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Magnetostriction oscillations of de Haas-van Alphen origin are observed in P-type PbTe,
a single-band multivalley semiconductor. The hole concentration of the material studied is
3 &&10~8 cm 3. The amplitude of the oscillations is related not only to the usual shear defor-
mation potential „, which causes intervalley charge transfer as the valleys rigidly shift rel-
ative to each other in energy, but also to six strain masses, which describe rotations and
distortions of the hole valleys.

I. INTRODUCTION

The magnetrostriction of diamagnetic materials
was extensively investigated many years ago by
Kapitza. ' Part of the renewed interest in this area
during the last three years or so is a consequence
of the feasibility of observing de-Haas-van-Alphen-
type oscillations in the magnetostriction. As is
well known, the de Haas-van Alphen oscillations in
the magnetic susceptibility are the result of periodic
variations in the free energy in high magnetic
fields. The oscillation in the magnetostriction is
the response of the crystal to these variations as it
strains to minimize the free energy.

The period of the magnetostriction oscillation is
easily shown to be the same as that of the de Haas-
van Alphen oscillation. Thus, a study of the depen-
dence of this period on the crystallographic orienta-
tion of the magnetic field can be used to determine
the shape of the Fermi surface. In this paper,
however, we will be concerned primarily with the
orientational dependence of the amplitude rather
than the period of the oscillations. For the case
of PbTe, the latter has been investigated in other
experiments in more detail, '*'

The amplitudes of the magnetostriction oscilla-
tions are related to strain dependences of the energy
and shape of the Fermi surface. For a Fexmi sur-
face consisting of ellipsoids of revolution, there
are six phenomenological constants, which we call
strain masses, that describe the strain dependence
of the Fermi-surface shape. These six constants
plus the shear deformation potential can be deter-
mined, at least in principle, by appropriate choice
of the crystallographic orientation of the magnetic
field and the direction in which the strain is mea-
sured.

The existence of magnetostriction oscillations of
de Haas-van Alphen origin was first discussed by

Chandrasekhar and observed in bismuth by Green
and Chandrasekhar. Such oscillations were next
reported on for beryllium and zinc. The first
observation of the effect in a semiconductor was on
n-GaSb, by Chandrasekhar, Condon, Fawcett, and
Becker, who stressed the importance of the ampli-
tudes of the magnetostriction and de Haas-van
Alphen oscillations; these authors deter mined the
change in extremal cross section with strain. More
recently, Mahajan and Sparlinl described magneto-
striction in antimony. Aron, Chandrasekhar, and
Thompson' were the first to report the observation
of oscillations in PbTe, while preliminary accounts
of the present work on this material have also been
published. '

As is now well known, the Fermi surface of P-
type PbTe consists of four prolate ( ill) ellipsoids
of revolution centered at the I.points of the Brillouin
zone. ' The ellipsoids have a mass anisotropy of
about 13 (Ref. 4) for a hole concentration of S.0
x 10' cm 3, approximately the same as that of the
samples investigated here. The multivalley nature
of the valence band leads to magnetostriction effects
which are large for a diamagnetic semiconductor.
The dominant mechanism for' magnetorstriction
oscillations is the strain dependence of the L-point
energies. %'hen the magnetic field is in such a
direction as to distinguish strongly between differ-
ent ellipsoids, the free energy of the crystal is re-
duced by a shear strain which removes the degen-
eracy of the states at the L, points and initiates an
intervalley charge transfer. In high magnetic
fields, the vaQeys "see-saw" in energy because of
the periodicity of the free energy. This effect is
describable by the usual deformation-potential
theory,

When the magnetic field is in a (100) direction,
treating all valleys equally, rigid-band deformation
potentials are of no avail, and crystal strains must
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be ascribed almost entirely to rotations and distor-
tions of the ellipsoids. These rotations and distor-
tions are describable by six strain masses. These
strain-masses are of three types: (i) The surfaces
can remain ellipsoids of revolution, with the same
orientations in momentum space, but with distorted
longitudinal and transverse masses; (ii) the trans-
verse cross section can be strained out-of-round;
and (iii) the directions of the major axes of the el-
lipsoids can be rotated from the original (ill) di-
rections in k space.

The strain masses are calculable from a system
of linear equations that relate the amplitudes of the
strains, measured in several directions for several
orientations of the magnetic field, to the strain
masses and the shear deformation potential:-„.
The latter can be taken independently from piezore-
sistance measurements. ' In practice, accurate
values of the strain masses are difficult to obtain
because of the large value of:-„, alignment errors,
and near cancellations of large terms in the system
of simultaneous equations. A further complication
arises from the need to evaluate or eliminate a
de-Haas-van-Alphen-type factor in the theory.
Therefore, we are unable to give numbers at this
time. However, we will present the theory from
which the strain masses can be obtained, show that
they do make a finite contribution to magnetostric-
tion in our samples, and give the amplitudes of the
strain for a number of high-symmetry field and
measurement directions.

