases with increasing background so that
sweepout effects become more and more difficult
to observe.

It has just recently come to the attention of the
authors that Hussian workers have developed an
expression similar to Eq. (35) in their analysis
of contact phenomena, concerning n-type gold-doped
germanium. '3 Their analysis is incomplete in that
they use a form for the recombination which ig-
nores the phenomena of near-equilibrium local gen-
eration and recombination which, a,s we have seen,
is so important to the screening of a discontinuity
at low frequencies. The analysis presented here
can be related to the work of Van Roosbroeck who

analyzes two-carrier transports in the "relaxation
case" (i.e. , with T, & r) "An analog. y with two-
carrier results is straightforward if extrinsic
photoconductivity in Hg-doped germanium is con-
sidered to be intrinsic photoconductivity in an n-type
material with zero electron mobility. In the Hg-doped
germanium analog T,„&T„& T,~ & T~ (T =e/4vep„no,
v& =1/yno, etc ), whereas f.or the usual n-type
two-carrier relaxation case with finite electron
mobility, 7» & 7„& 7»& 7~. In both cases the approx-
imation of near-equilibrium local generation and



recombination breaks down for &o & 1/7„. However,
in the "usual" two-carrier case the screening
lengths are not affected until v & 1/7', w, hereas for
the Hg-doped germanium case the magnitude of the
screening lengths changes at lower frequencies.

Sweepout in extrinsic materials is an insulator
phenomenon but it can only be observed in high-
quality trap-free material with low enough back-
grounds. The theory we have presented, except
for the restrictive boundary condition bp =0 at the
injecting anode, is quite general in character. It
should apply to germanium, silicon, and even wider
band-gap materials but the inequality of Eq. (49) may
not apply for most wide band-gap materials. Wide-
band-gap insulators meet the requirements for high
resistivity but they can have hopping mobilities and
serious trapping problems. Material quality is
usually not high enough to allow for long recombi-
nation times so that experimentally photoconductive
gains are less. than unity. Experiments with doped
germanium and silicon under cold-background con-
ditions allow insulator effects to be studied without
the usual limitation of poor material quality.

Sb which demonstrated an exceptionally large dc
photoconductive gain. The sample had dimensions
of 254 p, && 762 p, && 5. 60 mm with contacts on the
726- p, & 5. 60-mm sides. One 254& 762- p, face was

exposed to infrared radiation. The sample was
mounted on the base of a liquid-neon Dewar. A

copper enclosure essentially eliminated all radiation
from warm parts of the assembly. Steady back-
ground radiation was supplied from a Pb~ „Sn„Te
light-emitting diode, emitting near 10 p. while ac
signal radiation was supplied from an InAs diode
emitting at -2. Ip' p, .

In addition to the sample, a carbon composition
load resistor and a, transistor preamplifier were
mounted on the base of the Dewar. The preampli-
fier was connected in the emitter follower config-
uration and had a gain of 0. 96. The bias voltage
applied to the sample t/"~ was measured at the out-
put of this preamplifier so that the true voltage
applied to the sample is 4%%uo higher than V~. The
measured resistance of the load resistor varied
with background and with bias voltage applied to the
sample by as much as 30%%uo. Rz, =1.4&&10' 0 was
the most frequent value. Corrections for the varia-
tions in Rl, a,re included in the discussion that
follows. However, some difficulty was encountered
in accurately measuring this resistance since di-

III. EXPERIMENT

Photoconductive measurements were taken on a
sample of Hg-doped germanium compensated with

109—

17 -2 -1
J = 10 cm sec

b
8

FJQ. 9. Plot of C =ED'/L necessary
to observe sweepout in Hg-doped ger-
manium vs recombination time for differ-
ent values of effective-background flux
density.
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rect access to the sample-load resistor intercon-
nection was not available from outside the Dewar.

The main objective of these experiments was to
gather gain-saturation information under conditions
of constant sample resistance (i. e. , constant T,).
Signal illumination was uniformly applied to the
exposed sample surface. Figure 10 shows the I- V

curve of the sample at 27'K under conditions of
constant background. The voltages recorded on
this curve represent the bias voltages measured
at the output of the preamplifier. The maximum
bias of 6 V corresponds to a bias field of 246 V/cm.
The dc nonlinearity can be associated with the de-
pendence of the p, r product on bias electric field
which has been previously observed in Hg-doped
germanium or possibly to contact-relatedphenome-
na. ' The nonlinearity results in changes in resis-
tance by a factor of 3 over the range of bias fields
that were studied. It was felt that a change in v,
by a factor of 3 would complicate the results, so
that unless otherwise noted the background was
adjusted so that the sample resistance RD remained
3&& 10 0 for the gain-saturation measurements.
The elemental capacitance of the sample was cal-
culated to be 2. 4 pF, so that this resistance would
correspond to f, =l/2vr, =22 Hz if the resistivity
were uniform throughout the sample. All measure-
ments were taken under small-signal conditions
with nRn/RD &2O.

