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The equilibrium configuration of a submonolayer film adsorbed on a solid surface is analyzed
via a model classical Hamiltonian. In this model, the adsorbed atoms or molecules are repre-
sented by point particles interacting through connecting springs and the substrate is simulated
by a two-dimensional periodic potential. The resulting structure of the film is found to be either
commensurate or incommensurate with the periodic potential, depending on the force constant
of the springs, the amplitude of the periodic potential, and the degree of mismatch between the
length of the unstretched springs and the lattice parameter of the underlying periodic potential.
Next, the lattice-vibration spectrum of the film is studied. It is found that when the film struc-
ture is incommensurate, the excitation spectrum starts from zero energy. In the commensu-
rate structure the phonon spectrum always starts at a finite frequency. It is noted that this
difference between commensurate and incommensurate behavior has an important influence on

the thermodynamic properties of the film.
made.

I. INTRODUCTION

A submonolayer film adsorbed on a solid surface
is a system with complexity rivaling that of a three-
dimensional solid: The atoms or molecules in the
film can exist in various phases (and undergo phase
transitions); and they interact in a complicated
manner with the substrate underneath. Recently,
the system of He® or He* submonolayers adsorbed
on solid surfaces has received considerable experi-
mental and theoretical consideration.! Dash and co-
workers have performed a series of experiments
with He submonolayers adsorbed on a copper sponge,
and found that at low temperatures the contribution
of the adsorbed layer to the specific heat has a 7 2
dependence. This peculiar behavior seems to indi-
cate that the film behaves like a two-dimensional
solid. However, if we neglect the substrate com-
pletely, the concentration of He atoms and vapor
pressure under those experimental conditions indi-
cates that it is very unlikely for the adsorbed atoms
to condense into a solid phase. Taking the substrate
into account, condensation into complete registry
seems possible, but then the specific heat wbuld
have an exponential behavior at low temperature.
This apparent paradox remains unexplained at the
present time. However, the latter alternative moti-

Qualitative comparison with experimental data is

vates one to ask the following: When the atoms or
molecules exist in a solid phase 2 on the surface,
does their configuration bear any simple relation
with the lattice underneath, and how will their con-
figuration influence thermodynamic properties? In
this paper, we attempt to answer these questions
for a system described by a model classical Ham-
iltonian. The equilibrium configuration (the ground
state) is obtained by minimizing the system poten-
tial energy, i.e., the kinetic part of the energy is
neglected. This is equivalent to neglecting zero-
point vibrations. Because of the extreme light mass
of helium ® atom, this model may not be directly ap-
plicable to a system of He molecules adsorbed on
surface: It would be more appropriate for an ad-
sorbate of other rare gas species such as Ne and
Ar.

II. HAMILTONIAN AND THE DIFFERENCE EQUATION

In actuality, for many physisorption systems,
various central factors, such as the nature of the
adsorbate-adsorbate and adsorbate-substrate inter-
actions, are little known. It seems worthwhile,
therefore, to investigate idealized models of the
system to arrive at a qualitative understanding of
the interplay of various factors in determining the
equilibrium configuration and excitation spectrum.
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We adopt here a “rigid substrate” model. In this
model, the substrate is replaced by a sinusoidal
potential. The adsorbed molecules are restricted
to lie in the x-y plane, and their short-range inter-
action is approximated by elastic forces between
nearest neighbors. Assuming the molecules can be
ordered in a square array, the Hamiltonian of the
system then takes the form

H=T+9,

T=% 22 M¥(I,m),

Iym

9=3 Z {lx@+1,m)-x,m)-p]?

+lyU,m+1) -y, m)-1]%}
+é—3 zE{[x(l,m +1) =%, m)P
+[y@ +1,m) -y, m)]?}

-w2 (cos—-— x(1, m)+cos y(l m))

Iym

“(2.1)

Here T(I,m)=x(I,m)&, +y(l,m)8&, is the position vec-
tor of the (I-m)th molecule, a and B are force con-
stants, and M and p are the mass and natural spacing
of the adsorbed molecules, respectively. The or-
dering of the molecule is such that x(I +1, )
>x(l,m)and y(I,m +1)>y (I, m).

In this Hamiltonian, the terms proportional to B
in the elastic energy represent a resistance to
shearing stress. This term is essential for the
two-dimensional character of the excitation spec-
trum. It is chosen to be of the simple form repre-

sented in (1) to allow the xand y components to remain _

uncoupled, To find the equilibrium configuration
T(1,m) of the system, we minimize the potential en-
ergy with respect to ¥(I,m). This results in a set
of difference equations

(a A2+ BAYx (Im)=21Wa sin2n/ax(l,m) ,
(2.2)
(BA%+a Ay (I, m)=21Wa sin21/ay (I ,m) ,

where A2x(l,m)=x(l+1,m)-2x(l, m) +x(l = 1,m)
and Ax(I,m)=x(l,m +1) - 2¢(I, m)+x(l,m - 1). 1t is
convenient to introduce the following dimensionless
quantities:

t=x/a, n=y/a, b=p/a, U=4W aa®.
In terms of these quantities, (2.1) and (2. 2) take

the form

%4[ E4(1,m)+n (1, m))

im

H= %aaz(z
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+[E@+1,m)-EQWm)-b]?
+[n@,m+1)=n@,m)-b]?

