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A simple model Hamiltonian relevant to binary noble-metal alloys is introduced. The model,
which is easily treated in the coherent-potential approximation (CPA), contains one s band of
finite width and one d level of zero width which hybridizes with the s band. The Hamiltonian
is examined using the CPA. in two ways: first, purely as a model whose properties ean be
simply investigated, and second, as a Hamiltonian which may be considered to approximate
that appropriate to noble-metal alloys. In regard to the first aspect of the model, interest is
centered on special limiting eases such as the dilute-aOoy and split-d-band limits. It is shown
as a result of s-d hybridization that the criterion for the split-d-band limit in the two-band
model is considerably more severe than in a one-band model investigated previously. In re-
gard to the second aspect, interest is focused on some electronic properties of Au-Ag alloys.
It is not expected that Wigner-Seitz cells within these alloys will be neutral. In order to ex-
plain the observed concentration dependence of the optical-absorption edge, it is necessary to
assume that electrons are transferred from Auto Ag sites, rather than from Ag to Au as has
been commonly supposed. The concentration dependence of the d-level positions is obtained
from a "renormalized atom" theory and the charge transfer, which is assumed to arise from s
electrons. The optical-absorption edge as a function of concentration is estimated from pa-
rameters appropriate to Ag-Au. Good qualitative agreement with experiment is obtained when
the transfer of s electrons from Au to Ag atoms is taken into account. By contrast, the pre-
dicted behavior is qualitatively incorrect if charge-transfer effects are neglected or assumed
to go in the opposite direction.

I. INTRODUCTION

As is generally known, noble- and transition-
metal band structures may be characterized by
narrow tight-binding d bands which hybridize with
a broad s-P conduction band. In the present paper
a new one-electron model is introduced which con-
tains some but not all of these essential features
of noble and transition metals and their binary
alloys A, B, . The pure crystals A and B are as-
sumed to contain one s band of finite width and one
d band of zero width at energy &"„' which hybridizes
with the s band; thus the structure of the d bands
is neglected here. In the alloy Hamiltonian H"""
the d resonance energy at a given site &"„may
take on one of two x-dependent values corresponding
to whether an A or B atom is at site n. The un-
hybridized s bands and the hybridization constants
are treated in the virtual-crystal approximation.
By contrast, the d bands, whose potentials are not
expected to be weak, are treated in the coherent-
potential approximation (CPA). ' Using the CPA,
approximate conf iguration-averaged densities of
states may be determined for alloys of arbitrary
concentration and reasonably strong scattering
strengths. H" '" is examined using the CPA in two
ways: first, purely as a model whose properties
can be'simply investigated, and second, as a Ham-
iltonian which may be considered to approximate
that appropriate to noble-metal alloys.

In regard to the first aspect of the model, inter-

est is centered on special limiting cases, such as
the dilute-alloy and split-d-band limits. It is
shown that as a result of s-d hybridization, the
criterion for the split-d-band limit in the two-band
model is considerably more severe than in the one-
band model investigated previously. ' In regard to
the second aspect, interest is focused on the first
strong optical interband transition in Au-Ag alloys.
It is not expected that signer-Seitz cells within
these alloys will be neutral. Arguments are pre-
sented which indicate that s electrons are transferred
from one alloy component to the other. On the
basis of present band calculations and interband
optical data, ' it seems reasonable to conclude that
this charge transfer is from Au to Ag sites, rather
than from Ag to Au as has been commonly as-
sumed. '7 This view seems to be the only one con-
sistent with the observed behavior of the optical-
absorption edge as a function of alloy concentra-
tion.

The most serious objection to this point of view
arises from isomer-shift data. The analysis of
these data, while careful and detailed, is neverthe-
less based on some assumptions whose validity we
are not prepared to question in the absence of
further calculations. The contradiction is hopefully
more apparent than rea, l. Optical and Mossbauer
data, respectively, sample the regions outside and
inside the core. The charge density in these re-
gions may vary differently with concentration.

A renormalized atom theory' is used to calculate
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the x dependence of e"„"'"'(x)which arises from s-
electron transfer in the alloy; it is seen that the
position of the d levels is concentration dependent
as a result of the concentration dependence of the
s charge transferred. The x dependence of the
optical-absorption edge obtained from the Hamilto-
nian is in good qualitative agreement with experi-
ment4' when the parameters appropriate to Au-Ag
are properly chosen.

Previous theories with one exception which have
attempted to describe the electronic properties of
Au-Ag have either considered only the dilute-alloy
lirnit9 or have treated the alloy scattering strength
perturbatively': Recently, a more general calcu-
lation of the electronic properties of Au-Ag in the
one-band CPA has been performed in an analysis
of photoemission data. Charge-transf er effects
were not considered, however. " Calculations of
dilute-alloy properties have neglected the d electron
entirely. The s eletrons were assumed to scatter
in a square well whose depth, computed self-con-
sistently, was determined by the difference in en-
ergy between the bottom of the s band of the host
and that of the impurity. ~ In calculations of non-
dilute alloys the total scattering potential was as-
sumed to be weak and the wave functions computed
perturbatively. '0 In the dilute-alloy calculations it
was found using a Thomas-Fermi picture that a net
8 charge was deposited on the atom w'lth the most
attractive potential. On the basis of an entirely
different picture, ' it was inferred from the depen-
dence of the optical-absorption edge on impurity
concentration that the d wave functions near the top
of the band had greater amplitude on Au than Ag
sites. This difference in wave-function amplitude
was called "charging. "'

An outline of the paper will now be given. ' In
c IIA the model Hamiltonian H""" relevant to

binary noble-metal alloys A„B, is characterized
and the results of the CPA applied to H""" are
outlined. The pure-metal limit (x=0, or x= I) of
H '" is discussed first and compared with the
Hamiltonian commonly used in interpolation
schemes. '3'4 Next, the results of the CPA applied
to H""" are presented and three special limiting
cases are considered in detail: the dilute-alloy
limit (Sec. IIB), the atomic limit (Sec. IIC), and
the split-d-band limit (Sec. IID).

The purpose of Sec. III is to develop a model for
Au„Ag, „alloys based on H""". In Sec. IIIA some
relevant electronic properties of the pure metals
Au and Ag are discussed. A renormalized atom
theory' and a brief summary of the results of recent
band calculations for Au and Ag ~ill be described. '
The Au-Ag alloy system is considered in Sec. IIIB.
Both experimental and theoretical evidence for the
lack of neutrality of Wigner-Seitz cells in these
alloys is given. The evidence suggests that s elec-

trons are transferred from Au to Ag atoms in these
alloys. In See. IIIC the Au-Ag alloy parameters,
e. g. , e~"'"'(x), are computed using the results of
band calculations and the renormalized atom theory.
An estimate of the s charge transfer in the dilute-
alloy limits is given using the Thomas-Fermi
model. The x dependence of the charge transfer for
nondilute alloys is computed by linear interpolation
between these limits. This last assumption has
some experimental basis which will be discussed.
The x dependence of the s charge transferred is
then used to calculate the x dependence of the posi-
tions of the d levels e","'"'(x).

In Sec. IV the results found in Sees. II and III
are numerically illustrated. The s and d densities
of states and other quantities for pure Au and Ag
and for several alloy concentrations are discussed
in Sec. IVA. The latter calculations are performed
for a value of the charge-transfer parameter
&Q"'(x= I) = 0. 3e. This parameter is defined to be
the s charge transferred to a single Ag atom in an
Au host. Arguments are presented to show that
noble-metal alloys are not in a split-d-band limit. '5

Two artificial alloys will be discussed to illustrate
this limit. In Sec. IV 8 a calculation of the concen-
tration dependence of the first interband optical-
absorption edge in Au„Ag, „alloys is presented.
Experimental results ' are discussed first and
these are compared with theory for four different
values of the charge-transfer parameter bQ"'(x= I)
=0.38, —0. 2e, +0. 5e, 0. It is seen that the best
agreement with experiment is obtained for
+Q (x= I) = 0. 38 111 accol'd witll estimates made 111

Sec. III. Very poor agreement is obtained if the
charge-transfer effects are neglected or if s elec-
trons are transferred from the Ag to the Au atoms
instead of from the Au to the Ag.