The analysis leading to Eq. (35) required that the
hole transport be drift dominated, i. e. , that in-
equality (11)be satisfied. This requires that in-
equality (50) be satisfied.

Thus for the experimental case at hand with &~,
& —,'o the transport will be drift dominated for Eo&2
V/cm or for biases greater than 0. 05 V which was
the usual case.

Figure 10 also shows the "dc" response vs bias.
This curve was obtained by measuring the response
to a step function in signal illumination projected
on an oscilloscope with about 2-3-sec wait for time
constants to die out. This curve, which should
measure G~, tracks the I .vs Vn curve (Fi-g. -10)
quite well at low voltages with the same slope of
1.5. However, more saturation is evidenced for
VD &1.5 V. As we shall see, this added saturation
could be due to residual dielectric relaxation ef-
fects resulting from the fact that the step-function
measurement is not as "dc" as the resistance mea-
surement. If the high-bias-voltage part of the dc
response is corrected to have the same slope as
the RD-vs-VD curve, the dotted curve results and
it is this corrected curve that is used to represent
the truly dc situation in the calibration which fol-
lows.

During one part of the experiment the signal
emitter was calibrated with reference to a chopped
blackbody source after the copper enclosure had

10 10 10

10 — 3 10

0

1—
10

-10

10 10
10

V (V)

-1 'I

10
10

FIG. 10. Plot of observed dc current vs sample bias
voltage and plot of dc response to a step function in signal
illumination vs bias voltage.

been removed (room-temperature background situa-
tion resulting in an effective background of J~
= 5&10'6 photons/cm sec). Use of an idealized
spectral response curve for Hg-doped Ge material
then allows for a calculation of the low-background
gG product from tI.e measurements of low-back-
ground current responsivity (p represents the quan-
tum efficiency of the sample). At 6-V bias, the
step-function response that was actually measured
corresponded to an gG product of 4. 1. Measure-
ments of background-induced noise and responsivity
with room-temperature backgrounds (background-
limited conditions) indicate a quantum efficiency
of -0.18. This suggests a low-background photo-
conductive gain of approximately 29 at VD = 6 V for
the sample which we used. The sample became
excessively noisy for VD exceeding 6 V. If p = 0. 18
is assumed, then the Gp vs- VD curve of Fig. 10
can be derived. Since the measured value of G was
so much less than possible values for 1/R2, the
possibility of sweepout or significant current injec-
tion under truly dc conditions can be ignored. The
dc gain can then be associated with G~. This leads
to a maximum value for p, v; at a bias of 2 V, of
-0.005 cm'/V.

The response to a modulated photosignal was
measured by using a wave analyzer with a 1-cycle
bandwidth. The saturation of photoresponse with
increasing signal modulation frequency for various
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values of bias voltage keeping A~ fixed at 3 & 10 G

can be observed in Fig. 11. The approximately
3-dB/octave falloff fn signal for frequencies greater
than 250 Hz can-.be attributed to an R~C~ time con-
stant (Cr is the total input capacitance at the pre-
amplifier input node) which is not associated with
any change in effective gain. The frequency depen-
dence of the signal at lower frequencies is the gain-
saturation effect. This curve should be compared
with curve 7 predicted by theory. There is general
agreement, but for the highest values of Gp the
slope of the curve varies between —0. 5 and —0. V5

and gain degradation is observed all the way from
2 to 300 Hz on both sides of f, =22 Hz. This is a
weaker dependence than the theoretical prediction
(for nP =0) which predicts a slope of -1 with the
degradation taking place on the low-frequency side
of fp.

Figure 12 plots the same data ln a different way
and should be compared with Fig. 8 plotted from
theory. The separation of the curves at low Gp can
be attributed to the RL,Cz time constant which is
independent of bias. There is general agreement
in that most of the gain saturation occurs for Gp» and the gain at f= 2560 saturates to 0. 8 (sub-
tracting out the Rz, Cr effect) which compares re-
markably well with the value predicted by theory,
which is -0.7 for f-100f, (decay to G equals ex-
actly —,

' with increasing frequency is quite slow).
The general saturation of the experimental curve
is somewhat softer than that predicted by theory.

