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The calculation of the lattice dynamics of simple metals to second order in a local model po-
tential is discussed in terms of the real-space sum of Born-von Karman central-force con-.

stants. The real-space sum is found to converge faster than the more common reciprocal-
space sum and to be more convenient for the calculation of thermal properties and integral
properties of the electron-phonon interaction. The reciprocal-space sum is more suitable
for the calculation of Kohn anomalies and elastic constants and may be generalized to more
complicated models of the electrnn-ion interaction. These points are illustrated by a calcu-
lation of aluminum phonon energies throughout the Brillouin zone. Excellent agreement of the
calculated dispersion relations along 10 symmetry lines, density of states, and specific heat
with the experimental quantities are obtained by fitting the two parameter Harrison potential
and using the Toigo-Woodruff susceptibility function. The results from this model are compared
with those from the two models used by Wallace and with those of the eight-shell force-constant
fit by Gilat and Nicklow. The predictions of the three models for band structure and for elec-
trical resistivity of the liquid are discussed.

I. INTRODUCTION

Since the early calculations by Toya' and Coch-
ran of the lattice dynamics of Na, numerous cal-
culations have been made of the elastic properties
of simple metals based upon the pseudopotential or
model-potential approach to the electron-ion inter-
action. Calculations have been reported for the
alkali metals, for Al', ' ' for the hexagonal
metals Be Mg and Zn ' 7 ' for Pb) ) )
and for Sn. 3'

The dynamical matrix from which phonon ener-
gies and polarization vectors are calculated may be
obtained either by summing real-space force con-
stants or by performing a sum in reciprocal space.
To our knowledge the real-space sum has not pre-
viously been used in a complete calculation from
first principles, though Gochran used it to de-
termine an ion-electron-ion interaction from pho-
non dispersion curves, and Shyu and Gaspari '"
have calculated force constants.

In Sec. II the real-space and k-space sums are
discussed and compared. In Sec. III three models
for the interionic potential are presented and the
pseudopotentials are tested against band-structure
and Liquid-resistivity data. Of these three models
two are those of Wallace, ~ and the third uses a
susceptibility function derived by Toigo and Wood-
ruff. In Sec. IV the real-space sum is used to
calculate phonon dispersion relations, density of

states, and lattice specific heat for the models of
Sec. III.

II. REAL- AND RECIPROCAL-SPACE METHODS

If the pseudopotential is local, the effects of the
ion-electron-ion interaction may be incorporated
into a simple two-body interionic potential V(R)
which then may be written as the sum of direct
Coulomb and band-structure terms

V(R) =Z e~/R+ V '(R),
where the band-structure contribution is given by

v" (R) = —(2 w) d'q'e", c (q))

—2Z2e~ " sin(qR) „
qR

(2. l)

The function C(q) is the ratio of the Fourier trans-
form of the ion-electron-ion interaction to that of
the direct Coulomb interaction; it was introduced
by Cochran and is a useful interface between the
electronic and the phonon calculations. The dynam-
ical matrix is given in the central-force or axially
symmetric model, in which the force between two
ions depends only upon the distance between them,
by

2

D,~(k) = + (l —e '"'"
) V(

e g R=R~
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where R, is the nth Cartesian component of the
position vector of the 1th ion.

The differentiation in (2. 2) is commonly done in
one of two ways. .A real-space sum for D (k) is
obtained by defining radial (8) and tangential (f )
force constants, which depend only upon the dis-
tance between ions,

8V' —Ze 2Z e
l eR R3 R2

x C(q) cosqR, — ' dq,sinqR,
0 qR)

(2. 3)

2Z e
((R) = 2

= 2 q) + C(q) qslnqB) dq
a& m

From (2. 3) a.nd (2. 2)

D„(k)=g(1 —e'"'"&)[q',&„+(R, ft„/ft')(6l K )].
l

Alternatively, the band-structure contribution to
the potential can be differentiated in the Fourier-
transformed form (2. 1), the sum over all real-lat-
tice sites can be exactly done, and one obtains a
sum over reciprocal-lattice vectors H

)„(~) 4)TZ e N g (k+H)~(k+H)8
0 g lk+Hl

x c(1k+HI) —r ~g' ('(H)). (2. 4)
H&

The Coulomb contribution is then included by per-
forming the Kellerma, nn sum.