+§[§(l,m+1)-£(l,m)]z

Lmairm-nem)?

—gcoshn(l,m) _v cos27é(l, m))

2
(2.3)
and

A2y B/a AY)E(L,m)=1U/2sin27&(l, m) ,

(A2+ B/a A®)n(l,m)=1U/2sin2am (I, m) . (2.4)

We expect that two adsorbate systems whose nat-
ural spacings differ only by a multiple of the lattice
parameter would show a close resemblance in the
configurations. To facilitate the discussion of these
systems under a single category, we introduce for
any of the length z such as 7, b, etc. (measured in
units of a), the corresponding reduced quantity 2
defined by the relation

Z=mod(z; 1)=2-p , (2.5)

P beirgg an integer chosen such that mod(z ; 1)
€[-3,3]. These reduced quantities allow an easy
physical interpretation. For example, £(I,m) and
7(1, m) are just the coordinates of the (I, )th parti-
cle reduced to the first unit cell of the substrate
periodic potential.

A model Hamiltonian similar to that described by
Eq. (1) has been analyzed by Frank and Van Der
Merwe* in their theory of two-dimensional disloca-
tions (Ref. 4 will be hereafter referredtoas FV).
These authors approximated the resultant difference
equation by the corresponding differential equation
and obtained a closed form for the solution of x(I,m),
regarding I, as continuous variables. The result
obtained by FV isqualitatively successful in explain-
ing various dislocation phenomena. However, the
validity of the differential equation solution is lim-
ited to a small region where the phases (I, m),

(I, m) are slowly varying functions of 7 and m.
Moreover, within such an approximation, one can-
not determine whether the final spacing of the
molecules in the monolayer bears any simple frac-
tional relation to the period of the periodic poten-
tial. This question of “commensurability” of the
structure has important consequences for the exci-
tation spectrum of the film, as we shall see in later
sections. For these reasons, we propose to study
the Hamiltonian in (2. 3) retaining the discrete na-
ture of the configuration T°(,m). This will allow
us to look into the finer details of the configura-
tion ¥°(,m), and a generalization of the concept of
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“pseudomorphism” (adsorbate being in registry with
the substrate). In the region where the phase of the
solution is slowly varying, we obtain good agree-
ment with the result obtained by FV.

III. BOUNDARY CONDITIONS

It is easy to see from the form of the Hamiltonian
that because of the assumed form for the shearing
stress, the configuration in the lowest-energy state
has the property

El,m)=t(1), n@,m)=n(m),

and the problem of determining the structure is re-
duced to two one-dimensional problems. We shall
discuss below only the solution for £(I). The solu-
tion for n(m) follows in an identical way. Equation
(1. 4) now becomes a set of two second-order non-
linear difference equations. We still need to speci-
fy the boundary conditions. For a submonolayer
film, the appropriate boundary condition is to allow
the substrate potential to extend over an infinite
area, For the molecules on the boundary, we could,
of couse, use the open end boundary condition by
specifying that the tension in the spring joining the
boundary particle to the next one be set to zero.
Mathematically, this proves to be inconvenient, We
know from the theory of lattice dynamics that if N2
is the total number of molecules in the film, the
influence of boundary conditions on the bulk proper-
ties goes down as 1/N.5 Hence, in the limit N—c,
i.e., for a film covering a larger surface area, we
can safely replace the actual system by a film of
infinite extent, The general form for the solution
£(1) may now be written as

EW)=lc+d +6(1) .

Here c is the mean spacing of the molecules in the
equilibrium state (in units of @) and can be quite
different from the natural spacing . d is chosen
such that the term 6(I), which describes deviation
from a rigid lattice, satisfies the property

(8() =0,

where (... =limy. . (1/N)3¥  (...), since the non-
vanishing average of §(I) can be adsorbed in the ini-
tial phase d. The function 6(!) can be Fourier ana-
lyzed as

(3.1)

(3.2)

(3.3)

8(1) =20 t(s) sin2mgs I +e,), q,€(0,7) . (3.4)

qs
We can now give a simple classification of the types
of solution »(I, m).
a. Commensurate. This is a structure for which
the phase angle of the molecules in the external po-
tential is periodic, i.e.,

EN)=E@+p) foralll,m ,
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fim)=T(m +p) foralll,m , (3.5)

p being an integer.

We define the smallest value of p for which (4. 4)
can be satisfied as the order of the commensurate
structure. It is easy to see that the mean spacing
¢ and the Fourier coefficients ¢g; must then assume
the form p,/p, p, being an arbitrary integer. Ac-
cording to our definition, commensurate structure
of a given order p includes a whole class of struc-
tures whose mean spacings differ from each other
by a multiple of the lattice parameter a. For ex-
ample, a film which is in perfect registry with the
substrate and another film having a (2x1) structure
are both classifed as first-order commensurate
structure. We note that a commensurate structure
of order p is composed of superlattices with each
unit cell containing p? molecules.

b. Incommensurate. If any of the quantities ¢
and ¢, is irrational, the structure is nonrepeating.
We call such a situation noncommensurate.