II. THEORY

A. General

The oscillatory part of the free energy of a
strained diamagnetic material in a magnetic field
can be written

representing a compromise between a linear cou-
pling of strain to electronic energy, and the qua-
dratic elastic energy. The question arises as to
which strain-dependent quantity in Eq. (2. 1) is
most responsible for the distortions, )

S'"'

m,'"', g'"', or S'"'. As we shall show, for our
samples, the phase of the oscillations answers this
question in favor of the last of these, the extremal
cross section of the Fermi surface S'"' (Ref. 14).

Differentiating only S'"' in Eq. (2. 1), and expand-
ing for small strains, the minimum free energy is
attained when
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and the elastic constants associated with them are
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The strains e, of Eq. (2. 2) are basis functions (i)
for irreducible representation (p) of the cubic point
group. They are convenient because, among other
things, they diagonalize the elastic energy in Eq.
(2. 1). Referred to the cubic crystal axes, these
strains are, explicitly,
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The first term on the right-hand side is the usual
de Haas-van Alphen contribution~ to the free energy
of a material whose Fermi surface has d extremal
cross sections S'"'. The second term is the elastic
energy expressed in terms of strains &",. defined
below in Eq. (2. 3). Sincethehighestpopulated Lan-
dau level carries the electrons of a particular
valley to the Fermi surface, the free-energy contri-
bution of that valley reaches a maximum, and the
crystal strains in order to transfer electrons to
other valleys and to lower-lying Landau levels.
Thus magnetostriction is a Jahn-Teller distortion

where the C&& are defined in terms of the engineering
strains.

The prospect before us then is an evaluation of
BS'"'/Be", in Eq. (2. 2) in terms of deformations of
the hole ellipsoids.

B. Strain Dependence of S&")

W'hen the angles between the principal axes
($, q, f) of an ellipsoid and the direction of the mag-
netic field have direction cosines n&, n„, and n&,

the extremal cross section of the pth ellipsoid can
be written

(2. S)
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m&=m, , (2. 6)
' =(m;m, )'/'

and
u'"'=(v/S) (2m' g / 2k2)2/'

m, and m, are, respectively, the effective masses
transverse and parallel to a(111) direction. The
Fermi level $0 is the same relative to the extremum
of each valley, so that

(2. 9)

4p (v) (2. iO)

where p is the total hole concentration.
The energy of a hole ellipsoid transforms sym-

metrically under the group D„„(that of the homo-
polar diatomic molecule). Let us define sets of
strains and of bilinear combinations of momentum
components expressed in the local unstrained co-
ordinate system ($, (), f) of a particular ellipsoid.
These are

&, =tr~,

3&&& E»
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and

kg =k

(2. 11)

where mz, m„, and m& are the principal effective
masses, m~ is a geometric-mean mass defined by

m = (m(m„m()'/ (2. 6)

and P'"' is the hole concentration in the vth ellip-
soid. For degenerate statistics and a parabolic
band,

p(v) (v/S) (2m g(v&/ 2k2)3/2 (2. 7)

where g'"' is the Fermi level relative to the extre-
mum of the pth ellipsoid. The approximation of
degenerate statistics is of course an accurate one
at 4. 2 K. The assumption of a parabolic band is
not completely adequate for PbTe, but it is made
in order to simplify what is already a lengthy cal-
culation.

In the unstrained crystal,

E(&) =(:-,+ 3 2)e(+ 3 2e2+ (k'/2m, ) k~+(k'/2mz)k2

+ (k /2P») & ik(+ (k /2(/. u) e(k2

~ (@ /2)(2$) epkl + (@ /2((22) epk2

+ (k'/2X) (e2k, +e,k,)+(8'/24) (e,k, +e,k, ) .

(2. 1s)

The deformation potentials (:"„+—,'" „) and —',:"„are
those defined by Herring and Vogt. ' They represent
rigid-band shifts in energy of the valley with strain.
Terms in m are the unstrained energy. Terms in

p, represent changes in longitudinal and transverse
mass with local volume and local uniaxial strain.
X is a strain mass accompanying distortion of the
constant-energy surface in the ($, ()) plane from
circular to elliptical. Q is a strain mass describing
the rotation of the ellipsoid major axis away from
the g direction with local shear strain.