II. CHARACTERIZATION OF MODEL HAMILTONIANS AND
APPLICATION OF CPA

A. Description of Model: Application of CPA

In this section a new one-electron model alloy
Hamiltonian H"'" is introduced and its properties
investigated. In some respects this may be re-
garded as appropriate to binary noble-metal alloys.
It is convenient to begin by considering the pure-
crystal limit of H""" to be denoted H "",

+ Q [y(e,)(k, )&k j+y(e )(k )&k,)] .

The crystal is assumed to have only one s and one
d band. The energy origin is I'„ the bottom of the
unhybridized s band. The latter has a width 2M)„
determined by the intersection of the unhybridized
s-band energy-wave-number dispersion relation
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e, (k) and the Brillouin-zone boundary. e„repre-
sents the position of the d resonance measured
relative to I „the y characterizes the strength of
the s- and d-electron hybridization and depends
only on c„as is indicated; n is a site index. The
hybridization width of the d level is to be associated
with the width of the d band; spin and orbital degen-
erac1es are explicitly absent in (2. 1}. These
effects are included schematically by assuming the
d level has ten d electrons and the s band is filled
by two electrons per atom.

In the pure crystal k is a good quantum number
and thus mixing can only take place between s and
d electrons with the same % eigenvalue. Equation
(2. 1) should be contrasted with the Anderson Ham-
iltonian (in the absence of Coulomb interactions)
with a single d resonant level at site 0 in a free-
eleetron bRIld

e"=g; [k, )(k',/2m)(k, I+ ( 0,)e,(O„(

+Qf (V„ik,)(o, i
+c.c.) . (2. 2)

Here mixing takes place between the d electrons
at the impurity site and the free electrons from the
host; thus k is not a good quantum number. In IJ"
the hybridization constant V~„ is considered to be
k dependent, but for ea.se in computation it is usually
appx'oximated by a constant.

The model Hamljtonian of (2. 1) ls a simplified
version of that used by other investigators'7'18 to
fit the electron band structure of Cu, and later
formally derived by Heine' and also by Hubbard. '
Comparing Eq. (2. 1) with the Heine-Hubbard Ham-
iltonian' *' it is seen that the term represented by
e, (k) in (2. 1) is replaced in Heine's formalism by
a matrix containing four orthogonalized plane waves
K. As a consequence of transforming away higher-
order plane waves, the d levels become effectively
broadened, so that the term diagonal in in~) space
and independent of k in Eq. (2. 1) is replaced by a
0-dependent matrix D in Ref. 13. Also, in the
formalism of Ref. 13, the hybridization constants
y„are shown to depend both on k+ K and with
whichever of the five tight-binding orbitals, denoted
by m, the s electrons are hybridizing. The gross
simpliflcRtlons pl esent ln the model Hamiltonian
[Eq. (2. 1)] are therefore evident.

It is shown in Ref. 13 that for 0 along symmetry
directions I'I. and I'X in the Brillouin zone, only
one of the d bands hybridizes with the plane-wave
band due to symmetry. These consist of d states
with I= 0 quantized about the direction of k as axis.
Evaluating y~o at k = Wz„, it follows that y~o
=-M'e„. The constant of proportionality M' is seen
to be about 0. 3 for Cu and for the rest of the 3d-
transition series. ' %'hen considering noble metals,
it will be assumed here that y in (2. 1) is given by

y~60 with M = 0.3. This Rpproxlmationy although

serious for Au and Ag, is no more so than the ne-
glect of structure of the d bands. This choice of

y ls not unreasonable for t e Rpp»eations to optica&
properties to be considered in the present paper.
when other constants such as E~ —I", are chosen

appropriately.
Some insight into the properties of the model

Hamiltonian (2. 1) can be gained by calculating the
energy vs wave-number dispersion relation E(k)
for the two hybridized bands. The secular equation
for H ""and its solution are, respectively,

[ .(k}-E(k)][e,—E(k)]-0=o (2. 2)

(kmnx) )E (k)

(kmin) & @ (k) (2 7)

The behavior of E, and E as functions of k for the
parameters of Fig. 1(a) is sketched in Fig. 1(b).
Equations (2. 6) and (2. 7) indicate that for crystals
with isotropic n, (k) there will be an energy gap in
the density of states which contains the resonance
energy &~, px'ovlded RB higher bRnds a,re Degleeted.
The gap width is determined by lE, (k '") —E (k ")I. '

It should be emphasized that in actual noble metals,
this gap in the density of states is clearly absent
since there are five d bands of finite width with
which the s electrons may hybx idize.

The discussion here will treat Eq. (2. 1) in two
ways: first, as a model whose properties can be
simply lnvestlgRted, Rnd secoDd, Rs R HRmlltonlRD
which may be considered to approximate that ap-
propriate to noble metals. It is in this second con-
text that spurious features such as a gap in the den-
sity of states must be reconciled with physical
reality. The applications of Eq. (2. 1) to noble
metals and its extension to the alloy case will not
be concerned with the structural details of the d
or s bands. Attention will be focused primarily
on the position of the top of the d band relative to
the Fermi energy, the d bandwidth, and the width
of the s band. In these considerations the gap is
an unessential property of the model Hamiltonian.

We shall assume that in a noble-metal alloy
A„B& „ the Hamiltonian is given by

Jf"'"= Z ~k.).,(k)&k.~+Z~n, &.",(~)&s,
~

17& BZ

E, (k) = ,'(e, —+e, (k)+ [(~„—e,(k)}'+4y']'"] . (2. 4)

Here it is assumed for simplicity that &,(k) is iso-
tl OPle ln A'p l. 6. q

e, (k) = ~, (k) .
As shown in Fig. 1(a), e, (k) is bounded above and
below by e, (k '") —=c '" and e, (k '") —= &

'" determined,
respectively, by the Brillouin-zone boundary and
center. Thus
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gfIIIA

kfIIIA
k .8l boundary

The brackets (~ ~ ~
& denote a configuration average.

Here we have written G~ as a 2 &2 matrix corre-
sponding to the basisvectors &Ik, &, Ik„& ). Theun-
averaged propagator for the electrons in the alloy
G= (z —H""") ' may be expressed in terms of G

by defining a scattering operator T using

(2. 11)

Because of the assumed localization of d states, the
random term in Eq. (2. &) is a sum of single-site
contributions. Hence multiple-scattering theory
may be used to write

r=g r„+P T„GT + ~ ~ ~, (2. i2)

gffla 5—
E+~tffman~- T„=V„(1+GT„) (2. iS)

qffllA

kfllfA Pa".8E boundary

is the scattering matrix associated with the site
n, and the effective scattering potential is

FIG. l. Energyvswavenumber k for hybridized bands:
(a) unhybridized E vs k relation; (b) hybridized E vs k
for one dimension in A space.

~ Z [y(,)lk. &&k,
l

y&-.)lk, &&k.l]. (2. 8)
AC»

Here the parameter e",(x) can take on one of two

values, depending on whether an A or a 8 a,tom is
at site n. In contrast to previous work, ' we shall
consider the possibility that e~ is concentration de-
pendent and that its value may be determined in
so111e collsls'tell't fasllioll. Ill tile limit x 0~ Cg(x)
-ea„and similarly as y -=1 —x-0, e",(x) -e", , where

characterizes the position of the d resonance
level in the pure A. or B crystals measured relative
to the appropriate I', . In this section the argument
x will not be explicitly indiea, ted.