Previous authors have used the latter method,
which has the advantage of relating the dynamical
matrix elements rather directly to the function
C(q). The reciprocal-space sum has the additional
advantage that it may be readily generalized to
cases of nondiagonal electron-gas susceptibility
functions ' for which a central two-body potential
is not a natural representation of the ion-electron-
ion interaction. This method has the disadvantage
that the entire calculation must be done anew for
each value of the wave vector k. This feature is not
usually a serious problem if only dispersion curves
along symmetry directions are wanted, but might
pose a computer time problem in calculating lat-
tice-thermal properties or aspects of the electron-
phonon interaction where phonon energies and po-
larization vectors over the whole Brillouin zone are
needed. Particular difficulty might occur at large
electron densities where the sum over reciprocal-
lattice vectors converges slowly. A sphere in re-
ciprocal space of radius ck„contains approximately
N& = 2Zc reciprocal-lattice points for cubic struc-

tures. Wallace, however, has successfully per-
formed thermodynamic calculations for Al using the
reciprocal-space sum, although he required a
sphere of radius 20 k„, N„=12000 points. ' The
advantage of the real-space method is that once a,

set of interionic force constants is determined, it
is relatively easy to calculate lattice properties
depending on all k by interpolation schemes such
as that of Gilat and Dolling, and Gilat and Rauben-
heimer. "

The function C(q), summed over the reciprocal
lattice, is proportional to the electron-gas sus-
ceptibility at large q, and hence decays as q '.
Since the force constants, summed over the real
lattice, decay as R ', one might expect the real-
space sum to converge somewhat faster for large
phonon wave vectors. If the reciprocal-space sum

is used, poor convergence may be recognized by
the energy gaps which occur at wave vectors where
several phonons ought to be degenerate by sym-
metry. By contrast, both translational and point
symmetries are retained in all shells of the real-
space sum. This fact may, however, be an ad-
vantage if one is calculating electron-phonon inter-
action matrix elements for Fermi surfaces which
extend beyond the first Brillouin zone.

Although we shall show that the real-space sum
offers a reasonable alternative for calculations of
smooth dispersion curves, this method is quite
hopeless for calculation of such rapidly varying
aspects as Kohn anomalies. The Kohn anomaly
appears in only one term of Eq. (2. 4) (or in several
for k at a symmetry point), whereas every term of
the real-space sum includes part of the anomaly.
For a spherical Fermi surface the function C(q)
has a singular derivative at q= 2k~, so that for
some reciprocal-lattice vector Ho the contribution
to the dynamical matrix has a singular derivative

Bk 2k'

The real-space representation of this anomaly, in

terms of K= lk —Hol —2k~ is, clearly,

e&'(k)
M K=O

dQ o2p e' ' ' ln

where the integral is over the first zone, translated
in this case by Ho, and the sum over lattice sites
extends to some finite radius R~. The Kohn anom-

aly is folded with a finite-lattice diffraction pat-
tern, and since the anomaly is integrable, the ac-
tual infinity at K= 0 disappears. We may evaluate
this contribution approximately by changing the in-
tegration variable to (Q+ K) and recognizing that
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because the diffex ence between the k values of in-
terest and 2k~, namely, K, is small compared to
the dimensions of the first zone, we make a small
error in neglecting the concomitant change of the
region of integration. Then approximating the zone
with a sphere of radius g~ we find

sD'{u) n, QR, ' (sinx —xcosx)
E=O

x ln " +sinx-Si(x) e' '"!,
2~X

where x= q A„and Si is the sine-integral function.
The asymptotic term is in A, ; the convergence is
poox for all K and becomes worse as K-0. %6
would expect then that the real-space sum would
obliterate any Kohn anomaly.

It is intex'esting to specu1. ate that a combination
of real- and xeciprocal-spaces method, similar to
Kellermann's method for the Coulomb sum, might
be devised to obviate the slow convergence of the
individua3, real- and reciprocal-space band-struc-
ture sums. The Kellermann sum, like the Ewald
sum, can be derived by writing the inverse of the
interionic distance, R, as the integral of a Gaus-
sian, breaking the line of integration into two parts,
Rnd summing olle pRx't in reciprocal spRce Rnd the
other in real space. Analogously, one might write
the factor R ' in (2. 3) as the integral of a Gaussian
and separate. The real-space force constants then

6~82decay as e ' ~, where & is the integral separation
pointy but the x'ecipx'ocRl-spRce sum involves sev-
eral difficult integrals, none of which appeaxs to be
analytically tractable. Alternatively, one might
write 8 as

Summing the secoDd illtegx al in x'eR1, spRce results
in integrals similar to those of (2. 3) for dt, and ~,
multiplied by the damping factor e '". The recip-
rocal-space sum of the first integral in (2. 5}be-
comes that of Eq. (2.4) with C{if') replaced by

C'(Ã) = ——Im —C(q) . +p E dQ j. 1
K —Sp g+E+ Sp 'p„o

Unfortunately, the reciprocal-space sum in this
form RppeRrs to collvex'ge no fRstex' thaJl the orig-
inal sum and one must look elsewhere fox an im-
proved computational method.