Equation (2. 5) for the extre(nal cross section
shows that it can be considered to be a function of
strain in three ways: (i) When the crystal strains,
there can be a change in the number of charge
carriers per unit volume p'"' in valley v; (ii) since
we keep terms in Eq. (2. 13) only up to k2, the ellip-
soid remains an ellipsoid, but the principal masses
can change from m&, m„, m& to a new set m~, m„
m„' and (iii) the direction cosines of the angles
between the ellipsoid axes and the direction of the
external field can change from n&, n„, n& to n„
u„n, For t.he strained ellipsoid, Eq. (2. 5) is

S'"'(e)=S g p'" m /(m n m n +m c( )

(2. 14)
which we must calculate to first order in E, from
Eq. (2. is).

First, letus calculate the second of the three con-
tributions to S'"'(e), the change in principal masses.
Substituting Eq. (2. 12) into (2. 13), we have

E(k) = (.(+—', " „)e,+ —',"„&2+(If /2m()k(

+ (k /2m„) k, + (I /2m()k( + (@ &6/2X) k(k2

p (g2e/2y) k„k(+ (k2es/2$)k(k(, (2. 15)

with

1/m, =-(1/m, —1/m, ) + (1/p, » —1/((i2) e i

+ (1/((2, —1/p, 22)e2+ e2/2X, (2. 16)

1/m„=- (1/m, —1/m2) + (1/((„—1/p, &2) e
&

k, —sk,'- k',
k2 = —', (k( —k„),
k4= k„k(,

kq = k~kg,

ke = krak„.

The energy of a strained ellipsoid is then

(2. i2)

+ (1/p. 2(+ 2/p, 22)e2 . (2. 18)

Clearly,

m, =m„=(1/m, —1/m ) '=m, (2. 19)

+ (1/p.„—1/((22) e2 —&2/2X (2 17)

1/m, =- (1/m, + 2/m, ) + (1/((» + 2/((~2)~(
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and

m( = (1/m(+ 2/mo) = m, (2. 20)

in the absence of strain. To first order in E, the
off-diagonal terms in Eq. (2. 15) do not change the
principal masses, but only rotate the axes:

m, =m(+O(e ), m, =m„+O(a ), and m, =m&+0(e ) .
Inverting (2. 16) to (2. 18),

m =m, [1 —m((1/p, (( —1/p. (o) &(

—m, (1/po, —1/l(o, ) eo —m, eo/2g], (2. 21)

m, = m, [1 —m, (1/ p„—1/p, „)e,
—m, (1/)((„—1/)((„)&o+m(fo/2X], (2. 22)

m, = m, [1 —m, (1/)((»+ 2/p, o)&, —m, (l/po, + 2/zoo)eo],

and, with

0 2 i/3m~ = (m, m, )

(2. 23)

(2. 24)
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and

m, = m, {1——,'[(m, + 2m, )/p, ,(+ 2(m, —m, )/p, o]&(

——,'[(m, + 2m, )/p, „+2(m, —m, )/p„]e,], . (2. 25)

Equations (2. 21)- (2. 25) describe the dependence
of the effective masses on strain.

The third contribution to S'")(e), the rotations of
the principal ellipsoid axes, can also be calculated
from Eq. (2. 15). Diagonalizing the quadratic
form to first order in c, we obtain

6'4

2(l/m, +1/m, )y ( 2(1/m, +1/m, )(t
(2. 28)

Equation (2. 25) also describes part of the charge-
transfer contribution to the strain dependence of
S'")(&) through the dependence of p(") on m, .
Kosevich' discussed this effect in metals for the
case of a uniform volume strain that produces a
transfer of carriers from minor to major pieces
of the Fermi surface. One possibility considered
was complete depopulation of a small pocket. The
situation in a single-band multivalley semicon-
ductor is different because the volume strain merely
shifts the Fermi level and the band extrema by the
same amount with no effect on P'"'. That is, the
deformation potential (:-„+—,=„) is immaterial to
charge transfer, and to magnetostriction oscilla-
tions in a single-band material. However, under
less symmetric strains, although the total number
of carriers is still conserved, they are redistri-
buted between the valleys, and this redistribution
is governed by the second deformation potential

Because —,'=„ is the coefficient of E~, and as
we shall see, the local axial strains &~ are combi-
nations only of cubic shear strains &';, it is these
shear strains that are excited by charge transfer,
and that consequently have the largest amplitudes.