Figure 13 demonstrates several things. The two
lower curves are low -bias-voltage-photosignal-
vs-frequency curves fox the condition of no added
background illumination. These curves show the
AJ.C~ rolloff. The slope at 2560 Hz is not yet ex-
actly -1; however, a reasonable extrapolation
agrees with the 1/v'2 point to yield f„c= 250 Hz
which suggests C& =4. 5 pF. The three higher
curves were all taken at the same bias voltage but
for different values of R~. Although there was some
experimental difficulty with the high-frequency por-
tion of the AD = 1.2~ 10 9 A curve, these curves
demonstrate that a shift of R~ by a factor of 3 cor-
responds to a shift in the frequency scale by a fac-
tor of 3, which shows that the frequency dependence
of gain saturation does indeed scale with resistance,
as predicted by Eq. (35).

For A~ = 3&10 G, two curves are superimposed
on ea,ch other. One of the curves represents the
scaled version of data taken with a signal flux
0. 15 of that used normally. Since the curves fall
on top of one another, it is safe to conclude that
the gain-saturation effect is independent of signal
flux in the small-signal region.

One of the authors (M. B.) has suggested that the
gain-saturation curves might be fitted to a purely
empirical formula of the form

a= —, *„„.G, (i-G,((-.-'I")j)
(1+(o ~p)

x (1+(o'7 aac) 't' . (50)
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In this formula, that portion of the photocurrent
gain greater than —,

' has a time constant of 7, and
gain falls off with a frequency slope of -1 for fre-
quencies greater than v, . The experimental data
do not fit this formula either; indeed the experi-
mental curves could be interpreted as a behavior
intermediate to that predicted by Efls. (35) and (50).
An intermediate behavior could occur if the boundary
condition in the microscopic analysis presented in
Sec. II were in fact frequency dependent and only
became restrictive (hp-0) for modulation frefluen-
cies greater than f where f' &f,. Saturation would
then not start until f» f . Since complete saturation
at high enough frequencies is experienced, ~ at
the anode must eventually become zero.

The effect of hole trapping was considered as a
possible cause for the softer sweepout behavior
observed in Fig. 11. A time constant controlled
by trapping effects might well be electric field de-
pendent, but it is unlikely that its appearance would
depend on attaining a certain value of photoconduc-
tive gain. Williams has established the gain depen-
dence of the slow response of interest here by ob-
serving the effect of a change in sample length.
Trapping can affect the effective drift length, how-

ever. A model with a trapping level solely con-
nected to the valence band in the manner of Smith
was examined. ' As could be expected, trapping
increases the effectiveness of the shielding and
makes L,~, shorter. At low frequencies

1 1
t(O) =

&0) +
L,qf L,qg E0p, v' 7

and, at high frequencies,

(5l)

g =EARP,
—+—

where v, is the time necessary to trap a free hole
and 72 is the time necessary to release a trapped
hole (L,'„ is L,«with traps, and L" is L' with
traps). L' is also affected, however, in the fre-
quency range of interest; it retains its functional
dependence with frequency, i. e. , I

L"
t
- ~. Trap-

ping would be expected to introduce an additional
time constant into the response. However, since
L" has the same functional dependence on frequency
as L', the frequency behavior associated with
sweepout should not change. Trapping therefore
cannot explain the softer sweepout behavior ob-
served in Figs. 11 and 12.
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FIG. 12. Plot of observed photocon-
ductive response vs dc photoconductive
gain for different signal modulation fre-
quencies.

10
~zzzz

~
~+~~~ f = 2560Hz

~H

~M

1

10 1

I I I l I I Id I I I I I I I I

G
10



SWEEPQUT AND DIELECTRIC RELAXATION ~ . .

10
3

10
2

10

0 2V
-—~ "0=15» a-0»,~ -=0»

V = 0.15V
x 10

FIG. 13. Plot of observed photoconduc-
tive response vs signal modulation frequency
for different sample resistances and differ-
ent bias voltages. Dotted line represents
normalized m.easurements taken with 15%
of the usual signal intensity.

I I I I I III
10

I I I I I III
10

I I I I III
I

10
'RC

I I I I I I II
104

The lack of exact fit between theory and experi-
ment, Figs. 7 and 11, can also be explained by
considering the effect of an inhomogeneity in resis-
tivity in the sample. Crudely, if this were the
case, there would be an averaging of G-vs-Go and
& curves since different parts of the sample would
have different values of Tp This would lead to a
general softening of the effect, i. e. , a slower fall-
off with frequency and a less abrupt saturation with
increasing bias, just as was observed. An inhomo-
geneity in resistivity could be caused by an inhomo-
geneous illumination by background light (to be ex-
pected in a sample of such thick geometry) or by an
inhomogeneity in the material itself caused either
by an inhomogeneity in Hg doping which would vary
the absorption or an inhomogeneity ip compensation
which would vary 7. An inhomogeneous illumination
by background light cannot be the only effect since
a slope of -1 was not observed for AD=8x10 -g
curve in Fig. 13 where only thermal generation was
present. An inhomogeneity in the material itself
is to be expected in samples picked for maximum
dc photoconductive gain since the compensation
needs to be very exact and small fluctuations in the
balance can change 7.