For a local bare pseudopotential g~, the band-
structure contribution to the interionic potential to
second ox'dex' in the pseudopoteDtiRl is the energy
of a, bare ion intexacting with the screening charge

of R secolld ion:

V"'(ft)= (2m) ' J p, (-q)v, {q}e""d'q.
In the static approximation the Foux'ier transform
of the screening number density is

x(q)
4IIe' " 1+ [1—G(q)]g(q} '

where y(q) is the Lindhard expression for the free-
electron susceptibility:

4 j. 1 4-y 2+y
wak y' 2 Sy i2-y )'

Here y = q/kr, and ao is the Bohr radius. The
charge density includes a static term G(q) as sug-
gested by Hubbard 3 to correct approximately for
the effects of exchange and correlation. Fx'om

(3.2), (3.1), and (2. 1) the final expression for the
C function then becomes

x(q)
1+1.l - G(q)]X(q)

'

The interionic potential and elastic properties
depend jointly on the bare pseudopotential and the
susceptibility. The remainder of this papex will be
concerned principally with three models for C(q).
Models A and 8 are those of Wallace; model C
includes the correction function G(q) calculated by
Toigo and %oodruff by consexving moments of the
spectral representation of the density-density
Green's function in decoupling the equation of mo-
tion for the Green's function.

Mode/ A. The Ashcroft model potential45 is

v, (r}= (-Zes/r) e(r —r,},
v, (q) = -4IIZe'cos(qr, )/q',

where 8 is the unit step function, with a, core radius
r~= 1.11Vao (= 0. 591 A)~ and a correction function

G(q) such that the limit of qIy(q) as q vanishes sat-
Isfies tile compressiblllty sum rule wltl1 'tile

Nozieres and Pines interpolation formula. 6' 7

Model B. The Harrison model potential 8 is

v, (r) = —Zes/r+ (P/BIIp')e "~',

v, {q)= —4IIZe'/q'+ P/(1+ q~p )',
with p=47. 5a', Ry and p=0. 24ao. The G(q) is the
same as that of model A. (The form factors of the
model crystal potential gj.ven by Wallace differ by
a factor of N/0 from the Fourier transforms of
the single-ion local model potentials A and Bbe-
cRuse thex'6 Rx'6 N identical ion sites Rnd the plRne
wave functions are normalized to the crystal vol-
ume. )

Model C. This is the Harrison model potential
vrith P=49. Oa~~ Hy and p= O. 2Vao. These parameters
provided the best fit to the experimental phonon en-
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ergies when the correction function of Toigo and
Woodruff was used. Much has been written about
the G(q) function49; in this pa.per it seems appro-
priate only to remark that the Toigo-Woodruff func-
tion satisfies a number of criteria deduced on gen-
eral theoretical grounds. It predicts an electron
pair correlation function g(r) which remains posi-
tive at r = 0 for r, & 3 (for Al r, = 2. 073). At r, = 3
the pair correlation function is nearly identical to
the most recent results of Singwi et al. (IV). ' The
function G(q)/q has the limit —,

' for small q, result-
ing in close agreement between the compressibility
calculated from thermodynamics and that found
from the compressibility sum rule. " The function
G(q)/q~ also has a small hump at q&k~ as sug-
gested by the approximate Hartree-Fock diagram
summation of Geldart and Taylor. '

The bare-ion model potential and electron-gas
susceptibility are the necessary ingredients not
only for a calculation of the screening charge den-
sity and ion-electron-ion interaction, but also for
a calculation of the conduction electron-ion inter-
action n(q). For the latter interaction, however,
some account must be taken of the fact that the
conduction electron may exchange with the electrons
of the screening cloud. (The bare ion of the former
interaction obviously cannot so exchange. ) In this
case v(q) = v, (q) A(q), 9 where the vertex function
A(q) is given by

A '(q) = I+ IL —G(q')jX(q) .
If one wishes to ascribe physical significance to

a model potential, one must demonstrate that it
correctly predicts diverse effects of the interaction
v(q), such as the energy band structure and the
electrical resistivity of the melt. We wish here to
make the observation that both the Ashcroft poten-
tial of mode1. A. and the Harrison potential of models
B and C are somewhat unsatisfactory for the former
in Al. Because the free-electron energy for wave
vectors near W is considerably closer to the free-
electron Fermi energy than is the energy of other
wave vectors, the band splittings at W significantly
affect the Fermi surface. Ashcroft' has considered
a wide variety of AI de Haas —van Alphen data from
which he has determined the two potential param-
eters in a four-pseudo-plane-wave model Vying