Under a general strain, then, the Fermi level
relative to the extremum of the vth valley shifts
by an amount 6f different from that described by
the change in rn, alone. The new Fermi level is
given by

g
"'= go+ 6r-'"' —(-o+ —, -„)e,"' ——, -„eo"', (2. 29)

where &r(") is to be determined. Using Eqs. (2. 25)
and (2. 29) and expanding, Eq. (2. 7) then becomes

p
"' = po"'(1+ o 6t' /go ——[3o(- +o3=„)"/go+ (m, + 2m, )/p((+ 2(m, ™,)/p(o]&("'

——,'[= /go+ ( ,m+2m)/ ,l(o+( 2,m—m, )/p, „]eo 'J . (2. 30)

POPO= ~P';

which reduces to

4p(v) (1 e tx) P p( v)

(2. 32)

(2. 33)

Making use of two relationships that are proved in
the Appendix, i. e. ,

To determine the Fermi-level shift, we note that
the total density is

(2. 31)

and the total number of carriers is conserved. The
latter is

for all (v)
(2. 34)and

&(v) 0

and of Eq. (2. 29) 5f can be substituted in Eq.
(2. 30), which eliminates (:-o+ —,'=„), and we then
have

p(") = po(")(I —e —2 [=-./to+ (m, + 2m, )/p.„
+ 2(m, —m, )/p„]e,(")}. (2. 35)

Equations (2. 21)-(2.28) and Eq. (2. 35) are the ex-
pressions necessary for the calculation of S(")(e)
in Eq. (2. 14).

Substitution yields

S = So (1 + [(m(+ 2m()/3 ( ((+ 2(m( ™()3p(o+(m(/2f )(1/p 1(/(p(o) (1 A(, )
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(b) H il [llo]:

%e now give some dilatations for three high-sym-
metry directions ((2) of the magnetic field.

(a) H ii[lll]:

(2. 38)V 6 ' V

are described in the Appendix. Using those re-
sults, the derivative 88(")/8e(0 needed for Eq.
(2. 2) can then be obtained from the relationship

eg(P) eg(P) g~( P)

e~'. e~'"' e~'.i

C. Magnetostriction AmpIitude

(2. 39)

The fractional change in length 5l/f in the direc-
tion P in a crystal sustaining Cartesian strains
Cgg 18

Q
T = ~ '(jp ]83 ~ (2. 40)

4,j
The Cartesian strains &,&

are found by inversion of
the spherical tensors of Eq. (2. 3), namely,

j. [M 1 I y~xx= 3~ 3&3 ~1+ ~2 p

3@3 C1 Ea

(2. 41)

6, 6
~&~ = ~1i ~ra= ~3 i ~my = ~3 .

K=m, /m, .
The constant factor —3, in the amplitude of the
volume strain &,("), is of purely geometric origin;
the cross-sectional area change is two-thirds of the
volume change. The minus sign comes from the
volume change &, being in real space, the cross-
sectional area in reciprocal space. The effect of
this density-of-states contribution is usually un-
important.

To calculate the strains e~ given by Eq. (2. 2),
we will want to differentiate Eq. (2.36) with respect
to &~. Therefore, we want to transform the local
strains e(("', in which Eq. (2. 36) is expressed and
which are given by Eq. (2. 11), to those of Eq.
{2.3), which are expressed with respect to the cubic
axes (x, y, z). These transformations, which are
effected by the rotations

(8f/f)[1103 8e [1103 8~~el [1103+e8 1'1103 ~ {2 43a)
Q 2 6 6

f/f)[l&13 8 [1103+ 8 { 8 Dloj 1 11103 8 11103)i

(2. 43b)
(8f/f)[[ioj= 8e[1103 8]3 el[1103 e8 [1103 i {2 43c)

( 1/f)[001] 8e [1103 8 3 . 1 [1103 ' (2. 4M)

(c) H i([«l]:
f/f)[001] 8e[0033+ 8 ~3 1 [001] &

10[ 1/ y(M/f) [1003 8 1'001 3 8 + 3 1 10013 '

(2.44a)

(2.44b}

From a sufficient number of such measurements
one should be able to obtain all six strain masses
and the deformation potential - „. In principle,
seven different measurements are not required,
because in a general direction one should see four
oscillations with different periods and amplitudes
corresponding to four distinct extremal cross sec-
tions. However, in the measurements w(' have
made, ollly a slllgle period (pills its llal'111011ics),
corresponding to the smallest cross section, has
been observed.

Chandrasekhar, Condon, Fawcett, and Becker~
emphasized the desirability of performing simul-
taneous magnetostriction and de Haas-van Alphen
measurements, so that those factors in the strain
amplitude which also occur in the de Haas-van
Alphen amplitude can be determined empirically
from the latter measurements. Then the 88'"'/8e;
factors can be determined from the ratios of the
amplitudes in the two measurements. However if
one were able to observe oscillations of different
periods from different valleys, or if one succes-
sively observed oscillations in sufficiently general
directions P for a given field direction &, one couM
factor out the de Haas-van Alphen part of the am-
plitude in Eq. {2.2) without making other than mag-
netostriction measurements. In practice, we were
not able to observe oscillations in enough general
directions because our apparatus constrained us
to special longitudinal and transverse orientations.