It is very difficult to analyze the effect of an in-
homogeneity which occurs along a bias electric
field line since the analysis of the effect of such an
inhomogeneity requires that the solutions for EP
indifferent parts of the sample be matched at the
interfaces. Inhomogeneities which occur perpendic-
ular to the electric field lines can be analyzed by
averaging gain values obtained for different Go and
7, . If the inhomogeneity were caused by variations
in T or if the absorption of signal took place in the

N

( G) = Z G(Ga, (o, 2" vp),+ n=0

(t)=2 7

(53)

This is an average of different parts of a sample
which had different Tp values and roughly represents
the measured gain of an inhomogeneous sample.
N= 5 was required to produce a slope of —0. 75 for
the Ga- 32 curve. Figures 14 and 15 show Eq. (52)
for N = 5. The curves in Figs. 14 and 15 show a
strong resemblance to the experimental data which
suggests that inhomogeneities in resistivity p with
a standard deviation of about 10 (p) would account
for the softening. of the curves that was observed.

Incomplete data taken with larger samples of
considerably lower maximum photoconductive gain
have shown signal falloff slopes of -0.8, and the
curves in Ref. 12, taken with n-type gold-doped
Ge, show a falloff slope of —1. The necessary
sample geometry for high quantum efficiency and

same part of the sample as the background, the ten-
dency would be to shift the bulk of the falloff in
signal to higher frequencies than that which would
be predicted by using Tp BpCD since the signal
would come mostly from regions of low resistivity.
A shift of about a factor of 5 would be consistent
with the data observed.

An inhomogeneity could occur in a bewilderingly
large number of ways so that an attempt to exactly
fit the data without some knowledge of the distribu-
tion of the inhomogeneity is doomed to failure.
Nevertheless, some indication of the effect of in-
homogeneities can be obtained by considering an
average gain of the form
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FIG. 14. Plot of the photoconductive
gain of an inhomogeneous sample vs
signal modulation frequency for differ-
ent values of &0.
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high gain are a severe constraint on the experi-
ment. The light pipe configuration makes measure-
ments with a nonuniform signal illumination very
difficult so that we are burdened with the uncertain-
ty in boundary condition caused by uniform signal
illumination.

IV. CONCLUSIONS

The consequences of the frequency dependence

of the Debye length on photocarrier transport in

compensated extrinsic photoconductors have been
considered in detail. For the case of uniform
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FIG. 15. Plot of the photoconductive
gain of an inhomogeneous sample vs Go for
different signal modulation frequencies.
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signal illumination, gain-saturation curves have
been derived using the boundary condition of bp = 0
at the anode. This led to a gain bandwidth product
of 1/7', caused by majority-carrier sweepout. The
prediction of the theory has been compared with a
sample of Hg-doped germanium which provided a
dc photoconductive gain of -30. There was general
agreement with theory but the experimental curves
showed a somewhat softer behavior than that pre-
dicted theoretically. This lack of agreement could
be explained if the sample resistivity were inhomo-
geneous.

APPENDIX

If the length of the transition region L,« is much
smaller than the interelectrode spacing L (low-bias
electric field case), the current in regions 1 and 3
of Fig. 3 and in the wire can be calculated from
macroscopic considerations. For the case of
sinusoidal signal illumination and constant voltage
V across the sample, the equations which describe
the charge-buildup process are

(e/4tt) (Zi —Z2) =Z, 2 —J s, (Al)

(A2)E3L3+ EsLs = V,

E3 = Eo+ bE~) E~ —Eo+ b,E),

Z2= V/(Lt+L2), (AS)
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bJ =@ pbE = '" ~' ' e'"'
(1+y) (1+i(07')

ep. bP3Eo
tot d1+ c| e cs '1+/

(AS)

(A7)

Q= (M —bZ )dt= i 2 & 2 n tttt (AS)(1+y) (1 +i(o ~t)