%e assume that the kinetic energy term involving
e, (k) is the same as in the pure crystal. In addi-
tion, it seems reasonable to treat the position of
the bottom of the s band I'2 in the virtual-crystal
approximation in which

(2. &)

Similarly in the alloy y(e~) —= y is evaluated at the
average d resonance energy E„=x6'„+y&„. It is
therefore concentration dependent. The only
random term appearing in H""' is the term which
describes the unhybridized d band.

The CPA' may be easily applied to (2. 8). We
may define a self-energy operator R„(z) = [Z~(z)]P~,
where I', is a projection operator onto the space
of d states, in terms of the configuration-averaged
propagator G„(diagonal in the crystal Bioch basis)
by

-2

((,-(("")- ) -=G =(' ' "' ' (2. (0)—y z —Z„

(0 E —Z) (2. 14)

in the basis (In, &, In~&j. Equation (2. 1S) may be
written in this basis as

Here
T."= (e„"—&,)[1—(e„"—Z,)Z„(z, Z,)]-'

(2. 15)

(2. 16)

&su(x Eu)=& '»uG(&)
=A-' Z (u, lGlu, &=&n, =olG&~)ln, =o&.

(2. 18)

(2. I'7)

(T."&=O. (2. Ie)

This leads to the usual k-independent equation for
the self -energy':

Z, (z) = ~„-[~„"-Z„(x)]Z„,(x, Z„)[e;—Z„(~)],
(2. 2O)

where
A 8&e=«~ +X&~

Equation (2. 1V) may also be written

Z„,(~, Z„) = n. (2v)-' f„d'k
x(x —Z, -y' [x —~,&

k)]-']-', (2. 22)

the 0, being the unit-cell volume. This equation
ean be Simplified by defining

The relation Tr~ indicates the trace over d states,
only, and I 0~& is the Bloch transform of the Wannier
dketIn, &

The CPA applied to (2. 12), together with the de-
finition of G as the averaged propagator, implies
that
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p (E)=A, (2v) ' J d k5(E —e(k)), (2. 23)

where in this last equation it is assumed that G is
the operator whose matrix representation is given

by (2. 10). From (2. 1V) it follows that

pg(E, Zg) = —10r 'ImF~„(E+i0, Zg). (2. 2V)

Similarly, the density of states for s electrons is

p, (E, Z~) = —2(Nv) ' ImTr, G(E+i0)

= —2z 'ImE„(E+iO, Z~),

where in analogy with (2. 1V) and (2. 22)

(2. 2S)

(2. 29)

where po, (E) is the density of states (per site) in the
unhybridized s band normalized to 1. It follows
from (2. 22) that

E,„(z, Z, ) = (z - Z„) '+ y'(z - Z, ) "F„[z-y'(z - Z, ) '],
(2. 24)

where

F,(.) = f, p,.(E)(. E) '—dE. (2. 25)

Despite its appearance, Eq. (2. 24) has no singular-
ity at z= Z&. This may be seen by observing that
since the spectrum is bounded as g - Z„,

Fo,[z-r'(z —Zg) ']-- (z —Zg)(R '.
Consequently, the two singular terms in E«(z, Z~)

cancel.
The average density of states per site in the alloy

can be computed from G. Since there are ten d
electrons per atom, the average density of d states
per atom is

p~(E, Z„)= —10(¹)' ImTr~G(E+ i0)

= —10(¹)'Im Z (~ IGl~u)k~
= —10m' Im(n~ = Ol G(E+ iO) ln~ = 0),

(2. 25)

and

J p, (E)dE= 2. (2. 34)

A sum rule for ImZ„may also be easily derived.
In this and other connections it is convenient to
choose for the d resonance energies an energy ori-
gin such that

A B
&z = —&a =a+~

where
A B

(2. 35)

(2. 35)

From (2. 20) and the asymptotic behavior of E~~(z),
it can be seen that [Z~(z) -&„)]-xyhzz ', as z- ~.
Because Zz(z) is analytic in each half-plane, it fol-
lows that

w
' f" Im Z~( E+i0)dE= —xy&'.

From (2. 31) it is seen that the quantity

(2. 3V)

Z.(z)-=r'(z-Z, )
' (2. 33)

plays the role of the s-electron self-energy. The
imaginary part of Z, may be associated with an in-
verse relaxation time of s electrons. This will be
nonvanishing only at those energies for which ImZ„
is nonzero. The s electrons are thus scattered as
a consequence of the random positions of the d lev-
els.

A decomposition of the average density of d states
into A and B component densities ' is also useful.
From Eq. (2. 19) it follows that

p~(E, Z~) = xp~ (E, Z„)+y p~ (E, Z~) i

where
(2. 3O)

10 'p"' (E, Z„)= —v 'Im(n =Ol({E'—II"' ) ') ln„=0),
(2. 40)

and H"' is the Hamiltonian corresponding to a given

alloy configuration with atoms of type A or type I3,

respectively, located at site n= 0. Thus Eq. (2. 40)
may be written

E„(z,Z„)=N Tr,G(:.:) (2. 30) 10 'p„"'(E, Z, )

=F0.[z — &'(z —Z~) ']. (2. 31)

In Eq. (2. 30), Tr, is understood to mean that the

trace is to be taken over the subspace of s states.
We will frequently write quantities such as
E„(z,Z, ) as E„(z).

E„(z) and E~„(z) are both analytic everywhere in

the complex z plane except for branch cuts on the
real axis. The discontinuity of E«across the real
axis is given by

E~~(E+ iO) —F„„(E—iO) = 2i ImF~~(E'). (2. 32)

A similar equation may be written for I'„. Since

Fo,(z)- z ' as z-~, it follows from (2. 24) that

E«(z)- z ' and F„(z)-z '. Two simple contour in-

tegrals can be performed to verify that

= —v 'rm{F„[l—(&,
"' —Z„)F„]'], z„o

(2. 41)
in an analogous fashion to Eq. (4. 15) of Ref. l.
This decomposition will be particularly useful in

understanding the dilute-alloy limit.
Although, in general, Eq. (2. 20) cannot be solved

in closed form, several limiting cases may be eas-
ily investigated. These are (i) the dilute allo-y limit
(x= 0 or x= 1); (ii) the atomic limit, y = 0; (iii) the
split-d-band limit i w,& l»y .

B. Dilute-Alloy Limit

In the dilute alloy AQ, „(x=0), it is useful to ex-
amine the average component densities p"(E) and

p (E). From Eq. (2. 41) it follows that

f" p, (E)dE=10 (2. 33) pg (E, &g) =
pg (E,&d')- (2. 42)
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1,0 'p„"(E, Z, )= —v 'Im(E«(E', z~ )/[1 —~F«(E', &g )]),
(2. 43)

I

where the argument E„ is now given explicitly to
show that F«and p& are the pure host quantities.
The average density of states p~ (E) may be written,
using (2.43) and (2. 24),

1+y (E —e, ) F((,[e~ -y (E-zs) 1
1.0 p~( )= —w Im@ * ~ s(@ j-g~ (

—g(g )-&()
(2. 44)

For E near z&, Eq. (2. 44) becomes

10-i ~(E) y'po. [E y'(E-—z~ ) '1
(E —t"-y ReFO, [E-y /(E —& )]} +(vy po, [E—

Y /(E —z )])
(2.45)

If po, [E y(E-—&~ ) '] is slowly varying with E near
z~, Eq. (2.45) indicates that p~(E) is Lorentzian
near z~. Equation (2. 45) is similar to the result
found for the d-electron density associated with an
impurity site in the Anderson-model Hamiltonian
in which Coulomb interactions are neglected. The
essential difference is that in the present case, the
hybridized host s band Fo,[E -y (E —z„) '] appears
in (2. 45) in place of Fo,(E). This is to be expected
since the Anderson model assumes that the host
band is pure s in character, whereas in noble-metal
alloys the host has d electrons as well, which hy-
bridize with the host s band.