4248 BE LSON, BURKE, AND CALLEN

TABLE I. Theoretical magnetostriction amplitude factor a~tlf, g~ for field directions [0.'] and measurement directions
[p]. The derivatives 8$/9&; are to be evaluated for the field direction labeling the column in which they are located.

Measurement
direction

Field direction [o,]

[11G] [GG1]

~ + —
6 I (Ref. 12)

1 8$ 2 9$

[11G]

[11O}

[Gol]

1 9$ 1 BS 1 BS
3C BE P3C~ BE', C' BE6

1 BS 1 9$ 1 9$
3C BE' T3C" BE'" C BE

1 BS 1 BS 1 BS
3C BE ~3C~ BE~ C' BE',

8$ 2 BS 9$ BS
3C~ BE 3C' BE', BE', BE',

1 8$ 2 9$
BC Bt (t3 C" sf)(

1 8$1 BS
3C~ ac~ +3C~ BE~

1 BS 1 BS
3C BE ~3C" BE~1

1 9$ 2 9$
3C BE '&3C& BE&

Equations (2. 42)- (2. 44) require the evaluation of
the strains in each of the three principal directions.
As we mentioned above, in each such direction we
have been able to observe only the oscillations
corresponding to the ellipsoid having the smallest
extremal cross section. This is the only term in
the summation over v in Eq. (2. 2) that we shall
retain henceforth. Following Ref. 12, we write the
oscillatory magnetostriction as the product of a
magnetostriction amplitude factor a and a de Haas-
van Alphen factor b:

(&I/I), t), = tt, (),b, ,

sin[�(ck/eB)

S, —2(ty+ —,
'

(T] .
(2. 46)

According to Eq. (2. 2),
1/2 92g -1 /2

I)( )
——N(kT/t() ~ ek2 exp( —2)t/(4),'"'&)

2wck B

2m kT

(eB/2ttch) times the usual de Haas-. van Alphen
amplitude, and N is the appropriate number of el-
lipsoids with the same extremal cross section.
a, » is a constant, for a given direction of field and
measurement. b, , depends only on field direction,
not measurement direction, and is a function of
field strength. The magnetostriction amplitudes
a& ~& corresponding to the dilatations described in
Eqs. (2. 42)- (2. 44) are given in Table I. The rows
are labeled by the measurement direction and the
columns by the field direction. The derivatives
BS/set~ are, of course, a function of the field direc-
tion. They are to be evaluated for the field direc-
tion labeling the column in which they are located.

The magnetostriction amplitude factors are next
related to the fundamental quantities, the six strain
masses and the deformation potential, by Eqs.

sS") (, )
-m, +2m, 2 (m, —m, )

W12

Bg(1)

Bg( 1)

=0,

m, 1 2 2
+—' + ——,(2.47a)

911 ]U12

(2.47b)

(2. 4Vc)

a(( [11O]:

mt + 2mt 2(mt —m, )
=So +

3]U, 11 3]L(,12

m'
2(2m, +m, ) pgt pea

ml' 1 2 2

(2m, +m, ) ittg
(2.47d)

9 (1)S,~ () m, 2mm,
44( ' ' 4(x, ~,)x (4, ~ )4) '

(2.47e)

9$ (1) -" ~ mt 1 1
sE ~' 3KO 2(2m( + mt) p 2) it 22

m2 1 2
+ +

(444, ~,) (x„(x„)
2

t ( (2 47f)
24(2m, +m, )X 6(2m, +mt)Q

Bg(1) Bg(1)

B~ 6 Bg6
2 1

(2. 47g)

(2. 36), (2.3V), and (2. 39). Labeling the dominant
cross section S'", we have

Hll [111]:
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FIG. 1. Capacitance cell
used for the measurements.
The change in length of the
PbTe sample changes the
capacitance between the
brass disk and the copper
rl11g.

1) ff mt
3lo 2(2m, +m, ) p, ra paa

0 +

m!' "1 2
+ --+

(mm +Ill ) Il ~ gpg)

ma
+ ' ' . (247l)12(2m, +mr))( . 3(2m, +mr)(f)

ffll[001]:

&r& mr +2m, 2(m, -m, }I 0 +
3&11 3P,12

mg

(mr +2mr) lrrr Pra

m, 1 2 2.
+ ' —+ ——, (2.47i)

2(mr + 2mr) err /ra 3

eg(1) j~ err)
8~@ 3 0

1

IH. EXPERIMENTAL

Changes in sample length were detected by a
capacitive technique in which the length of the sam-
ple determines the capacitance of one arm of a
capacitance bridge. A three-terminal General

x- ' +
2(m, + 2mr)X (m, + 2mr)rt

This completes the theory M.easurement of &I/I
and evaluation of 5 ~&, either by a sufficient number
of observations of N/I or by independent measure-
ment, would allow determination of at ~,. From
the period of oscillation one has 80 ', and hence one .

could evaluate:"„, rr rr, g, and P in Eqs. (2.48)
above. Note that in these equations the masses p, 31
and p 32 occur in the combinations (1/rr mr+ 2/p») and
(1/p, ~ —I/rrra). Because of the large mass anisot-
ropy, the coefficient of the latter term is negligibly
smaQ. Therefore, it will be difficult to determine
the individual values of these masses.