1t is clear from the above definition that the in-
commensurate structure is just the limiting case of
commensurate structure when its order approaches
infinity. However, as we shall see in Sec. IV, the
difference between the total energy of the commen-
surate and incommensurate state decreases as the
order p increases. Hence, when the order is much
larger than unity, the question of “commensurabili-
ty” is somewhat academic. For practical purposes,
a convenient way of description is to introduce a
cutoff p in the order of the commensurate structure,
beyond which we make no distinction between the
two classes of structure, Before we go on to cal-
culate the energy of the various structures, we
should point out that the present definition of com~
mensurate and incommensurate structure bears
close relation with the various concepts such as
“coincident structure” and “registry”® which have
appeared in the literature of surface physics.

IV. GROUND-STATE ENERGY OF COMMENSURATE
STRUCTURES
In this section, we restrict our discussion to
commensurate structures with order p<3. We
treat each commensurate structure separately ac-

cording to its order.
a. First ovder (p=1). Whenp=1, 6(I) is identi-
cally zero and x(m) assumes the simple form

E()=pol+dy ,

Substitution of (4. 1) into the expression for poten-
tial energy gives

E,=2¢,/N%aa?=b%- 3 U[cos2nd, +cos2nd, ] .
(4. 2)

nem)=pom +d; . (4.1)

For E; to be a minimum, p,, d;, and d, should ob-
viously be chosen to satisfy the following:
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FIRST ORDER (€ =0) (@
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FIG. 1. Schematic diagram of commensurate struc-
tures of order 1-3. x denotes position of an adatum in
the external periodic potential. For each order, we have
illustrated two structures whose mean spacings differ only
by a multiple of the wavelength of the periodic potential.

DPo=b-0, 4. 3)

dy=dy,=0 . (4.4)
The potential energy is then

E=b-U. (4.5)

The physical picture of this state is exceedingly
simple. It is shown schematically in Fig. 1(a).
Every molecule is located in a minimum of the po-
tential well and equally spaced.

b. Second ovder (p =2). The general form of
£(l) for p=2is

EQ)=cl +d +t sin(l 7+ 27e) , (4.6)

with &=13,
Since £ and 7 directions are completely symmet-
ric, we have also

Nm)=cm +d +t sin(mm + 2me) . 4.7)

Substitution of (4. 6) and (4. 7) into the potential en-
ergy gives

E,= 2¢0,/N%aa®= (b - c)? + 4 % sin®2me

+ Usin2nd sin(27fsin2we). (4. 8)

The correct choice of the quantities c, d, e, and ¢
are based on the consideration that they should ren-
der the potential energy a minimum. We leave the
details of the determination of their values to the
Appendix and only list the results below:

c=b-b+isgn(d),

where sgn b =151/b , 4.9)

1 1
d=3, e=-3,

and ¢ is given by the solution of the transcendental
equation

t=nU/4cos2nt, te€l0,%] . (4.10)
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¢. Thivd ovder (p=3).
for p=3 is

E(l)=cl +d +tsin2n(cl +e) ,

The general form of £(7)

(4.11)

with &=+ 3, and a similar expression holds for
7N(m). Interms of (4.11), the expression for poten-
tial energy is now

E;=2¢,/N%aa?=(b-c)?+31?
- U{cos2n[cl +d +¢ sin2n(cl +e)]y . (4.12)

The procedure by which values of ¢, d, e, and ¢
are determined is again described in the Appendix.
The result is

c=b-b+3isgn(®), d=0, e=%; (4.13)

t is given by the solution of the transcendental equa-
tion

t=nU/3[J(27t) +cos2mt] , t€[0,t,] , (4.14)

where ¢, correspond to the first zero of J,(2m¢)
+cos2mt. Various commensurate structures of or-
der 1-3 are illustrated schematically in Fig. 1.

V. GROUND-STATE ENERGY OF INCOMMENSURATE
STRUCTURES (p - =)

Commensurate structures of small order can be
treated exactly as seen in the previous paragraphs.
However, when the order of the structure approach-
es infinity, such an exact solution is no longer fea-
sible. For an incommensurate structure, £(7) is
now represented by the full series

EQ)=cl+d+2.4t(s)sin2m(g, +e,) | (5.1)

where ¢ and g, are irrational numbers. For the en-
ergy to be an extremum, £(I) must be a solution of
the difference equation (2. 5):

A¥(1)=7U/2sin27E(1) (5.2)

We introduce the Green’s function G(Z,1’) defined
by the equation

A2G(,1")=58,,; (5.3)

Then the general solution of £(I) may be written as

EW)=cl +d+ 22 G, 1")mU/2sin21E(1”) . (5.4)
1'

The Green’s function G(Z,1 ') is easily found as

G, 1")= [0 drl 12" ] (4 sin%em)"!