The resonant state density about && mentioned
above should be contrasted with the zero in the
host-component density p, (E, z~) at the. atomic level

This zero in the density arises because there
are sufficiently many d levels at energy && to hy-
bridize with the s band throughout the crystal.
However, in the dilute case there are far too few d
levels at &„ to give rise to a gap in the s band near

In other words, instead of a "hybridization
resonance" there is an "Anderson resonance" at the
impurity d level.

C. Atomic Limit (y = 0}

In the absence of hybridization and for &+ 0, we
obtain results corresponding to the atomic limit
that were previously discussed in Ref. 1 [Eqs.
(4. 21) and (4. 26)]. The CPA equation (2. 21) for
Z& can be solved in closed form:

Z, =&, + xy &'/( +»&~).

Using (2. 24) we have

F,~(z) = (z —Z~)
'

= (z + &u)/(z'- &~g —xy ~').

(2. 46)

(2. 4V)

(2. 48)

F«(E) has poles at the two energies E=+ —,'& which
coincide with the atomic energy levels &A„and e~~.

In addition, Eq. (2. 46) indicates that Z~ also has
a pole which is located at —F~. The density of
d states in the atomic limit thus consists of two &

functions located at E~ and &&. The imaginary part
of Z& has its entire weight at —&~, where the d

The conditions under which a split-d-band limit
may exist in the presence of hybridization will now

be examined. The criterion introduced in Ref. 1
for this condition was that Z& have a pole in a region
of zero spectral density. As will be seen, this
must be generalized for the present model Hamil-
tonian (2. 8). We begin by investigating the condi-
tions under which Z~(z) assumes the form

Z„(z) =A(» —a) ' for z = a .
For z arbitrarily close to a [Z„(z) large], it

follows from (2. 24) that F«(z) may be written

F«(z)- (z —Z„) '+y (z —Z~) z F~(a)

(2. 50)

It can be verified that a self-consistent assumption
for the parameters of interest here is

F~(a) = O(l/s(, ) . (2. 51)

Following the arguments of Ref. 1, it may be seen
that the relevant expansion parameter in investigat-
ing the split-band limit is (p, ,/a')' '=O(y'/s(, a).
Neglecting terms of order (yz/s(, n)z, it follows
from (2. 20) that for z = a

Z, (z) = xyn'/[» + c, —y'F~(a)],
where

a=- —7, +y'Fo, (a) .

(2. 52)

(2. 53)

Equation (2. 51) may now be explicitly verified using
dimensional arguments and Eqs. (2. 25) and (2. 53).
The arguments used to obtain (2. 52) are the same
as those used to derive Eq. (4. 3V) of Ref. 1, which
deals with the single-band case. It should be noted
that I y /w, h I is an oversimplification of the ap-
propriate expansion parameter which is, neverthe-
less, suitable for the present discussion.

If 1 yz/a(, b, I «I, then a is between the two atomic

I

spectral density is zero. It may be seen to satisfy
the sum rule, Eq. (2. 3'7).

D. Splits-Band Limit
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cf levels &„" and &z . If the two levels are both in-
side the s band [ImF~(a) & 0], a resonance in Z„
will exist. If one of the levels lies outside the s
band and I r /w, L l «1, a pole will always form
for some concentration x. For noble-metal alloys
whose resonant d levels always lie inside the unhy-
bridized s band there will never be a pole in Z„,
even for very large d. Throughout this paper,
attention will be focused on the latter case which
is appropriate for the noble metals.

Equations (2. 52) and (2. 37) may be used to show
that because Eq. (2. 52) nearly exhausts the sum
rule for z near —e~ (and I r /m, h l«1), it de-
scribes ImZ, (z) for all z. ReZ~(z) may be ob-
tained from the Kramers-Kronig relation

Z, (z) = z, + ~ 'f d-E (E z) 'I-mz-, (E') . (2. 54)

An approximate expression for the self-energy,
valid for the entire range of z when I y z/m, hl «1,
is therefore

Z, (z) = e, + zya'/[z+7, —y'F~(a)] . (2. 55)

As in the atomic limit, p„has two sharp peaks
centered at the d resonance levels &~ and &~, near
which ImZ~ is almost zero. Although the value
of y /ur, a for which the d bands "split" must be
determined numerically, a split-d-band limit may,
in general, be defined to exist when the imaginary
part of the self-energy is concentrated as a reso-
nance in a region where the density of d states is
nearly zero. Under these circumstances the two
d levels are essentially independent of one another.
In summary this split-d-band limit differs from that
discussed in Ref. 1 in two ways: (a) There is no
zero in the density of states between e„" and E„be-
cause of hybridization with the s electrons; (b) there
is no pole in ImZ„at —c„, but instead a well-de-
fined resonance.

are available. Table I summarizes the results of
quasirelativistic APW band calculations to be used
here. " It is seen that the Fermi energy in Au is
2. 5& eV higher than in Ag. The bottom of the s
band in Ag (T, ') falls about 1.3 eV below that of
Au(I"", "). The occupied portion of the s band in Au,
Es"—y, ", is thus 1.2 eV larger than E„'—I'", '.
The d bandwidth [E(X,) —E(X~)] in Au is 5.4 eV;
in Ag it is 3. & eV. These values for the widths
agree quite well with recent photoemission data. 2'

The states at the top of the d band, involved in the
first optical-absorption edge, lie energetically
close to L». This level lies 2. 19 eV below E~" in
Au and 4. 06 eV below E„' in Ag. These values
should be compared with 2. 5 and 3. 9 eV found ex-
perimentally for the edge.

It has been pointed outa that the d resonance
energy e„appearing in the Heine-Hubbard theory
may be calculated from a renormalized atom point
of view. The renormalized atom description, from
which l-dependent Hartree-Fock crystal potentials
may be derived, involves cutting off the free-atom
s and d wave functions at the Wigner-Seitz radius
and renormalizing them to a Wigner-Seitz sphere.
The charge density obtained in this way may then
be used to compute the potential. For noble metals
this renormalization increases the d charge inside
the sphere by less than 5%. However, it increases
the s charge by roughly a factor of 2 to 3 in Cu and

Ag. The change in e„resulting from renormaliza-
tion of the s wave functions is as follows:

~~l 4=s2f f dr d"
I y, (~) I' le. (~') I' lr-"

I

'

"ff-dr d"
I ~.(.) I' l~,(') I'lr -r'I '

+exchange terms, (3 1)

where P, (x) is the renormalized atom s-electron

III. APPLICATION TO Au-Ag

This section is divided into three parts. Sec.
IIIA contains a brief description of some relevant
aspects of the electronic properties of the pure
metals Au and Ag. Some recent band calculations
for both Au and Ag will be summarized and a brief
description of a renormalized atom theory, which
may be used to construct crystal potentials, will be
presented.

Section IIIB will outline some relevant physical
ideas concerning Au-Ag alloys. In Sec. IIIC a
model for these alloys based on Eq. (2. 3), as well
as the choice of alloy parameters, will be discussed.

A. Pure Metals Au and Ag

Because of the difficulty in performing relativis-
tic band calculations, the band theory for Au and
Ag is not completely adequate. However, some
reasonably reliable results for the band structure

Energy

Muffin-tin energy

gp
r,
~25

Xg)

X~

X5
X4

L'2

L)~
K4

Ag

—0. 752
—0. 19
—0. 707
—0. 636
—0. 554
—0. 767
—0. 754
—0. 491
—0. 473
—0. 019
—0. 735
—0. 640
—0. 490
—0. 197
+0. 142
—0. 537

—0. 682
0. 00

—0. 613
—0. 372
—0.255
—0. 567
—0. 534
—0. 161
—0. 134
+0. 108
—0. 534
—0.381
—0. 161
—0. 078
+0.408
—0. 237

TABLE I. Band parameters for Ag and Au (see Ref.
3). (Energies in Hy relative to atomic zero. )
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wave function and P, ~(r) represents the atomic s
or d wave functions. As a result of the increased
s charge density, «~ is increased by about 0. 29 Ry.
in Ag and 0. 23 Ry in Au from the free-atom val-
ues. In addition, the d electrons repel one another
more effectively than in the free atoms, thus in-
creasing E„by another 0. 2 Ry. The d-level posi-
tipns fpr Ag pbtained in this way are in gpod
agreement with those determined from a first-
principles APW calculation, based on an /-depen-
dent renormalized atom potential when the center
of gravity of the d bands, —',E(1'z,.)+-', E(I',z), is
associated with the resonance energy E„. From the
band calculations summarized in Table I, it is seen
that 5E(I'zs, )+—', E(I',z) is l. 42 eV above I, ' in Ag
and 3.94 eV above I""," in Au.