= 0. 0179, Vppp = 0, 0562 By. These parameters lead
to a splitting of the energy bands at the W point
labeled "expt" in Table I. The reciprocal lattice
of the fcc crystal has the point symmetry D&& about
the W point 2v(1, —,', 0)/a, where the major symmetry
axis is in the y direction, the two mirror planes
are xy and zy, and the twofold rotation axes are in
the(x+y) and (x-y) directions. The successive
stars of vectors (H —k~) of increasing length con-
tain 4, 4, 8, 8+4=12, etc. , reciprocal-lattice
vectors at IH —k~l /(4maa ~) =1.25, 3.25, 5. 25,

TABLE I. Splittings of the energy bands at W in
units of rydbergs. The experimental splitting is from
Ashcroft's analysis in Ref. 53. Models A and C cal-
culations are for four, eight, and sixteen pseudo plane
waves. The W3 value is twofold degenerate by symmetry.

1
Expt
Model A

4
8
16
Model C

8
16

O'PW

4PW

W& — W&' (Ry)

0
0.0716

0.0178
0.0182

—0.0126

—0.0017
0.0032

—0.0259

W,
' — W, (Ry)

0
0.0766

0.0993
0.0828
0.0880

0.1046
0.0867
0.0939

'7. 25, etc. Four-pronged stars occur when one of
the components of (H —ktt, ) is zero and are formed
by the subset of Dz„operations which leave the sign
of one component unchanged. Accordingly, we have
calculated the energy-band splitting using four-,
eight-, and sixteen-pseudo-plane-wave models and

find that the results, shown in Table I, are poorly
convergent because of a volatile W, point. As one
increases the number of plane waves, the calcula-
tions become more time consuming and the results
less physically meaningful as one represents in ever
greater detail the core region of the potential as
described by the model. By contrast the potential
of Heine and Animalu' leads to rapid conver-
gence and reasonable agreement with experiment.
The potentials of models A. , B, and C closely re-
semble that of Heine and Animalu in the region of
the first node and first several reciprocal-lattice
vectors, and they give similar values for the pa-
rameters Vggy and V~p„although the node of model
C occurs at 3: wave vector which is slightly larger
than the first reciprocal-lattice vector, leading to
an inversion of the order of W, and 5'~ energies in
the four-pseudo-plane-wave model. For compari-
son we have calculated the values of Harrison
model-potential parameters required to fit exactly
the experimental values of V», and Vgpp in the four-
pseudo-plane-wave model. Using the vertex cor-
rection of model B requires P= 59. 4ap By and p
= 0. 330ap; using the vertex correction of model C
requires P=62. 8ap Ry and p= 0. 357ap.

No convergence problem plagues the calculation
of the scattering on the Fermi surface for the elec-
trical resistivity at the melting point. Using the
Ziman" liquid-metal formula with the hard-sphere
model'6 for the structure factor, a packing fraction
of 0. 45, and a, density of 2. 380 g/cm', we find the
results of Table II. The peak of the hard-sphere
structure factor occurs at q/2k~= 0. 803, which is
within 0. 05 A ' of the first node of the model po-
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Expt
Model

B

TABLE II. Electrical resistivity in pOem of liquid
Al at the melting point 660 'C. The experimental value
is from Ref. 57. Theoretical values are all calculated
with the hard-sphere structure factor for the three model
potentials of the text and for the model potential of Heine
and Animalu (HA).

TABLE IV. Calculations of the second moment of
the energy spectrum from model &. Units are 10
{rad/sec)t. (ru ) 0 is the uncorrected value from Eq.
{3.1); (&u) includes the correction of Eq. {3.2). The
deviations in parentheses indicate the size of the (2k~)
oscillations at each shell radius. Inside shell No. 114
there are 3588 lattice vectors.

24. 2 20. 2 21.2 20.3 20.6 Shells Rq {A) (td )0{102'rad2/sec2) (cu) {10 rad2/sec )

tential in each case. This near coincidence leads
to a low value of the resistivity, which increases
if the node is moved to larger values of q. Com-
plete agreement between theory and experiment
cannot be expected because of the approximate
nature of the structure factor and because of pos-
sible changes with Fermi energy in the model-po-
tential parameters as the atomic volume is in-
creased by 13% of the solid value between zero de-
grees and the melting point. Such energy depen-
dences might be introduced by fitting the liquid
thermopower, but such an attempt was not made
here.