(5.5)
Substitution of (5. 5) into (5.4) and using the method
of iteration yields the following expansion for £(I):

§(Z)=lc+d+i t(s) sin27ns(cl + d) , (5.6)

s=1

the amplitude ¢ (s) being proportional to (U)*/sinscw.
We note that even when U< 1, the amplitude #(s) can
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[
T 0
Maximum Minimum
of potential of potential
FIG. 2. Position of the phase of the Ith adatom 6 =27

(cl+d) relative to the extremal points of the periodic po-
tential,

be of considerable magnitude for some large values
of s, say, sq (sg>>1)for which s,c is close to integer
value. This actually indicates an instability towards
a commensurate structure of order s,. As we have
emphasized previously, we will neglect the differ-
ence between this kind of commensurate structure
of large order and a true incommensurate struc-
ture. It is seen that in the limit U<1, the s=1
term in the Fourier series of 5(!) contributes most
to the ground-state energy. This conclusion should
hold true even for large values of U from a consid-
eration of phase coherence. Figure 2is a schematic
diagram showing the position of the phase 2w (cl +d)
with respect to the minimum and maximum of the
potential; it is not difficult to see that in the Fourier
series Y., t(s) sin27ms(cl +.d), only the term with
s=1 is in the right direction of minimizing the en-
ergy for all values of I, Other Fourier components
are incoherent, Hence, the equilibrium configura-
tion in this case can be reasonably approximated by
retaining only the s =1 term in the Fourier series
of 6(I). It is noteworthy that in the second- and
third-order commensurate state . this choice of
Fourier component and phases give the exact an-
swer. The quantities ¢ and d here can be deter-
mined by variational method. The details are left
in the Appendix. The result is

c=b-mtZsinnc ,
(5.7)
E.=2¢./N%aa?

=2t 2siner + ¢ *n% sin®2mc - UJ,(27¢) ,

where { is given by the smallest positive solution of
the transcendental equation

t=mU/2sin%cn J] (27t) . (5.8)

Equation (5. 8) can be solved graphically for ¢ as a
function of ¢ and U, substitution of the solution into
(5.7) gives the corresponding value for b -and leads
to a functional dependence of £ and ¢ on b and U.
The energy E. then can also be expressed as a func-
tion of » and U. We wish to point out here a very
important fact: The potential energy of the incom-
mensurate structure E, is independent of the initial

C. YING 3

phase d. This conclusion is obviously independent
of the approximation used for £(I). It leads to a
fundamental difference between the excitation spec-
trum of incommensurate and commensurate struc-
tures.

VI. PHASE DIAGRAM

In Sec. V, we have obtained expressions for the
potential energy per molecule E,, E, E;, E., etc.,
as a function of two basic parameters in the prob-
lem: U, the ratio of strength of potential to the
elastic energy, and 5, which is a measure of mis-
match of the film and the substrate. In Figs. 3(a)
and 3(b), wedisplay the variationof E, ,E,,E;, and E,,
with |5 for two fixed values of VU, namely, VU
=0.32 and VU=0. 64 (E,, etc., are all even func-

|
E=d
o

E (arb. units)

JU =038

0.3 0.4 0.5

!
~n
I

E (arb. units)

&
1

yd JU=0.636
///
///
///
=4 f—" I
1 ! 1 ! ! ! 1 1 1
0 0.1 0.2 0.3 0.4 0.5
b1
FIG. 3. Potential energy per adatom as a function of

mismatch of the spacing (8) for two different values of

U. E,, E,, E,, E,, etc., arethe potential energy of the
first order, second order, third order, and incommensu-~
rate structure, respectively.
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FIG. 4. Phase diagram: I-first order, II-second
order, III—third order, IV—fourth order, V—fifth order;
shaded region: incommensurate structures and commen-
surate structures of order >5.

tions of ). For VU=0. 32, commensurate struc-
ture of order 1-3 has lower energy for values of
b near 0, 3, and 3. Other values of & favor an in-
commensurate structure. Since we have not com-
puted the energy functions for higher-order com-
mensurate structure, we cannot exclude the possi-
bility of higher-order commensurate structure in
this region. When VU=0. 64 the lowest-energy
structure is of order 1-3, and as the value of |51
varies, successive transitions occur in the sequence
first order, third order, second order. We can
now construct a phase diagram showing the region in
(YU, Ibl) space where various structure has the
lowest energy. This is shown in Fig. 4. We note the
following facts:

(i) For values of VU <3, the boundary between
the first-order commensurate structure and the in-
commensurate one in (w/U, b) space is a very nearly
straight line corresponding to the condition

VU/b =1.54 . (6.1)
Or in terms of the unscaled units
(W/a)"® (A = pa)™*=0.77 . (6.2)

This is in good agreement with the value of critical
misfit given by FV for the special case p=1. The
agreement with the differential equation approach
here is not surprising, since the boundary of these
two structures lies in the region 1< 1, for which
the phase of the solution is slowly varying. In Fig,
5, we have plotted ¢ against & for the incommensu-
rate structures at VU=0.225. According to the
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phase diagram, transition between the two struc-
tures should occur at 5 =0, 145, at which point ¢
jumps from O to 0.032. The transition is therefore
first ovder in the usual terminology of phase tran-
sition. (The reader is cautioned not to confuse be-
tween first-order phase transition and a first-order
commensurate structure. )

(ii) The range of 5 (for a fixed U) for which a
commensurate structure exists decreases with in-
creasing order of the structure.