B. Au-Ag Alloy System

It has been suggested~ that the Wigner-Seitz cells
in Au-Ag alloys are not neutral. Some experimen-
tal evidence for this comes from isomer-shift data
of dilute Au in Ag which indicates that the s charge
density at the Au nucleus in the a,lloy is different
from that in pure Au. In addition, ordered states
are observed in a similar noble-metal alloy sys-
tem Au„Cu, „for concentrations of x=0. 25 and
0. 5. The binding energy of ordered states has
been ascribed to a Madelung energy associated with
~hm ged atoms. "

From the d-band calculations summarized in
Table I, it was seen that the Fermi energy of pure
Au is higher than that of pure Ag. In the Thomas-
Fermi model of the alloy a difference in the Fermi
energies of the alloy constituents will give rise to
a charge transfer. This can be seen for dilute Ag
in Au as follows: In the Thomas-Fermi model it is
assumed that Ag electrons in an Au host have ini-
tially a Fermi energy E~ equal to that in pure Ag.
When the alloy reaches equilibrium E~ must be
uniform throughout and equal to the host Fermi
energy in the dilute alloy. Since Er" & Er', conduc-
tion electrons are transferred from the Au host
to the Ag impurity atoms. A charge transfer from
Au to Ag will clearly also occur for dilute Au in Ag
by the same reasoning. By contrast, Mott has
presented arguments to show that in dilute Au-Ag
alloys there must be a net transfer of charge in the
opposite direction. Since no band calculations for
Au and Ag were available at the time it was sup-
posed that because Au has a larger ionization poten-
tial, it should present a more attractive potential
than Ag for the conduction-band electrons. This
view seems to have been held by other investiga-
tors ' '; in particular, in connection with the iso-
mer-shift data already discussed in the Introduc-
tion.

In this light our results might properly be re-
garded as controversial. It will be demonstrated,

however, in Sec. IV that good qualitative agree-
ment between a model calculation of the concentra-
tion dependence of the optical-absorption edge and
the experimental data is obtained only if Au loses
electrons to Ag. On the other hand, very poor
agreement is obtained if the charge is transferred
in the opposite direction, as has been commonly
as sumed.

C. Model for Au„AgI

In this section a physical picture of the Au-Ag
alloy system is developed which is expected to
display some of its salient qualitative features.
Equation (2. 8) is proposed as a model Hamiltonian
for the alloy. The parameters appearing in Eq.
(2. 8) are determined using the band-structure cal-
culations of Table I. The renormalized atom the-
ory, ' described in Sec. IIIA, is applied to obtain
the concentration dependence of «", '(x) and «~ "(x)
using the notion of s charge transfer introduced in
Sec. II. (The following convention will be adopted
for notational convenience: When the argument x
is omitted from «„, the quantity «~ is to be taken
as characteristic of the pure system; jf the argu-
ment is included, it is to be taken as characteristic
of the alloy. )

The choice of parameters for the /me systems
will now be summarized.

(i) The unhybridized s-band density of states is
assumed to have the simple shape discussed in
Ref. 1:

po, (E) = (2/zw, ') (m', —E')' ' —w, & E & co, (3. 2)

for both Au and Ag. The half-bandwidth is so, = 7
eV. This value of m, is chosen to yield agreement
with specific-heat data (neglecting all but the elec-
tronic contributions) and to give values of Er' —I"& '
and Ez" —I'&", jn reaspnable a.ccprd wjth band-
structure calculations. This will be discussed in
more detail in Sec. IVA. It may be seen from (3. 2)
that the unhybridized s band is flat and broad, and
not unlike a free-electron band for energies E less
than or equal to the Fermi energies appropriate
to Au and Ag. The effective mass at E= -ze is
0. 88mo. This choice for po, was made in order to
simplify the numerical work. Because of the be-
havior of F«(z, «~) for z = «~ discussed in connection
with Eq. (2. 24), it is necessary to expand E«(«~, «~)
in order to subtract two canceling poles arising
from the two terms in that equation. The calcula-
tions are considerably facilitated if E«(z, «~), or
equivalently pa, (E), can be written in closed form
Equation (3. 2) represents a simplification of the
s band which is not justified in performing a trans-
port calculation. However, as will be seen in Sec.
IV, the behavior of the optical edge which is of in-
terest here is fa,irly insensitive to the shape of the
s band, particularly above E~.
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+pAu ~pAg (3. 3)

and (iv) the hybridization constant y will be evalu-
ated at r„=g~", "+@~,"~.

The remainder of this section will be devoted to
determining the x dependence of c~ "(x) and e~ '(x)
as measured with respect to P, " and I"",', respec-
tively.

The notion of s charge transfer was motivated
using a Thomas-Fermi picture for the dilute alloy.
The same considerations are expected to apply in
the nondilute case as well. It is clear that the
average charge hQ associated with an Au or an Ag
atom is dependent, on the concentration of each type

(ii) The d resonance levels measured with re-
spect to the appropriate T', 's are assumedtobe E~

'
= 2.7 eV, &~A" = 4.0 eV. These values maybe compared
with &@

~= 1.42 eV and g "=3. 94 eV taken from the
band calculations summarized in Table I. It is
seen that the value assigned to &~A' is somewhat
larger than the band calculations suggest. However,
as will be seen in Sec. IV this adjustment is nec-
essary in order to fit the experimentally observed
optical-absorption edge in pure Ag with the model
calculation of the edge. The discrepancy between
the absorption edge calculated in the model with
E„"~=1.4 eV and that found from the band calculations
summarized in Table I may in part be due to the
difference in the values of the d bandwidth resulting
from these two approaches. The Ag d band in the
model is considerably narrower (by about a factor
of 2) than band theory and experiment predict.

(iii) The bottom of the s bands 1""," and I ", ' are
assumed to be 1.36 eV apart; I, ' is below F,".
This separation for the I",'s is taken from the band
calculations summarized in Table I.

(iv) The hybridization constant is taken to be
y=y "(e~/&~ ) =0. 31&~, when the values for Cu are
obtained from Ref. 12. ' It should be noted that in
the Heine-Hubbard theory' ' for the band structure
of Cu, the p is assumed to be small. Consequently,
a scaling of y based on the Cu value is questionable
for systems with broad d bands such as Au. It
does, however, lead to results consistent with the
band-calculation predictions for the number of d
electrons above E~ in both Au and Ag when zv, = 7
eV. This point will be discussed in Sec. IVA.

The choice of parameters appearing in Eil. (2. 8)
for the alloy system Au+g, „may be summarized
as follows:

(i) In analogy with Ref. 1, the unhybridized s-
band density of states in Au-Ag is the same as in
pure Au and Ag and thus assumed to be pii, (E) de-
fined in Eil. (3.2). (ii) The d resonance energies
will be assumed to be x dependent. Their x depen-
dence willbe described below. (iii) The unhybridized
s band is described in a virtual-crystal model.
The bottom of the s band is thus

of atom in the alloy. The impurity atoms in the
very dilute alloys (x= 0, x=-1) are expected to have
a greater absolute value of charge per atom than
the host atoms because the impurities are sur-
rounded by more atoms of unlike character. To
determine the x dependence of hq "and hq"' for
nondilute alloys, it appears to be reasonable to
interpolate linearly between the dilute-alloy limits.
Some experimental evidence supporting this point
of view will be mentioned subsequently. %'e shall
thus assume that the s dependence of hq "'"~ is
of the form

and
~q""(x)= y~q""(x= O)

~q"(.) =x~q"'(x= 1),

(3.4)

(3. 5)

ac~~'(x) =e 'Sq '(x) (0. 29) Ry . (3.V)

Similarly, if an average s charge per atom of
I' Aq "(x)) is subtracted from Au atoms in Au+g, „,
the d level decreases by

A&~ "(x)=—je ~q "(x)I(0 23) Ry (3 6)

Using Eils. (3.4) and (3. 5) and the neutrality condi-
tion

xaq""(x) + y nq"'(x) = 0,
it follows that

~q"(x-= I) = - ~q "(x=O) .