IV. PHONON CALCULATIONS

In fitting a model potential to phonon energies,
particularly when the dynamical matrix is con-
structed in real space, it is convenient to begin
with the second moment of the phonon spectrum,
which can be found by taking the trace of D,s (k).
An expression for (&s) derived from the reciprocal-
space sum has been given by Wallace. In terms
of real-space parameters

(&') = (3M) 'Q (6),+ N', )

2Z' '

8
21

114

8.098 166 (+1, —6) 165 (+3, —4)
12.147 163 (+1, —2) 162(+1, —2)
24, 294 161 (+1, —1) 161(+2, —0)

TABLE V. Radial and tangential force constants in
units of dyn/cm. 8 and V are calculated from model
C. Those shells with no entry have the same radius,
and thus the same force constants, as the previous
shell. The last two columns are the force constants
of the eight-shell model obtained in Ref. 59 by fitting
the 80 'K experimental phonon dispersion curves of
Refs. 60 and 61.

where M is the ionic mass. The sum over lattice
sites l extends to some finite number I, and a plot
of (&s) as a function of L provides a measure of
the convergence of the real-space sum for phonon
energies. Since, however, both ~ and the spec-
trum are largest for large frequencies where the
convergence appears to be best, the damped os-
cillations in (& ) vs R~, of asymptotic periodicity
(2k+) ', provide an approximate lower bound for
the fluctuations in phonon energies. For actual
calculations of (I'd ), convergence can be improved
for large Ri by adding a correction term calculated
by approximating the sum in (4. 1) from radius Rl,
to infinity with an integral. We find the correction
term to be simply

h(&u') = —(4'/3M&)Rs~&r, .

Type $(dyn/cm) E(dyn/cm) (8 (dyn/cm) V' "(dyn/cm)

Specific heat
(Ref. 59)

Interpolation
(Ref. 59)

Model &
B
C

166

]7] L

163
164
169

161
161
167

~This value is computed from a phonon density of
states derived from the eight-shell model at 80 'K.

TABLE III. Second moments of the phonon spectrum
in units of 10 (rad/sec) . The first column of theoret-
ical values has been calculated from 21 shells of real-
space force constants (uncorrected) with the models
described in the text. The second column results from
114 shells with the correction of Eq. (3.2).

(&ut)0 [10'~ rad/sec)t) (co ) (10' rad/sec )

1
2
3
4
5
6
7
8
9

10
ll
12
13
14
15
16
17
18
19
20
21

110 21 280
200 3 468
211 —1 190
220 341
310 285
222 —453
321 131
400 232
330 —153
411
420 —142
332 108
422 121
431 —51
510 ~ ~ ~

521 —8
440 85
433 56
530 ~ ~ ~

442 —33
600

—1 273
—218

63
—46

22
1

—13
5
6

21 551
2 452
—921

221
491

—76
—34

—534

—1 337
—529
—33
321
198
251

—118
—116
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FIG. 1. Calculated and experimental phonon dispersion relations. The solid line in the top half of the figure is
calculated from the eight-shell model, that in the lower half of the figure from model C. Experimental points (circles)
in both halves are the 80 'K measured and interpolated energies of Stedman and co-workers.

Experimental and calculated values of the second
moment appear in Table III. An example of the
convergence of the second moment is given for
model A in Table IV.

The interionic potential and force constants were
calculated by performing the integrals of Eq. (2. 3)
to 34k~ with Simpson's rule at 2400 points. The
interionic potential for both models A and B shows
the double minimum noted by Ashcroft and Lang-
reth" for model A. The first zero crossings, at
2. 7 and 2. 9 A, respectively, and the minima occur
at approximately the same interionic distances,
but the first minimum of model B shows only 40%
of the depth of that of model A.. The interionic po-
tential calculated from model C crosses zero at
4 A and has a single minimum at 4. 3 A, close to
the second minimum of models A and B. The in-
terionic potentials for the three models are es-
sentially the same for 8 & 7 A. Although the inter-
ionic potential is extremely sensitive to the model
chosen, its derivatives are relatively stable, and
the radial and tangential force constants, given in
Table V for model C, are rather similar for all
three models.