Radio unit (type 1615A) was used. It was driven at
a frequency of 1 kHz by the same oscillator used
to provide the reference signal for a Princeton Ap-
plied Research HR8 lock-in amplifier that measured
the bridge unbalance. The output of this amplifier
was used to drive the vertical axis of an x-y record-
er, while a signal proportional to the magnetic field
was applied to the horizontal axis. A continuous
plot of the magnetic fieM dependence of the capaci-
tance, and thus of the sample length, is then ob-
tained by sweeping the magnetic field.

The details of the capacitance cell in which the
samples were mounted is shown in Fig. 1. One
plate of the capacitor is basically a copper cylinder
with an axial hole closed at one end. The sample
sits in this hole wearing an insulating SiG3 cap which
protrudes slightly above the end surface of the cy-
linder. A brass disk, spring loaded against this
cap, forms the second plate of the capacitor. To
obtain the largest capacitance, one wants to have
these plates as close together as possible. %e have
been able to set their separation at about 0.01 cm
at room temperature without encountering shorting
effects due to foreign material or differential ther-
mal contraction of the cd in going to 4. 2 'K. %ith
this separation, the capacitance of the cell is of the
order of 50 pF at 4. 2'K. The General Radio bridge
is setable to about 10 of this. For our samples,
which were about 4 mm long in the direction in
which length changes were detected, the minimum
observable strain &l/I was about 10 . This corre-
sponds to a 6l of about 0.1 A and a change of capac-
itance of about 10 pF.

The samples studied were taken from single crys-
tals of P-type PbTe grown by the Czochralski tech-
nique. ~ They had a hole concentration of about
3.0~10'8 cm '. Measurements were made at the
National Magnet Laboratory. A vertical solenoid
provided longitudinal fields in excess of 100 kG,
while transverse measurements were made in a
6V-kG horizontal split solenoid. At the upper end
of these field ranges, oscillations having amplitude~
corresyonding to strains as large as 10~ were ob-
served.

IV. EXPERIMENTAL RESULTS

Figure 2 shows the magnetostriction oscillations
that appeared when both the measurement and field
directions were parallel to [111]. These oscilla-
tions have the largest amplitudes because the de-
formation-potential contribution to the strain is a
maximum. Except for the second-harmonic com-
ponent, the data consist of a single frequency
(l. 1V &10~ 6 ) corresponding to the smallest ex-
tremal cross section of the [ill] ellipsoid.

Figure 3 shows the oscillations that were ob-
served with Hll [001]. Again the data consist of a
fundamental frequency (1.92&& 10' 6) and its second
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FIG. 2. Magnetostriction oscillations observed when
both the measurement and field directions were parallel
to [lllj. Only the fundamental frequency and its har-
monics, corresponding to smallest extremal cross sec-
tion of the ellipsoids, are present.

harmonic. The amplitude of these oscillations is
much smaller than those observed for Hil[111] be-
cause the deformation-potential contribution is
completely absent. A study of 5l/f over a range of
field directions close to [001] showed a minimum
value. This value is significantly larger than the
contribution expected from the change in crystal
density, and is direct evidence for the strain-mass
contribution to the magnetostriction.

We assumed in our formulation of Eg. (2. 2) that
only the strain derivative of the extremal cross
section S"' in the cosine term of Eq. (2. 1) need be
considered. The validity of this assumption can
best be tested by considering the phase of the oscil-
lations. A knowledge of the phase is also necessary
for determination of the sign of the magnetostriction
coefficients a„~, in Eq. (2.46). For this purpose,
a more useful way to write this equation is

(I/l)& „8&-—a& z&bL. &si n(2 vF/H —P~ —P,), (4. 1)

where P, = 2vya-', v+6 is the de Haas-van Alphen
contribution to the phase, P, is the magnetostriction
contribution, and aI- z, and b& &

are considered to
be positive numbers. For ellipsoidal surfaces,
+&77 is appropriate, and for p-type PbTe with p
= 3&&10' cm, it has been shown that y=& and &

The latter relationship is due to the term
cos(vg'"'m, '"'/2mo) in Eq. (2.46) and the large value
of g '. Thus Q, can be determined from the inter-
cept at 1/H = 0 of a plot of (F/H —P, /2v —P, /2v)
vs the 1/H va.lues of the maxima and minima of
I/l. Figure 4 shows such a plot for two samples
for which the measurement and field directions were
parallel to [111]. The ordinate has been labeled
for consistency with the previously determined
value of P~ /2v = 1.30+0.05. Using —1.75, the
average of the intercepts of the two lines (which
are identical within the experimental error in 1/H),
P, /2v=0. 45+0.05. Thus it is reasonable to as-

sume that there is a pha, se shift g, of exactly v due
to a negative a~~ z, for n= P= [111], and that Eq.
(2. 2) is very accurate for our samples.