Any nonlinearity will destroy the complementarity
of conduction and displacement current. This will
make charge-buildup processes visible. If bP is
not smaller than Po, nonlinear effects can occur
and quasidielectric relaxation effects can be ob-
served from the wire. An overshoot in photosignal
which has been observed in high-resistivity alkali-
halide crystals (photocurrent gain «1) has been
attributed to these nonlinear processes. '

The microscopic consideration involved in the
solution for bP in Eq. (7) shows the same processes
taking place. For /1 = 0, 8 = —1, Q' (the net charge
density) can be written in the small case for x &0
without approximation as

bQt el cot

where

aq', = e(~, —an, )

(AQ)

tl'80+a n0)7n -x/t tt - tx /l, ~

e = Qi+&va )1 + $Q) Tg

(A10)
and x = 0 defines the boundary of signal illumination.
—Q, oscillates in phase with bg, whereas —Q', os-
cillates 90 out of phase with bg.

For the semi-infinite sample (L» L„,), the total
rms charge in the transition region for 1/v„«u
&1/7 is

Thus bJ„, does not show dielectric relaxation pro-
cesses.

The charge per unit area in the transition region
is

(A4)
q (t qqg )1/2 e~ZO(+ n0) (Z2/t 'r) rn

[1+ ~2 r 2(1 ~ Z2/~2 ~ 2)-1]1/2

(A11)

i~7,'e p, ~3Eo
4g ~ (1+y) (1+2+7P)

(A5)

for e'"' time variations of bE and bp, neglecting
nonlinear terms:

where

(A12)V= f"q'dx,

which is approximately what was derived from
macroscopic considerations in Eq. (AS).
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The Raman effect due to phonons, Landau levels, and Stark ladder levels is analyzed theo-
retically. For the phonons, three mechanisms are identified, and their orders of magnitude
are estimated for both 4n=1 and 2. The ratio of the intensities can be of order unity, espec-
ially when the crystal has only one narrow band gap. The resonance Raman effect is particu-
larly strong in the band. For the electronic Raman effect from Landau levels, three similar
mechanisms canbe distinguished. The W =1 transition can occur only in crystals without a
center of symmetry, and has a strength comparable to the M=2 process. It can also occur
in case of broken symmetry, as in n-type Si. The Raman effect from a Stark ladder should
in principle give the Fourier components of the E-k curve. Finally, it is shown that effec-
tive-mass theory for donor levels is reliable only for materials with f & 5, irrespective of
m+.

I. INTRODUCTION

The Raman effect in solids has been the subject
of much experimental and theoretical research in
recent years. ' The theoretical approach has been
generally rather phenomenological, and it is felt
that as a result several characteristic features of
Raman scattering in solids have not received an
adequate explanation. For example, the ratio of
the intensities of the hn = 2 and ~=1 lines is often
surprisingly large, even off-resonance. Further-
more, existing theories have difficulty explaining
the large Raman cross section when the laser en-
ergy enters the continuum of excited states. Raman
scattering from conduction electrons in a magnetic
field (Landau levels) has been detected for nn = l,
2, but published theories only account for the hn = 2
process. The role of inversion symmetry has not
been elucidated.

W'e shall consider these points below and be more
specific about the effective-interaction Hamiltonian,
which is shown to arise from three mechanisms.
A complete theory would become very involved, and
therefore only the leading matrix elements will be
shown; complete calculations can easily be made
for each individual case. In addition to the in-
elastic light scattering from Landau levels, the
possibility of a Raman effect from conduction elec-
trons in a strong static electric field is also ana-
lyzed. In order for the band index to be a good

quantum number, in both cases the fields cannot
be too strong. Such a limit also exists for the val-
idity of effective-mass theory for donor levels
and is shown to imply that the dielectric constant
E must be substantially larger than 5, independent
of the magnitude of the effective mass.

II. PHONON SCATTERING

The interaction Hamiltonian of em radiation with
matter will be taken of the form

H„= Hz, + Ha = (e/mc) (A~ p+ A„' p),
where p is the momentum of the electron under
consideration and A~ and A„are the vector poten-
tials of the incident (la.ser) and Raman light beams,
respectively. These vector potentials can be ex-
pressed in terms of creation and annihilation op-
erators of photons according to

A~ = c(h/e& V)' (az + az, )

in the dipole approximation. In first approxima-
tion, the wave function is a product of electronic,
phonon, and photon wave functions. The P operator
in (l) gives matrix elements between the total elec-
tronic ground state tg) and the excited states I e ),
but it does not change the phonon quantum number.
The phonons enter into the problem in three ways.
Process (a) —the equilibrium positions of the ions
in I e) are shifted with respect to those in Ig).
Process (b)-the elastic properties of the lattice