Phonon dispersion curves calculated from the
eight shells of force constants of Ref. g9 and from
model C are shown in Pig. 1 along with the experi-

mental and interpolated points of Stedman and Nils-
son. '" Models A. and B result in dispersion
curves which agree only slightly less well with ex-
periment; the differences cannot be easily seen on
the scale of the figure, and they can scarcely be
considered as physically meaningful in view of the
finite temperature of the experiment and the error
of approximately 2% resulting from truncation of
the real-space sum at 21 shells. The labeling of
symmetry points and of the irreducible representa-
tions follows that of Bouckaert et al. , except for
five lines n, P, y, &, and & for which the group of
the wave vector contains only the identity and one
other element, respectively, C2, J'Cz, ZCz, O'C»,

and JC». Because these small groups have only
even and odd irreducible representations, one of
them must occur at least twice. However, neither
can occur three times, for in that case the charac-
ter of the nonidentity element of the small group in

a three-dimensional direct-sum representation
would be + 3. Because the representations are
unitary, such a character can occur in a three-
dimensional representation only for the identity and

the inverse, neither of which is different from the
identity element in the five small groups above.
Therefore, one irreducible representation occurs
twice and the two phonon polarization vectors which
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FIG. 2. Percentage error distribution N(e) is the
number of calculated phonon energies out of 449 which
differ from the experimenta1 energies by a percentage
of the experimental value which lies in the range e+ 1.
The short dashed line is the eight-shell model, the
solid line is model C, and the line of crosses gives
the average of models A and S.

transform according to the repeated irreducible
representation are not entirely determined by sym-
metry but depend on the phonon wave vectors and
energies.

Models A, B, and C result in crossings of Z,
Z, and y lines all at approximately the same wave
vector, whereas the fitted eight-shell force con-
stants predict a crossing only along Z. The largest
discrepancy between calculation and experiment,
as well as between models A, B, and C and the
eight-shell model, is at the point W. Qur models
miss the experimental W~ point; the eight-shell
model badly misses both W~ and W, points by 11
and 4%%uo, respectively, as previously noted by
Stedman et al. The relatively ba,d agreement at
W persists along the symmetry lines which include
W.

Further comparison of theoretical and 80 K ex-
perimental phonon energies can be made over the
whole Brillouin zone. Stedman kindly sent us a
table of 480 measured and interpolated phonon en-
ergies of which 449 are independent by symmetry.
By performing the real-space sum for 155 uniformly
spaced wave vectors, we found the percentage er-
ror distributions of Fig. 2. The error distributions
for models A and B are quite similar and have been
averaged in the figure. The larger errors &4% for

models A, B, and C are in the energies of phonons
with small wave vectors, where the small experi-
mental phonon energy leads to large percentage
errors. The elastic constant calculations of Wal-
lace lead us to expect relatively poor agreement at
low k, though it must also be said that the conver-
gence of our calculations becomes increa, singly
poor with decreasing k. By contrast, the small
wave-vector energies of the eight-shell-model cal-
culation are in excellent agreement with experi-
ment, probably because the force-constant fitting
procedure required agreement with measured elas-
tic constants. The relatively large errors from the
eight-shell model, then, come from the middle of
the zone. At the very least, therefore, we may
claim that for Al the two-parameter model potential,
fitted in our calculations to the Z phonons, provides
a better over-all interpolation scheme than does the
sixteen-parameter application of the standard
force-constant fitting procedure. Although the er-
ror distribution for model C appears to be sharper
than that for models A and B, the uncertainties in
both calculations preclude a, claim that the Toigo-
Woodruff susceptibility function results in agree-
ment with experiment which is actually better than
the excellent agreement achieved by Wallace. It
is, however, gratifying that the new susceptibility
function can do at least as well.

Although further comparison of harmonic cal-
culations with experiments at large wave vectors
seems pointless, it is interesting to compare
models A and B with one another. Wallace~' found
that although the model potentials A and B differed
considerably for q &2k~, the phonon energies cal-
culated from the two potentials were essentially
the same along the three principal symmetry direc-
tions. Qur calculations show that this quite re-
markable agreement extends over the whole Bril-
louin zone. Moreover, the agreement persists
for phonon wave vectors so small (several orders
of magnitude smaller than are observed in neutron
scattering) that 21 shells of force constants are in-
adequate to achieve reliable energies. For quan-
titative comparison of various calculated quantities
we increased the core radius of model A by less
than 1% to 0. 594 A. The resulting changes in pho-
non energies for large k a,re two to four times the
differences in energies calculated from models A
and B. In the discussion to follow, large differ-
ences between models A. and B will mean large com-
pared to the corresponding changes induced by the
above modification of the core radius of model A.
In brief, the difference &C(q) between the C(q)
functions of models A and B is a function with a
large broad peak centered at 6 A ' with a half-width
of 2 A . The peak results in large oscillatory dif-
ferences in the interionic potential and, from the
derivative expressions, large differences in the
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Density of
phonon states
in At

FIG. 3. Normalized densities of pho-
non states for Al. Short dashed line is
calculated from the eight-shell model;
long dashed line is the interpolated curved
traced from Ref. 63. Solid line is calcu-
lated from 21 shells of force constants
of model C. Maximum frequencies occur
a et th I point and are, respectively, 618,

ii6{)6 (experimental), and 612 &10 rad/see.