It is now obvious how higher-order commensurate
structures enter this phase diagram. For example,
we have illustrated schematically on the phase dia-
gram where the fourth- and fifth-order structure
should appear. The fourth-order structure should
occur in a narrow strip around b= 1 and the fifth-
order structure around b=+ and b=2. As the
order increases, the width of each strip decreases.
Strictly speaking, a true incommensurate structure
only exists in the limit U~-0, i.e., an infinitely
weak periodic potential, For values of U between
0.2 and 0.4, we conjecture that the structure of the
film would be commensurate of order p <10, For
U= 0.4, it can be seen from the phase diagram that
the structure is definitely commensurate with order
between 1 and 3.

VII. EXCITATION SPECTRUM OF THE MONOLAYER

To study the excitation spectrum, we return to the
Hamiltonian ¥ in (1.3). Suppose each molecule is
displaced from its equilibrium position by a small
amount, i.e.,

£, m)=£°0) +ull, m) (1. 1)

n(, m)=n"(m)+v(l,m) .

o2

04

FIG. 5. The mean spacing of the incommensurate struc-
ture & as a function of the mismatch b. The transition
from an incommensurate structure to a first-order struc-
ture occurs with a discontinous jump of €.
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Substituting (6. 1) into expression (2. 3) and noting
that

¢
ox

3¢

=0, (7.2
%) 3y )

n0¢1)

we obtain, to second order in # and v, the following
expansion:

(H - (PO)_ 1
aaz T2 5m

+ Z

1,m3l,m*

+ X

1, my1?,m’

%4 12, m) + 2, m)]
D;}n);llml 7,¢(l7 m)u(l'm ')

Dgzni;l'm' v(l,m)v(l',m')

+1722—U 2o cos[2mE%(D)]u?(l, m)

Iym

2
T3 cos[2nn®m)]o®@,m) . (7.3)

+
2 lym

Here, the dynamical matrix is given as

Dgn);l'm' = [5”' 8 yme (1+8/a)

- %51,1'116mm' - (B/za) 611’ 6m,m'ﬂ] )
(7.4)
D;,zn); 1'me = [5”0 Gmml(l +[3/01)

- % 6m,m’1~l 51.1' - (B/za)al,l'*lém,m'] °

Since thedisplacements u, v are completely uncoupled
in this model, we shall discuss below only those
normal modes for which « is finite and v=0. The
other independent normal modes can be simply ob-
tained by replacing # by v. For the sake of conve-
nience, we assume the film contains N2 molecules
and eventually allow N~ «, We introduce now the
standard plane wave expansion

u(lm) = (1/N) 223 o Je'#uxlei2raym (7.5)
¢(q) satisfying the reality condition
(@)= *(-1) (7.6)

In terms of these normal coordinates, the expres-
sion for the energy is now

D @ 6@
+4? wi(d) @ (§) e*(Q)

I FEIe@ed), ()

where

C. YING 3

Wi (§) = 2a/M)[1 - cos2mq,]+ (28/M)[1 - cos2mg, ]
(7.8)

and

F(4,3") = (n*va/2M)(cos2n[£°(1)]e ™ % =) ) 5, 0 .
(7.9)

For the first-order commensurate structure which
is in registry with the potential, F(qg,, q, ) =043
x72Ua/2M. The normal-mode frequencies are sim-
ply given by

«?(@) = (2a/M)[(1 - cos2mq,)
+ (/) (1 - cos2ng,) +1°U/2] ,

i.e., the frequency spectrum starts at a finite val-
ue m(Ua/M)H2,

In the second-order commensurate structure, the
solution £°() is given by

W) =x1/2+5- (- 1) tU);
substituting this into (6. 9) gives
Flq,q") = (a*Ua/M)(sin2nt (V) e*# (=T y 5,

= (r2Ua/M) sin2nt (U) 63,5+ (7. 10)
The frequency of the normal modes is in this case
given by

W?(§) = (2a/M)[(1 - cos2nq,) +B/a(l - cos2ng,)
+ (n2U/2)sin2nt] . (7.11)

Again, w(Q) starts atafinite value [ (Ua/M) sin2nt]'/?
which is lower than the first-order gap m(Ua/M)"?,
except in the limit £-0 which corresponds to the
asymptotic region on the phase diagram near b=1%.

The excitation spectrum of higher-order com-
mensurate structure can be determined in exactly
the same manner as in the study of phonon spec-
trum of crystalline lattice with a basis. The nor-
mal modes will be divided into several branches.
One general characteristic of commensurate struc-
ture is that there exists nowmode with zevo frequen-
cy value. This is due to the fact that the ground
state of a commensurate structure is nondegener-
ate—there are no other states of equal energy which
can be reached by an infinitesimal symmetry oper-
ation. We also note that the gap will decrease with
increasing order of the structure.