(3.9)

(3. 10)

where the arguments (x=0) and (x= 1) indicate the
appropriate dilute alloys.

The x dependence of c~ "(x) and e~ '(x) may now

be understood. The renormalized atom picture
described previously suggests that a change in s
charge density on an Au or Ag atom will significantly
affect the position of the d resonance levels. s

Consequently, if hq""(x) and hq"'(x) depend on x,
then e~ "(x) and e~ '(x) will also. Since the direct
part of the s-d Coulomb interaction dominates the
exchange term, the change in &~

~ resulting from a
change in s charge density per atom aq ' is approx-
imately

)direct

=e 'zq"'[f f drdr'~p, "'(r)( ~p,"'(r')~']Ir r'~ ']-,
(3.6)

where Q~ '(r) represents the d atomic wave func-
tion of Ag, and i)i", '(r) is the renormalized atom s
wave function associated with Ag atoms before the
charge is transferred. The factor e 'hq"' accounts
for the fact that in the alloy f", '(r) is no longer
normalized to unity within the Wigner-Seitz cell.
Since the integral in (3.6) is the same as in pure
Ag, it follows from the discussion in Sec. IIIA
that if an average s charge per atom of aq '(x) is
added to Ag atoms in Au+g, „, the d level in-
creases by
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Thus (3.7) and (3.8) may be written in terms of one
parameter, AQ"'(x= 1), to be called the charge-
transfer parameter

and
a~,""(x) = —ye

' aQ '(x = 1) (0. 23) Ry

6&„"'(x)=xe 'hQ"'(x=1)(0. 29) Ry .

(s. is)

(s. i2)

There is some experimental evidence to justify
Eqs. (3.4), (3. 5), and (3. 10). The resistivities of
Au+g, „for the two dilute alloys (x = 1, x = 0) are
equal, 8 as is consistent with (3.10); 7 In addition,
Mossbauer experiments show a nearly linear de-
pendence of the isomer shift of Au in Ag on concen-
tration g.~

A Thomas-Fermi model may be adopted to give
a rough estimate of the charge transfer to be ex-
pected in the two dilute cases (x=o, x= 1). The
charge transfer is computed from the following
equations:

@Au

~g"'(x-=1) = s f„' p, [z, e~(x-= i)]dz
@Ag

—ef ~
p, (z, ~,"')dz (3.13)

,and @Ag
~q (x=o)=s f "p,[z, ~,""(x-=0)]dz

gu
e f ' p, (z, ~"„")dz. (S. 14)

Using Eqs. (3.7) and (3.8) for x =1, it is seen that
the right-hand side of Eqs. (3. 13) and (3. 14) are
implicit functions of hQ"'(x= 1) and hQ "(x=0),
respectively. Using Eqs. (2. 29), (2. 31), and the
pure-metal parameters discussed earlier, Eqs.
(3. 13) and (S.14) may be solved numerically to give

—bQ "(x=o)=hQ"'(x=1) =0. Se . (s. is)

This value is in unexpectedly good agreement with
the results to be presented in Sec. IV B. In the
applications considered heres@, "'(x= 1) will be
assumed to be adjustable. The estimate of the
charge-transfer parameter given in Eq. (3. 15) will
be used only as a guideline.

In addition to the assumptions stated in the text,
there are two further effects not considered in the
above estimate of the charge-transfer parameter
which a more exact theory should contain. These
are (a) the possibility of d-electron transfer and

(b) the effect of s-electron transfer on I', . The in-
clusion of either or both of these in the Fermi-
Thomas calcula, tions would tend to lower the va.lue
(0. Se) found for hQ"'(x= 1).

IV. NUMERICAL EXAMPLES FOR MODEL ALLOYS
AND Au-Ag

This section is divided into two parts. In the first
part some of the general results pertaining to the
model Hamiltonians [Eqs. (2. 1) and (2. 8)] discussed
in Sec. IIA will be illustrated. The choice of pa-

rameters will generally be characteristic of Au-Ag
alloys. Illustrations of the split-d-band limit,
however, will be concerned with alloy parameters
different from those in Au-Ag. In Sec. IVB, the
model-alloy Hamiltonian Eq. (2. 8) and the CPA
will be used to estimate the behavior of the optical-
absorption edge for the first interband transition.
The concentration dependence of the edge for sever-
al choices (both positive and negative) of the charge-
transfer parameter b,Q" '(x = 1) will be investigated.
The results obtained here for the behavior of the
absorption edge are not expected to be qualitatively
sensitive to the shape of the s and d bands (as con-
trasted to their relative positions and the d band-
width), since interest is focused on the positions
of the tops of the d bands relative to the Fermi en-
ergy. They are, however, very sensitive to the
sign of the charge-transfer parameter, as will be
demonstrated.

A. Numerical Examples

Figures 2(a) and 2(b) show the d and s densities of
states for pure Ag and Au, respectively. The cal-
culations were performed using the model Hamil-
tonian [Eq. (2. 1)] and the parameters for pure Au

and Ag discussed in Sec. III C. The quantities p,
and p„were evaluated numerically using Eqs.
(2. 24), (2. 27), (2.29), and (2.31) with Z„=a~ """.

As discussed in Sec. IIA, an unphysical feature
of the model Hamiltonian is the gap appearing in
the density of states which contains the d resonance
energy E„. For the purposes of applying the model
to compute the absorption edge as a function of g,
the structure of the d band below its upper edge is
expected to be unimportant. Such structural fea-
tures as the gap in the d and s bands will be dis-
cussed in this section because they give insight in-
to some of the important changes which occur in
the densities of states with alloying.

Comparing Figs. 2(a) and 2(b), it is seen that
there are several important differences in p„ for
pure Ag and Au. These a,ll derive from the change
in y with the position of the d resonance levels
(measured with respect to the bottom of the s band)
in these two systems. The d band in Au shown in
Fig. 2(b) is - 2 eV broader than that of pure Ag

[Fig. 2(a)]. The gap in Au is several tenths of an
eV wider than that in Ag. Both gaps, however, may
be seen to contain the appropriate resonance level,
~Au Or ~Ag

Two characteristic features of p„, present in
both Figs. 2(a) and 2(b), are the large peaks in p,
on either side of the gap in the vicinity of the d
resonance level and large "tails" in the d-band
density of states. The latter are in sharp contrast
to the nearly flat upper edges of the d bands ac-
tually found in noble metals.