The magnetic field dependence of the amplitudes
of &l/f for three orientations, in which the field and
measurement directions are parallel, is shown in
Fig. 5. These amplitudes were obtained from the
envelopes of the oscillations for field ranges in
which there was no apparent contribution from the
second harmonic. In order to obtain magnetostric-
tion amplitudes aI- && from these data and Eq.
(2. 45), it is necessary to evaluate or eliminate the
de Haas-van Alphen factor b~, given by Eg. (2. 46).
As was discussed in Sec. II, the evaluation can be
obtained experimentally from an absolute measure-
ment of de Haas-van Alphen amplitudes for the
same sample, while elimination is possible if enough
magnetostriction measurements are made. The
former has not been carried out for our samples,
while the latter was not possible because of con-
straints on our apparatus. We originally calculated
values of b, „,vs 1/H from parameters available
in the literature and obtained ar t3& values by multi-
plying these calculations by the single constant that
would result in agreement with 5f/f vs 1/H. The
curves in Fig. 5 were gotten in this manner. This
is the least desirable method by which aI ~& can
be obtained, but the values seemed reasonable.
More extensive measurements as well as the avail-
ability of more accurate g values for the hole con-
centration of our samples show that this procedure
is too unreliable. This is especially true when
trying to use the aI- ~,'s to calculate strain masses.
However, for comparison with future work, we have
constructed Table II, which gives amplitudes of
5f/l as a function of field and measurement direction
for a single value of 1/H.

V. SUMMARY AND CONCLUSIONS

We have derived expressions for the magneto-
striction amplitude factor aI- z& of the magneto-
striction oscillations 5l/f for field directions [o.']

21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81

k06

FIG. 3. Magnetostriction oscillations observed when
both the measurement and field directions were paranel
to [001]. Apparent deviations from the single frequency
behavior expected for this field orientation are due to
the presence of harmonics.
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Fig. 4. Values of (Ii/H- Q&/2r
—Q~/2r), corresponding to extrema
in 8//, ve the 1/& values at which
the extrema occur I.see Eq. (4. 1)].
Field and IneasureIQent dll ectlone
were parallel 'to [111]. The two ee'ts
of data correspond to two sample hav-
ing essentially the same hole concen-
tratj. on. The intercept at 1/B = 0 de-
termines p~. , the phase shift of the
magnetoetriction oscillations relative
to the phase of de Haae-van Alphen
oecQlations Qy.

)1[111], [110], and [001], and for several measure-
ment directions [P] of high symmetry. This deri-
vation has assumed that the principal contribution
to the amplitude factor comes from the strain deriv-
ative of an extremal cross section of the Fermi sur-
face. The phase of the oscillations shows this to
be a good approximation for our p-type samples.
These strain derivatives were then derived explicitly
for an eQipsoid of revolution, multivaQey model, in
terms of the shear deformation potential "„and six
strain masses. "„determines the strain that leads
to intervalley charge transfer, while the strain

TABLE H. Amplitudes of the oscillatory strain &E/E

x10 for field directions I.o'], measurement directions
[P], and 1/H=0. 03 kOe"~. The numbers given are con-
sidered to be the most likely, while the true values ehouM
be within the ranges indicated. The numbers in parenthe-
eee are the frequenciee of the fundamental osciHatione
for the field directions indicated.

Measurement
dl rection

Field direction to']

[111] t11O] I:001]

(1.17 ~10' 0) 0..39 ~10' 0) (1.92 x10' G)

I.0o1]

7.9+0.3
+0.55.0

5s '04
~ 0 1
+0.1

0'a 2

0 33-0.03

O 3S""—O. 01

0.80-0.00
+0.04
-0.02

I

.01 .02

I

.06

lt H (koe)

FIG. 5. Amplitudee of the oscillation at the fundamental
frequency ve 1/& when both measurement amI field direc-
tions were parallel to f111], (110], and f001].
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formation esluation (2.38), the following relation-
ships are obtained:

(all v);

{1) 6 6 e
~2 = &~+&2+&3 ~

(2) e s

= -C~ —&2+63,(3)

= —Kg+63 —63,(4) e e 6 .