The treatment of the incommensurate case is
more difficult. We shall consider here only the
case U1, i.e., the weak-potential region, where
perturbative theory with U as the expansion param-
eter is possible. As the phase diagram indicates,
this is exactly the region where incommensurate
structure is most likely to exist.
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Referring back to the solution for the incom-
mensurate structure in Sec. IV, we have
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For A <1, the solution for 7 can be obtained in
closed form by expanding ,(¢) on the rhs of (6.15)

£91) = ¢l +d —  sin2n(cl +d) (7.12) in powers of A. To first order in A
£=2/2+0(\%) |
and ) (7.15)
t=(1U/2sin’cn) J{(2mt) . (7.13) E() = cl+ d - (A/2) sin2n(cl+ d)+ O(N%) .
We introd the £ i inition:
introduce now the following definition: Substitution of (6. 7) into (6.9) gives for the incom-
X =720/ 2sin%eT . (7.14) mensurate structure

2
ﬂﬂ;f& (cos2mlcl + d - (A/2) sin2n(cl + d)] e’z’(“""‘k”)ém; = (/M) sin®c[6

_ ia2nd i2rd
Fla,q" 3 aratc @ +0qyqt4c € ] Oayral

+ N2(a/2M) sin®eT[By,, o1 = & Oqyrageae € 2 = 200y, 0,5,0 2 1B g4 - - . (7.16)

Following the standard procedures in the theory of lattice dynamics, ° it can be easily shown that the fre-
quency spectrum can be obtained as the solution of the following infinite secular equation:

|4 0
-w?rwi(d - 28) 14 0
V¥ -—wy w%('ﬁ—a) 14 0
0 V* -wiiwi(d) v 0
0 V* —w?twi(q+¢) 14 =0, (@17
0 V* —wiiwi(§+28)
0 V*
f
Where Coti?G-8) v 0
§-€=(g.-c, a,), @+8)=(g,+c,q,), v* -0 +0i@) 4 =0.

0 14 -w? i +¢)

(7.19)
The three branches of solution of (6.21) are shown
schematically in Fig. 6.
For values of ¢, near ¢/2 and - ¢/2, w,(q)
~w;(g+ ¢) and a gap appears in the phonon spectrum.
Near the value ¢g=c/2, w(d) is approximately deter-
mined as

V=0a/M)(sin’cn)e®® L O(?%) , (7.18)

w§(§) = (2a/M)(1 - cos2ag,)

+(28/M)(1 - cos2nq,)
w?=% Wid) +w2d@- <)
£ 2 {lw*(@)- w3@- )] +4| V|2 (7.20)

Near ¢ =0, the frequency of the lower branch can be
determined by the usual perturbation theory

+ (a/2M)X¥ sin®cm+ O(NY) .

To determine w(g) to second order in A%, it is suffi-
cient to diagonalize a 3x3 block, namely,

WP (@) = W} (@ + | VA {[«}(@) - 0@ +E)] 7 + [0}@) - i@ - )]}

(sin®n¢ )(sin®ng, ) — sin®27q,

1 - cos2m
( 2 sin%cm - sin®27q,

s}a’

2B a .
(1-cos2mg,) + Z—M—xzsmzcw {

U } +oY) . (7.2D)
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Phonon spectrum of an incommensurate
structure.

FIG. 6.

Hence, we arrived at the important conclusion that
to order A* at last

w(q=0)=constqu| for Iql <1. (7. 22)

The displacement corresponding to the ¢ =0 mode
is

U(l) <[1+ (1/2) cos2u(cl+d)] . (7. 23)

This we recognize immediately as the displacement
of a molecule when the phase d is changed to d + 6d
(to first order in A). The existence of a zero-fre-
quency mode is a direct consequence of the fact that
the incommensuvrate stvucture is degenerate. Under
an infinitesimal operation which shifts the phase d
of every molecule by the same amount we arrive at
the same structure. The existence of a zero-fre-
quency mode is therefore expected to hold true be-
yond perturbative theory.

VI1II. APPLICATION OF THE MODEL

Before discussing the connection of our result
with the experimental work, we need to have a rea-
sonable estimate of the two important parameters
W and b occurring in the model. We can estimate
the unscaled values of W and u by assuming a Len-
nard-Jones-type interaction among the nearest
neighbors of the adsorbates:

v(F)=-4e[ (o/7)*%~ (0/7)°] .

The length of the spring constant is approximated
by the separating of two molecules for which the
potential energy V(¥) is a minimum, i.e.,

L= 0.(2)1/6 .

The force constant o corresponds to the second
derivative of the potential at the minimum, namely,

(8.1)

(8.2)

82y €
0[-—'8—#2“— 57.1 (‘J_‘g .

(8.3)

The amplitude of the periodic potential Wcan be
obtained by performing a lattice sum with the posi-
tion of the adsorbed molecule as variable. This
has been done for specific physisorption systems. T
We consider here two illustrative systems.