The tails in p„ found from the model Hamiltonian
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FIG. 2. Density of states for s and d bands for (a) Ag
and (b) Au, calculated from Eq. (2. 1). Hybridization
constants p, d levels &d, upper d-band edge, Fermi en-
ergy E&, and energy positions of ~3, &5, and L 32 obtained
from band calculations (see Table I) are indicated. Here
as in all figures, the energy origin is chosen so that

Au Ag
Cd

d

[Eq. (2. 1)] result in a finite but small number of
d electrons (0. OV in Ag and 0. 18 in Au) above the
Fermi energy E~, and a finite density of d elec-
trons at E~. For the band calculations summarized
in Table I, it was found that as a consequence of
s-d hybridization there are about 0, 05 d electrons
in Ag and 0. 14 d electrons in Au above Ez. 3

The absence of a flat d edge complicates an es-
timate of the optical-absorption edge for the first
interband transition. Consequently, a cutoff for
the d band must be determined somewhat arbitrari-

ly. The qualitative nature of the results is not,
however, sensitively dependent on the cutoff cri-
teria, provided the same criterion is used for all
alloy concentrations. Two criteria, both chosen
to fit the pure-metal absorption edges at 3. 9 and
2. 5 eV in Ag and Au, respectively, using the pa-
rameters of Sec. IIIC were found to give essential-
ly the same results for the x dependence of the
edge in the alloy. These were a cutoff of the d
band at 93% of the total area and a cutoff of the
band when the d density of states has fallen to 2%
of its maximum value. In the remaining figures,
discussed in the section, the cutoff is determined
using the first of these. The d-band edges indicated
in Fig. 2 nearly coincide with the positions of I.»
obtained from band calculations for both Au and Ag
when the Fermi energies in Figs. 2(a) and 2(b)
are made to coincide with the Fermi energies in
Table I.

Using the same criteria to assign a bottom edge
to the d bands, it is found that the d widths for Ag
and Au are, respectively, 1.8 and 3. 1 eV, as con-
trasted to the values 3.8 and 5. 4 eV associated
with E(X,) —E(X,) in Table I. The separation of
the Fermi energies and the bottom of the s bands
in Fig. 2 are 7. 65 and 8. 55 eV for Ag and Au, re-
spectively. These values are in reasonable agree-
ment with the corresponding results 8. 3 and 7. 1
eV, given in Table I.

Focusing attention on the s bands in Fig. 2, it
may be seen that their shapes are distorted in two
important ways by hybridization effects. First,
there are gaps in the density of s states about the
d resonance levels ed""'"', and second, the bottom
of the s bands for Au and Ag are several tenths
of an eV lower than in the absence of hybridization.
The latter effect, which can be verified theoretical-
ly using Eqs. (2. 29) and (2. 31), is small compared
to the total s bandwidth (14eV) and will be neglected.

The total density of states at the Fermi energy,
including the small d contribution, is 0. 211 (eV)
in Ag and 0. 268 (eV) in Au. Specific-heat data
suggest densities of 0. 26 (eV) in Ag and 0. 303
(eV) ' in Au. Despite the neglect of dressing ef-
fects, the agreement is seen to be fairly good.
This fact supports the choice of value of 14 eV
chosen here for the total s bandwidth.

In the remainder of Sec. IVA, the results of the
CPA applied to the alloy Hamiltonian Eq. (2. 8)
will be considered. The discussion will focus on
the densities of states for several alloy concentra-
tions and a charge-transfer parameter b, Q"'(x= 1)
= 0. 3e. The split-d-band limit and the behavior
of the imaginary part of Zd will also be illustrated.

Figure 3(a) shows the s and d densities for
Aup yAgo 9, Although the impurity concentration
x is not small, the results for the d density of
states in the alloy can, nevertheless, be understood
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by referring to the theoretical expressions for the
dilute-alloy limit, Eqs. (2. 42) and (2. 45). The
alloy d band is approximately a superposition of
the pure Ag band and a broad d resonant state about
the Au d level. The host d level has a gap associ-
ated with it, as in pure Ag; the impurity d level
gives rise to a resonance, as in the Anderson-
model Ham iltonian. '

The s band in the alloy differs from that in pure
Ag, primarily for energies in the vicinity of
ee "(0.1). It is seen that there is a small minimum
in p, near the impurity d level which may be as-
sociated with an increased s-d "interaction" anal-
ogous to hybridization effects which give rise to
a gap in p, near the host d level.

In Fig. 3(b), the s and d densities are exhibited

for the 50-50 alloy. It may be seen by comparing
Figs. 3(a) and 3(b) that the density of d states near
c„""and c„"'has now taken on features of both hy-
bridization and Anderson-type resonances. The
gap near c„"' is narrower than in the previous fig-
ure, suggesting a trend toward a pure Anderson
resonance at e", ' as x increases. Near e„"", a
minimum in both p, and p„has appeared, charac-
teristic of an incipient hybridization resonance.
The s and d densities for x = 0.9 are shown in Fig.
3(c). This figure is similar to Fig. 3(a), with the
position of the Anderson and hybridization reso-
nance levels interchanged.

The imaginary part of the self-energy ImZ„of
Au„Ag& „at two impurity concentrations, x = 0. 1
and 0. 5 for a charge transfer [b Q"e(x =1)] of 0.3e,
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FIG. 4. Imaginary part of d'-electron self-energy vs
E for Au„Ag~„„.(a) x=o. 1, (b) x=o. 5 in units of its maxi-
mum amplitude.

6. 3 eV apart, p„has the same structure as in Fig.
3. There is a gap in p„at the host d level &„and
a resonance in p~ near the impurity level c~. The
density of states is small but finite in the energy
region between the two atomic levels.

The results shown in Fig. 5(b) correspond to the
same parameters, except that y (= 0, 435 eV) is
—,
' smaller than in Fig. 5(a). The density of states
in the alloy now assumes an "atomiclike" charac-
ter, as expected from the discussion in Sec. IID.
Although there i.s no gap at &~, the effects of hy-
bridization are non-negligible. The d levels at
e~ and e„are broadened relative to the atomic
limit (y= 0) due to s-electron hybridization. In ad-
dition, there is a finite d density of states between
the tmo d levels as a result of hybridization.

Although the shape of p„ is different in both parts
of Fig. 5, it will be seen by referring to the cor-
responding ImZ~ plotted in Fig. 6 that both alloys
may be said to be to a greater or lesser extent in
a split-d-band limit. In Fig. 6(a) the parameter
y~/co, 6 is 0. 0375, or typically one-half as large
as in Au-Ag alloys. The damping is nearly Loren-
tzian about —e„, as expected from the discussion
in Sec. IID. Most of the weight of ImZ„is in a
region of nearly zero spectral density. Thus the
two d levels are almost, although not completely,

is plotted in Fig. 4. These parameters cor-
respond to these of the densities of states shown
111 F1gs, 3(a) alld 3(b). CO111pal'lllg Flg. 4 with
Figs. 3(a) and 3(b), it may be seen for both alloys
that the damping is appreciable in an energy re-
gion where p„ is nonzero. It follows, then, that
the tmo d levels are not independent of one another.
For the parameters characteristic of Au-Ag

(y /w, 6:—0. I), the d bands are clearly not "split"
in the sense defined in Sec. IID. It is seen in
Fig. 4(a) that for x=0. I, the weight of ImZ~ is
concentrated near the impurity atomic level e'"„"

(0. 1); for @=0.5 [Fig. 4(b)], the damping is rough-
ly equally distributed about the two d levels, as
expected. In both figures the maximum in ImZ~

appears near the energy —Z„. The shape of ImZ„
is clearly not J.orentzian, as it would be if Eq.
(2. 52) were valid.

The remaining tmo examples 1n this section will
be concerned with an artificial alloy A, B, , in which
the two d levels are at 2. 94 and 9. 24 eV above 1', .
The concentration of the alloy is fixed at x =O. 2.
The alloy mill be used to illustrate the split-d-
band limit (Sec. IID) which is attained when y
is made sufficiently small.

Figure 5 shows the density of states for the d
band in the model alloy for y = 1.3 eV. It is seen
in Fig. 5(a) that, although the two d levels are

8—
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Tt'p /30

(eV) 4

0-6 -4 f -2
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FIG. 5. Density of d states for artificial spht-d'-band
alloys &0.~&0.8 having &&

——9.24 eV and &&3 =2. 94 eV. The
hybridlKatlon collstallts are (a) l. 3 eV and (4) 0.435 eV,
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independent of one another. This alloy, therefore,
may be viewed as being on the edpe of the split-@-
band limit. In Fig. 6(b), by contrast, y /cu, d, is
about+, as large as in Fig. 6(a). Here ImZ~ is
strongly peaked at —Z„, the Lorentzian character
being very marked. It is approximately zero at

both atomic d levels e„"and &~. Accordingly, this
alloy is clearly in a split-d-band limit. This type
of split-band behavior'was d'iscussed in Ref. 1
for a single-band alloy. In the latter case the
bRnds wex'8 split Rnd R pole RppeRx'ed in Imp when

I
&"-e I was about equal to the half-bandwidth.