0
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radial and tangential force constants. When radial
and tangential force constants are combined into the
Squires~4 form, the differences are still large.
When the Squires-type matrices are finally summed
to form a dynamical matrix, the differences become
small for almost all values of k. It appears to us,
therefore, that the explanation for the extraoxdinary
agreement between the phonon energies of models
4 and 8 is not to be found in real space. The solu-
tion to this puzzle might be found, instead, by
analyzing the reciprocal-space sum for the differ-
ence function AC(q).

The real-space calculation makes it relatively
eRsy 0to calculate lattice properties which depend

3 theonly on the normal-mode energies. In Fig. e
density of states is plotted. As expected, the den-
Si~y O S ReS~y f t t calculated from model C agrees better
with the visually interpolated curve than does a
calculated from the eight-shell model. In Fig. 4
the specific-heat OH~ function is plotted. The agree-
ment between theory and experiment is excellent
above 20 K but unfortunately the convergence dif-
ficulties for long-wavelength phonons precluded
Rccux'Rte cRlculatlons of the speclflc heRt Rt the
lower temperatures of the experimental hump.

These convergence difficulties in the long-wave-
length limit are easily understood. The first term

Taylor's expansion of the dynamical matrix
D (k) about k = 0 is of order k2, which introduces
an extra factor of R~ into the sum. Because the
e velopes of S ands; decay asymptotically Rs A, '
an d the density of lattice sites increases as R„e

-1 k.resulting sum converges only as 8, for small
For example, the calculated longitudinal energy at

y60 „Qtl 0 ( K)

440-

4RO-

OHO for Ai

experiment, eiaetic

exper&ment, spec&f&c heat

—theory

400—

580-

50 iOO

T {eKj
i50

FIG. 4. O~ representation of the lattice specific
heat for Al. Experimental points are: &, from efrom elastic
measurements of Ref. 65; , from specific-heat mea-
surements of Ref. 66; X, from specific-heat measure-
ments of Ref. 67; 0, from specific-heat measurements
as analyzed in Ref. 26. Solid line has been calculated
from model C.

q= 2n(0. 8, 0, 0)/a changes by l%%uo as the number of
shells is decreased from 21 to 1V, whereas at
wave vector 2v(0. 03, 0, 0)/a and below, the longi-
tudinal energy changes by 6%%uo. Further, the rate
of convergence is somewhat different for different
1 tt' des It therefore becomes extremelylCe mO

h methoddifficult to calculate elastic constants by the me o
of long waves from a real-space sum. If one cal-
culRtes cly, - ox' exRD1t, f example from the first eight shells
f f e constants' using the expressions of

t theSquires, 8 the oscillations in the final value at e
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radius of the eighth shell are about 25% of the
mean. Because only long-wavelength modes con-
tribute to the low-temperature lattice specific
heat, a, calculation of SD(T) requires an increasing
number of shells of real-space force constants as
T decreases. The following example illustrates
the sensitivity of Q~&(T) at low temperature to rela-
tively long-range forces. Using the eight-shell
model, Gilat and Nicklow find O'D(0) = 428 'K. Re-
moving the eighth shell increases the value to
481 K, and removing both seventh and eighth shells
results in a value of 625 K. In our case the poor
convergence at k & 2v(0. 03)/a, for which transverse-
phonon energies are approximately 25 x 10" rad/
sec, places a lower limit of 20'K on the calcula-
tions of the specific heat.

A similar difficulty arises in a calculation of the
crystal stability. If one assumes that the crystal
energy E, is derived entirely from the interionic
pair potential, the condition that the crystal be
stable against changes in lattice parameter a is

—E,= —Q R, W)—- 0-( q2
—c4

8 1
(4. 2)

and the sum is poorly convergent. By contrast, the
reciprocal-space sum converges well; e.g. , for
the band-structure term Eq. (4. 2) becomes

with the Ashcroft potential. The expression for the
Harrison potential is the same with Zx, replaced
by P/4vao(e /2ao) '. For models A, B, and C we
find, as did Price et al. , that the Hartree term is
too small in magnitude by 20-40%. It is interesting
to note, however, that from model A we find Zr, /
ao ——3. '74, and the corresponding expression from
model 8 is 3. 78. This suggests that one might de-
termine the parameters of a Harrison model poten-
tial from the Ashcroft potential by first fitting the
node and then requiring the above correspondence.