8
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a. Ne on Xe. Taking the values of Lennard-
Jones parameters for Ne? as

Oye-ne=2.T49 A, €=35.6 (°K),
a (Xe lattice const)=4.31 A ,

and the following value of W!° from Ref. 8, W=60
°K, we obtain the following value for VU and b :

UY2= (4W/aa?)%=0.218 ,
b=0.31.

b. Ar on Xe. For Ar, 04,.,,.=3.4 Z’x,
€=124°K! W=140°K, yielding the values for
U'/% and b

(8.4)

U2=0.223, b=-10.15. (8.5)

The phase diagram indicates that with these civices
of parameters, Ne on Xe is in the shaded regicn.
According to our previous discussions, at a value
of VU =0.218, it is mostly likely in a commeénsurate
of order 3—-10. The system of Ar on Xe is in the
first-order structure, but lies very close to the
phase boundary between first-order structure and
incommensurate structure. This result offers a
qualitative explanation as to why the observed heat
of adsorption of Ne on Xe is smaller than the cal-
culated value® based on a model of complete regis-
try. For the system of Ar on Xe, which we have
shown to be in a first-order structure, the observed
value of heat of adsorption does agree fairly well
with the theoretical value.

Recent experiments by Dash!! and co-workers on
the specific heat of Ne and Ar submonolayers ad-
sorbed on a copper sponge indicates an exp(-A/7T)
dependence at low temperatures. However, the co-
efficient A is much smaller than the estimate based
on a completely registered model. This suggests
strongly that the system under study is in a com-
mensurate structure of small order so that the co-
efficient A is finite but small.

Bassett'? has studied the deposition of silver and
copper on both amorphous carbon and graphite, and
of silver on molybdenite. He observed a remarkably
high degree of mobility for the translation and ro-
tation of an entire island of overgrowth. This is
not difficult to understand within our model of in-
commensurate structure. The change in the value
of the phase from d to d +6d corresponds to the mo-
tion of an entire island with no energy change. In
a more realistic two-dimensional model with rota-
tionally invariant Hamiltonian, we would also ex~
pect the layer of film to have a rotational mode at
zero frequency. This idea of incommensurate struc-
ture is also the basis underlying the theory offered
by Reiss® in explaining this phenomena. As we
have stated at the beginning of this work, if He
monolayers adsorbed on an argon-coated surface do
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form a solid film, then the T2 specific heat observed
by Dash et al. can be easily understood by assuming

the structure of the film to be incommensurate.
Finally, we discuss briefly how a more realistic

Hamiltonian would modify the conclusion reached in

this paper. Frank and Van Der Merwe'* have con-

sidered the influence of second harmonic term in the

potential and the results remain the same qualita-
tively, unless the second harmonic term is so large
as to produce a new minimum. Within our model,
it is easy to see that higher harmonics in the peri-
odic potential play about the same role as higher
powers of the first harmonic and hence, would not
change the qualitative picture. Recently, Van Der
Merwe!® has also considered a more complicated
model which allows for misfits along two interfacial
directions. Again, the result is similar to the one-
dimensional case.

IX. CONCLUSION

In this paper, we have analyzed the structure of
a submonolayer film based on a very idealized mod-
el. The structures of the film are classified into

two categories—commensurate and incommensurate.

The incommensurate structure is defined very nat-
urally as the limiting case of the commensurate
structure when the order approaches infinity. It is
also demonstrated how the excitation spectrum of
the two classes differ from each other. Although
the model is too crude to attach much quantitative
significance to it, we believe that the characteriza-
tions of the structure and excitation spectrum will
carry into a more realistic model. These general
features could prove very helpful in the theory of
epitaxy and surface transport.

Finally, this model serves as a pedagogical sys-
tem which exhibits a series of first-order phase
transitions. This is very similar to the sequence
of excitonic instabilities in narrow-gap semiconduc-
tors predicted by Kohn. ¢
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APPENDIX
Derivation of E,, E;,and E
1. Second-Ovdev Commensurate State
According to
E,= (b - c)? + 4t® sin%e + U (sin2nd)sin (27t sin2me) ,

(A1)

4169

minimization of E, with respect tod, e, and ¢, re-
spectively, yields the equations

cos2nd sin (27t sin2me)=0 , (A2)

cos2me[8t + 2nU sin(2nd) sin (27t sin27me)]=0 , (A3)

sin2me [8¢ sin27e + 27U sin2nd cos (2m¢ sin27e)|=0 .
(A9)

The only choice of d, e, and ¢ which is consistent
with these equations while allowing the energy to be
a minimum is

d=1/4, e=-1/4, (A5)

t being then given by the solution of (A4) in the first
quarter, i.e.,

t=4imUcos2nt , t€[o,4]. (AB)

The choice of ¢ is determined by the condition that
(b - ¢)? should be a minimum subject to the require-
ment that ¢ =+ 3. It is easily seen by inspection that
¢ should be chosen as

C=(sgnb)s, c=b-b+(sgnb)z. (A7)

Substitution of (A5) and (A8) into (A1) gives

Ey= (b - 3sgnb)* +42(U) - (1/m) [r*U % - 162()]/2
(A8)
t(U) being the solution of (A6).