By contrast, in the two-band model the analogous
split-band limit is considerably more restrictive
and does not occur until ( m, b/y~ ( is about 10~.
This can be seen physically as arising from the
fact that the d bands effectively "interact" with one
another, even though they may be situated quite
far apart, Rs a result of hybridization with the s
electrons.

Consequently, it is not correct, in view of the
results of the model calculation, to assign split-d-
band behavior to noble-metal alloys on the basis
of whether the d bands before alloying do or do not
overlap with one another. Furthermore, as will
be seen in Sec. IVB, there is evidence that the
positions of the d levels associated with Au and Ag
in Au-Ag alloys may be quite different from those
found in the pure metals Au and Ag.

8. Absorption Edge in Au„Agl „
In this section the concentration dependence of the

position of the absorption edge for Au-Ag is dis-
cussed on the basis of the mode1. Hamiltonian
[Eq. (2. 6)] using the alloy parameters given in
Sec. IIIC. Four different values of the charge-
transfer parameter will be considered: AQ '(x=1)
=0, 0.3e, -0.2e, and 0. 5e.

The dashed line in Fig. 7(a) shows the experi-
mentally observed optical-absorption edge for the
first interband transition in Au-Ag alloys as a func-
tion of impurity concentration x. The data were
taken from the position of the knee in ref lectivity
measurements. The endpoints were fitted to the
values of 2. 5 eV for pure Au and 3.9 for pure Ag.
The curve thus obtained is in reasonable agree-
rnent with the experimental results of Ref. 5.

Two important aspects of the behavior of the ex-
perimentally determined edge as a function of x
should be noted here. First, the rate of change of
the edge for dilute Au in Ag is many times larger
than for dilute Ag in Au. Second, as Au is added
to Ag, the edge shifts monotonically to lower en-
ergies. The former of these two qualitative effects
was again verified recently. '5'~9

The first effect can be explained by the model
calculation without reference to the concept of
charge transfer. The second effect is explainable
within the model only if 8 charge is transferred
from Au to Ag atoms in Au-Ag alloys.

%8 now proceed to explain the first of these two
qualitative observations. It may be seen from Fig.
3 that for all three concentrations considered, the
upper-half of the d band, in particular the band

edge, is determined primarily by the Au atoms,
whose d level lies above that of Ag. These results
are independent of the choice of hQ"'(x= 1) as long
as for all x, E~- c„"'&E~-e"„". It is thus expected
that for Ag-rich alloys (x=-0) the position of the
absorption edge as a function of x mill rapidly de-
crease from its value in pure Ag as the Au d states
begin to appear. By contrast, for Au-rich alloys
the position of the top of the d band is determined
by Au atoms for a/l x near 1. Consequently, for
these alloys the position of the absoxption edge is
expected to be relatively constant with x.

The fact that it is not possible to explain the ob-
served monotonic decrease of the edge position
with increasing x mithout invoking the idea of trans-
fer of s charge may be seen from Fig. V(b) which
shows the absorption edge as a function of x (sol-
id line) when charge-transfer effects are neglected.
This curve is clearly not monotonically decreasing
with x as is the experimental one (dashed curve).
According to the discussion of Sec. IIIC, the d
levels c„""'"'in the alloy are the same as in the
pure-metal systems in this case. Because the Au
d level remains fixed at the energy c"„", the only
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changes in the position of the edge with alloying,
for x away from zexo and increasing, result
from a broadening of p„near c„""and a concomitant
increase in E„which is associated with the fact
that p~ is reduced in the region where p„ is large.
As is seen, these two effects nearly compensate
for oDe Rnothel Rnd give rise to Rn RbsorytloD edge
which, except at very small x, is nearly constant
with x.

It is therefore cleax that the position of the Au
d level e~" must be concentration dependent. To
ensure that the absorption-edge position decreases
monotonically as Au is added to Ag, the parameter
s SQ~ (x= 1) must in fact be positive.

The sketches ln Fig. 8 sex've to clRrlfy this
point, The position of the d levels e"" and (. ~,

the Fermi energy, and the d-band edges for three
different charge-transfer parameters —O. 2e, 0,

and 0. 88 for dilute Au jn Ag (x = 0. 1)and for dilute Ag
in Au (x = 0. 9) are illustrated in Figs. 8(a) and

8(b), respectively. For hQ"'(x=-1) = —0. 2e the
Au d level is above pure Au for both concentrations.
As seen in Figs. 8(a) and 8(b), for d,Q~(x=1)
= 0. Se, the Au d level position is helot that of pure
Au for all concentrations. In this latter case,
as x increases, esa"(x) moves up toward the value
ss', characteristic of the pure system fFigs. 8(b)
and 8(c)], The absorption edge thus monotonically
deem'eases with x, as found experimentally. This
behavior is expected for all e 'dQ"'(x = 1)& 0.

On the other hand, for &Q~ (x = 1)= —0. 2e, where
the Au d-level position is above that of puxe Au
for all concentrations, ass" (x) moves dottst toward
the value c„""with increasing g. Except at small
z, the absorption edge increases monotonically,
contrary to experiment. This behavior is expected
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for all e 'hQ '(x= 1) &0. For e 'n, Q"'(x= 1)=0, the
behavior is seen to be intermediate between that
found for the two choices of charge-transfer pa-
rameter just discussed.

The validity of these remarks will now be substan-
tiated by examining in more detail the x dependence
of the edge calculated on the basis of the present
model for three nonzero values of DQ '(x=1) = 0. 3e,
—0. 2e, and 0. 5e. The best value for the charge-
transfer parameter aQ"'(x= 1) was found to be
about 0. 3e. The corresponding absorption edge is
plotted in Fig. 7(a) as a function of x (solid line).
The behavior of the experimental curve (dashed

line) is seen to be in reasonably good agreement.
The density of d states for this charge-transfer
parameter at the three alloy concentrations x = 0. 1,
0. 5, and 0. 9 was discussed earlier (Fig. 3). The
case of' a negative charge-transfer parameter
hQ"'(x = 1) = —0. 2e is illustrated in Fig. 7(c). The
behavior of the absorption edge for this negative
charge transfer is clearly in qualitative disagree-
ment with experiment. This fact supports the argu-
ments presented in Sec. IIIC which suggest that in
Au-Ag the Au atoms must lose electrons to the
Ag.

Finally, Fig. V(d) shows the behavior of the ab-
sorption edge for a charge transfer of AQ"'(x= 1)
=0. 5e. The rough estimates of Sec. IIIC suggest
this value to be somewhat larger than is expected
physically. For this large charge transfer, the
Au d level is very close (0. 7 eV) to the Ag d level
throughout the entire concentration range. It is
seen by comparing Fig. 7(d) and the dashed line in
Fig. 7(a) that the edge appears at somewhat larger
energies for most concentrations than experiment
indicates. There is, nevertheless, a rapid drop
of the edge near &=0 as the absorption in the alloy
changes from being dominated by the Ag to the Au
atoms.

Some contributing factors to the remaining dis-
agreement between experiment and theory may be
the neglect of d-band structure, the lack of validity
of the linear-charge-transfer assumption [E(ls.
(3.4) and (3. 5)j, or the presence of clustering ef-
fects which make the CPA inapplicable. These ap-
proximations, discussed earlier, were not expected
to affect crucially the qualitative behavior of the
optical edge with concentration. The semiquanti-
tative agreement between theory and experiment
for a charge transfer from Au to Ag atoms of
= 0. Se, which is in good agreement with the theo-
retical estimates of Sec. III C, is gratifying if
somewhat unexpected.
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