It is perhaps worth mentioning that the real-space
method could be used for calculating phonon life-
times &, against decay into an electron-hole pair.
The radial and tangential force constants become
complex with an imaginary part which, in the
standard approximations for this effect, '" is

e „. —6(2v)'NZ e +C(H)
Ba ' ~a g H

For a complete calculation one must add to E, the
energy of the interacting electron gas and the
Hartree energy as discussed by Ashcroft and
Langreth. Of these terms Price et al. ' concluded
that the derivatives of the electrostatic energy and
of the Hartree energy are the largest and that sta-
bility should require (for fcc, bcc, or hcp)

gE 1 7g2Z l 9''
'v a J'

proportional to the vibrational frequency, as ex-
pected for a viscous damped spring. The eigen-
values of the imaginary part of the dynamical ma-
trix are —2~,/7'„and therefore the lifetimes may
be calculated from the imaginary part of the dy-
namical matrix independently of the phonon ener-
gies. However, the recipocal-space sum provides
a simpler calculation for phonon lifetimes because
the imaginary part of the susceptibility y(q) van-
ishes for q& 2k~ for phonon velocities less than a
critical value. ' The ratio of the Bohm-Staver
speed of sound to the critical velocity is O(m/M)'~,
and the criterion is satisfied for metals.

V. DISCUSSION

Despite the limitations which we have noted, we
consider the real-space method of phonon-energy
calculations to be a practical alternative to the con-
ventional reciprocal-space method if one is more
interested in accurate sampling of the entire Bril-
louin zone than in faithful reproduction of rapid
variations at anomalous points. We have used the
real-space method to demonstrate that with an
appropriate choice of model potential (model C) the
theoretically attractive Toigo-Woodruff suscepti-
bility function results in excellent agreement be-
tween calculated and experimental phonon energies.

The agreement, of course, provides no defini-
tive test of either the susceptibility function or
model potential. Among the aspects of the prob-
lem which have been neglected in this work are the
contributions to phonon energies to higher order
than the second in the model potential. There are
fourth-order terms, for example, with the simple
physical interpretation of nonsphericity of the
screening charge distribution due to neighboring
ions, directly related to the nonsphericity of the
Fermi surface. Classically, the effect of these
asymmetries might be estimated by allowing the
Fermi wave vector in the Lindhard function to de-
pend upon wave-vector direction, thus fitting the
Kohn anomalies to the measured Fermi-surface
dimensions. The Fermi surface of Al is distorted
from the free-electron sphere, at least to the ex-
tent that the fourth-band states disappear. Fur-
thermore, the phonon energies are rather sensitive
to the Fermi wave vector. Increasing kz by 1% in
model C results in a, change of at least —4% in all
44S phonon energies calculated and of —10% for a
number of phonons of large and intermediate wave
vector. It seems quite likely that the effects of
Fermi-surface distortion will appreciably alter the
phonon energies.
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Thermal diffuse x-ray scattering (TDS) from lead single crystals has been measured in the
longitudinal and transverse branches along the [100] and [111]directions. In order to deter-
mine if one can use x rays to obtain reliable dispersion curves from a metal such as lead,
the measured TDS was compared with that calculated from lead dispersion curves obtained
by means of slow-neutron scattering. The one-phonon intensity was calculated directly from
the [100] and [111]neutron data, and the tvro-phonon intensity was calculated by a Inethod
which expresses the cross section in terms of the atomic force constants determined by a
fit to the neutron data. The intensity of the higher-order scattering was calculated by a
method in which the Debye-Jauncey relation for TDS is expanded in powers of the Debye-
Waller factor and the first two terms are subtracted. In addition, a very small Compton-
scattering contribution was calculated. It is observed that in all cases, except for some
points along the [111]transverse branch, the measured intensity is greater. The differ-
ences range from 10 to 60% or higher, and have a periodic dependence on reciprocal-
lattice position. The source of this extra scattering has not yet been conclusively identi-
fied.

I, INTRODUCTION

In this paper we present the results of a study of
thermal diffuse x-ray scattering (TDS) from lead
single crystals along the [100] and [111]directions.
The intensity of this scattering is compared with
the expected intensity calculated from lead phonon
dispersion curves determined by means of slow-
neutron scattering. " This study was initiated in
order to examine the extent to which x rays, as dis-
tinct from neutrons, can be used to obtain reliable

phonon dispersion curves in a metal such as lead.
The approach was to make a careful examination
of the validity of the multiphonon corrections to
experimentally obtained TDS data.

TDS provides an indirect approach to the de-
termination of dispersion relations, since the dis-
persion relations are determined from the intensity
of the total x-ray scattering. The total scattering
includes not only photon-single-phonon scattering
events, but also photon-multiple-phonon scattering
events and Compton scattering. On the other hand,
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