22 = 2 ~3 21 —S~I —
S ~2+ 2 ~2 s

(1) & y & c l. ~ & 6

E2 = 2WS EI —2&1+ 222 —
2 &2,{P) j. y 1 s 1 s 1 6

= g y a Cj+ 6&g+ 6Eg+ 3 63,(3) j. ~ y i 6 1 s j.

(AS)

FIG. 6. Relationship of the principal axis system
(&, g, 0) of the fill] ellipsoid to the cubic axis system
(x, y, s). (See Table III for the direction cosines of
the principal axes of each ellipsoid. )

masses describe distortions and rotation of the el-
lipsoids.

The amplitude of the magnetostriction oscillations
51/I ls R pl oduct of tile de Haas -van Alpllell RIIlpll-
tude factor 5& j and the magnetostriction amplitude
factor at„z&. Evaluation of the latter requires
either evaluation or elimination of the former. Be-
cause of the absence of de Haas-van Alphen mea-
surements on our samples and the constraints on
our apparatus, neither was possible experimentally.
Calculations of b~

&
led to values of a&» that were

too unreliable, especially for strain-mass calcula-
tions. As a consequence, only the amplitudes of
the strain &I/I are presented at this time. However
these amplitudes clearly indicate that while the
major contribution to the magnetostriction comes
from the deformation potential, the strain-mass
contribution is finite.
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periments.

2tI) 2(2)1/2 ps 1 (6)1/2g s+ 1 (6)I/22 s

g&2) 2(2)I/AY+ 1 (6)I/2gs+ 1(6)I/22s

2(3) 2(2 )I/2~s 1 (6)1/2g s 1 (6)1/2 2 s

~(4) 2(2)I/2~y 1(6)1/2~s 1 (6)1/2~ s ~

= 2(—) KI+ 2 WKI+ 2 W62 —2We2,
~'2) = 2(-')I/2~" + —'W~'- —'W2'+-'Ff~'

&I = 2(s) &I - S ~&I —e~&2- 2 ~~2 s

e'" = 2(-')'"eI ——', We'+ —'W~'+-'W ~'

~'2"= --,' V 3~"2--,'We,'+-2V 3~2',

= 2 W &2+ 2 W EI + VS2&2,
62 ———2V 362+2 &&I —2V St2,

=su SE2 —sv SKI-21~62.

(A6)

TABLE III. Direction cosines of the principal axes of
each ellipsoid relative to the cubic axes. (See Fig. 6.)

Using these expressions, the derivatives SS'")/
8&," of Eg. (2.39) can now be evaluated.

E)Iuation (A1) was to be expected, as the scalar
invariant is independent of coordinate system. This
1'esul't wRs pl'evlollsly involved In Eg. (2.34). Su111-

ming e'2"' over v in Eg. (A2) produces the second
result we invoked in Eq. (2. 34). In fact,

2(s) (Av)

APPENDIX

We need to be able to transform from the strains
expressed in the cubic axis system (x, y, 2) to
those in the principal axis system (g, )1, K) of each
of the four ellipsoids (see Fig. 6). The direction
cosines of each of the four principal axis systems
are given in Table III. Using these and the trans-

~6W6[ll2]

~6~6 [a2]
~W [ll2]
~~&6 jll2]

—,'~2 jllO]

—,'~2 [llO]

—,'W [llO]

—,
'

W2 jllO]

~3M [l&l]

—,'~ [ill]
3 ~3 QT1]

2 ~[ill]
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The Raman spectrum of Ti203 exhibits seven modes as predicted for the corundum structure.
The persistence of all seven of these modes above the semiconductor-metal transition tempera-
ture indicates no space-group change on going through the phase transition. The &~ mode at
269 cm (300 'K) exhibits a, significant frequency change (about 16%) and a large intensity in-
crease relative to the other modes in the temperature range of the semiconductor-metal tran-
sition. These results are interpreted in terms of electronic and structural changes during the
phase transition.

INTRODUCTION

Several physical properties of Ti303 undergo a rap-
id change over a range of 150 K' in the neighborhood
of 400 K. These include the lattice parameters,
the specific heat, and the resistivity. 3 Below this
range of temperature the material is a semiconduc-
tor and above this range the temperature dependence
of the resistivity indicates metallic behavior.

We report here a study of the Raman-active

modes, in frequency as well as in intensity, across
the transition range. The study provides further
information as to the nature of the change and agrees
well with a previous model.

EXPERIMENTAL RESULTS

Surface Baman scattering was done using various
(4579-5145-A) excitation lines of an argon-ion laser.
Single-crystal, oriented, and polished samples were
used with the incident and scattered light propagat-