2. Third-Order Commensuvrate State
According to (3. 14), we have
Eg=(b-c)*+32- U (cos2nlcl +d +t sin2m(cl +e)]) .

(A9)
We differentiate E; with respect to d, e, and ¢,
respectively, and make use of the mathematical
identities!’
cos2m(t sinx) = Jo(t)+2 2o Jp (2t ) cos2sx
s=1
' (A10)
sin2m (¢ sinv) =22, Jp,, (21¢) sin(2s +1)x .
s=0

This leads to the following conditions for Ej to be
an extremum:
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3t + mUJo(2mt) [cos2m(d — e) - cos2m(2cl+d +e)]
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cos2m[— 2cl +d — (25 + 1)e]— cos2n[(2- 2s)cl +d - (25 - 1)e]

+TU 25 ¢d 55(22)

+cos2m[2¢cl +d +(2s - 1)e]- cos2n[(2+2s)cl +d + (25 +1)e]

cos2n[(2s - 1)cl+ (2s = 1)e - d] — cos2n[(2s + 1) cl+ (25 + 1)e - d]

+TUD g psn (2TF) =0, (A11)
+c0s2m[(2s +1)cl +d + (25 — 1)e] - cos2n[(2s +3)cl +d + (25 + 1)e]
Jo(27t) [sin27(d - e) + sin27 (2cl +d +e)]
V3 o) sin[- 2¢l +d - (2s +1)e ]+ sin[(2 - 2s)cl +d - (25 - 1)e]
+sin[2¢l +d + (2s — 1)e]+sin[(2 +2s)cl +d + (25 + 1)e]
sin[(2s - 1)cl + (25 — 1)e — d] +sin[(2s + 1)cl + (25 +1)e — d]
+ESJ28+1(21Tt) =0, (A12)
+sin[(2s +1)cl +d + (25 — 1)e]+sin[(2s + 3)cl +d + (2s + 1e]
Jo(2nt)sin2w (cl +d)

+ 205 55(2mt) {sin[(1 = 2s)cl +d - 2se]+sin[(1+2s)cl+d +2se]}

+20,J5ey (27t) {sin[2scl + 2s€ — d]+sin[(2s +2)cl+d+ 2se]} =0,

The apparent complexity of these equations can be
reduced by noting the following mathematical prop-
erties:

(sin(l %7s))=0, (A14)

{cos (L 3ms))=04,34 5 (A15)
and

2isagds(t)=0 for all = a,=0 for alls . (A16)

Since (A12) and (A13) must hold for arbitrary value
of ¢, (A14), (A15, and (A16) lead to the following

choice for d and e:
d=0 or 3, e=0 or 3. (A17)

The value of E; for various combinations of 4 and
e are

(a) d=0, e=0;
E=(b-c)+5t?= (U/2)[1 - Jy(2m) - sin(2mt)] ;
(b) d:: %, e=%,

E=(b-c)?+38 - (U/2) - 1+d,(2n1) - sin(21)] ;

(A13)

(C) d=o) e=%,
E=(b=-c)+3 2 - (U/2)[1 - J,(27) +sin(27t)] ;

E=(b=c)+5 ¢ - (U/2)[Jy(2nt) - 1 +sin(2nt)] .

When ¢> 0, the third choice would obviously be the
one that minimizes the energy. Hence, finally,
we have :

x(1) = cl - (U) sin27cl , (A18)

Eg=(b=c)%+3 (V) - (U/2)[1 - J,(27t) + sin(2nt)] ,
(A19)

with £ being given the solution of

t=(nU/3)[J, (27D + cos(2nt)], te[0, %], (A20)
where ¢, isthe first zero of J, (27¢) + cos(27#), and c is
determined by the same consideration as in the
second-order commensurate state, i.e., by Eq.

(A7).
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3. Incommensuvate State

Substituting (3. 30) into the expression for the
potential energy gives

E.=(b-c)%+2fsin’en
~U{cos2r[cl+d+tsin(cl+d)]) . (A21)
With the help of (A10), this can be simplified to
Eo=(b=c)%+2¢sin®er
- U{cos 2n(cl + d) {Jo(27t) cos2n [2s(cl + D] })

=2U2%s Jyn (21t (sin2n(cl+ d) sin(2s + 1) 2n(cl + d))

STRUCTURE AND DYNAMICS OF SUBMONOLAYER FILM,.,

417
= (b = c)?+ 2 sin® e - UJy(272), (A22)

where we have made use of the fact that if ¢ is ir-
rational, then

(sin2wscl)=0, (cos2wscl)=05,,. (A23)
Minimizing E. with respect to ¢ and ¢ gives

t= (nU/2 sin’cn) J(27t) , (A24)

c=b-nt¥sin27c . (A25)

The expression for the potential energy can finally
be written as

E.=2£sin’cr+2t* sin®2rc - UJ,(2nt) . (A26)
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