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All of the diagrams contributing to the Helmholtz free energy to OQ4), for a crystal in which

every atom is on a site of inversion symmetry, have been evaluated. The expressions given
are valid for finite temperatures, and separate expressions are given for all cases where the
double occurrence of phonon lines is important. Numerical calculations have been carriedout
for all the diagrams for a nearest-neighbor central-force model of a face-centered-cubic lat-
tice in the high-temperature limit and in the leading-term approxixnation. Two separate tech-
niques, a scanning method and the plane-wave expansion method, were used for the evaluation

of each diagram. When applied to a Lennard-Jones potential it is found that none of the diagrams
makes a negligibly small contribution and that the convergence of the perturbation expansion
appears poor for T& 3T~.

I. INTRODUCTION

A knowledge of the anharmonic contributions to
the Helmholtz free energy of a crystal is necessary
for a complete understanding both of the properties
of the solid itself and of the phenomenon of melting.
Most approaches to this problem are based initial-
ly on the use of perturbation theory, but the sys-
tematic application of this technique is not %'ell

defined. The difficulty is that the use of perturba-
tion theory leads to an anharmonic contribution to
the free energy which is an infinite series in the
perturbing potential, while the perturbation is it-
self an infinite series expansion of the cubic,
quartic, and higher-order terms in the Taylor ex-
pansion of the potential energy of the crystal.

The traditional approach is to use an ordering
scheme devised by Van Hove. He introduced an
ordering parameter, here called X, equal in mag-
nitude to a typical atomic displacement divided by
the nearest-neighbor distance, and showed how the
order of the various terms in the double series
expansion could be obtained. The lowest-order
anharmonic contributions to the free energy are
then found to be of order X~. The derivation of
these contributions, and their evaluation for a
simple model, has been described by Maradudin,
Flinn, and Coldwell-Horsfall. The contribution
to C„ from these diagrams is found to be propor-
tional to T at high temperatures, but it has been
found that this temperature dependence is inadequate
to describe the experimental results for several
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materials. When terms beyond the lowest order
are considered, the number of diagrams occurring
increases rapidly, and, since the different diagrams
have different structures, each must be evaluated
separately.

An alternative approach is the self-consistent
formalism of Choquard and others. This is based
on the summation of the infinite series of diagrams
arising in a given order of perturbation theory,
rather than the Van Hove ordering scheme. In
the first-order self-consistent scheme (SC1), all
first-order contributions to the phonon self-ener-
gies are summed, to give a set of renormalized
frequencies, and then all ring diagrams containing
first-order inserts are summed to give the free
energy in the form of a harmonic free energy, but
involving the renormalized frequencies. In the
second-order self-consistent scheme (SC2) a sim-
ilar procedure is carried through, except that all
first- and second-order diagrams and inserts are
summed. The self-consistency element in the
theory is that the diagrams are to be evaluated
with the renormalized frequencies. This leads to
an iterative numerical procedure and also means
that the theory is not simply perturbation theory.

Numerical calculations of SC1 theory have been
made for the inert gas crystals by Goldman, Hor-
ton, and Klein. ' As far as we are aware, no cal-
culations have yet been made using SC2 theory,
but Goldman et al. suggested an approximation in-
termediate between the first- and second-order
theories. This is the improved self-consistent
theory (ISC), which is the same as SC1, but sup-
plemented by the most important second-order
diagram evaluated using the renormalized frequen-
cies and potential.

Each of these three approximations involves the
selection of a subset of higher-order diagrams
which are assumed to be the most important. In

the present paper we derive all of the contributions
of order A. , which is the next nonvanishing order,
and evaluate them for the simple model used by
Maradudin et al.

The derivation is described in Sec. II, and the
numerical techniques and results are given in Sec.
III. In Sec. IV we make a comparison of the con-
tributions given by the subsets of diagrams included
in the various approximate schemes. We conclude
that while none of the approximations is successful
in selecting the most important set of diagrams,
the ISC scheme is most likely to give good agree-
ment with experiment.

where

Ho = Z —,'h(u(X) [a(X)a*(X)+ a*(X)a(X)]

tf =3

Here A.; stands for the double suffix (ci;j;), a*(A)
and a(A) are the usual creation and destruction op-
erators for the phonon A. , and

A{~)=a(~) ia+(- ~) .
The coefficients V(A&, . . . , X„) are related to the
coefficients C (X„.. . , A.„) defined by Born and

Huang by

The Helmholtz free energy (E) is given by

F = —k~ TlnS

where

Z= Tre " P=1/k Te,

and H is given by Eq. (1). As described in the re-
view by Cowley, ~ it is possible to show that

F =Eo —k~TL,
where Eo is the Harmonic free energy and L is the
contribution to the partition function from all con-
nected diagrams.

In Van Hove's scheme, the order of a diagram
is determined by counting a factor of ~" 2 for each
n-phonon vertex. There are then three diagrams
of order X, shown in Fig. 1. Diagram 1(c) gives
zero contribution for all Bravais lattices as well
as for lattices with a basis provided that each atom
is at a center of inversion symmetry. Diagrams
1(a) and 1(b) have been evaluated by several au-
thors '7' and the contributions to E are

3 Z V(-X&, X&, —X~, X2)[2n(A&)+1] [2n(X, )+i.] (2)

from Fig. 1(a) and

(3a.)

II. THEORY

The Hamiltonian of an anharmonic crystal to or-
der X is given in second quantized form by

Ho+a

where

[n(~, )+ 1][n(X )+n(X )+1] +n(& )n(X )

(o(x, )+(o(x2)+&a(xs)
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we find for diagram 2(a)

{a) V(- X1, X1,.—Xa, Xa, —X~, X~)

FIG. 1. Diagrams of order
A.2,

x [2n(&1)+1][211(&2)+ 1][2n(X~)+ 1]. (9)

We note that any closed loop in a diagram leads to
a factor of [2n(X)+1]. There are three second-
order diagrams [Figs. 2(b), 2(c), 2(e)]. The con-
tribution from 2(b) is given by

x 72 Z V{-x1,x1, xa, x3) V(-xa, —x3, —x4, x~)
X~XSX3)t,4

2
n(X1)n (XI)+n(X1)n(XB) -n(xa)n(A. ,)+n(X1)

(O (A,,) + ld (X,) —(0(1,,)

for diagram 1(b). n(X, ) are the Bose-Einstein
population factors given by

The factor V2 arises from the number of pairing
schemes. Performing the summations we find

Z V(- X1,X1, Xa, X3) V(- X4, X4, —Xq, —X3)
72

sp ) (&hru&x&)/as2' 1)-1 (4) x [2s(~,)+1] [2n(~,)+1]
The diagrams of the next higher order, i. e. , of
order X, are show'n in Fig. 2. Diagrams similar
in nature to diagram l(c), whiqh give zero contri-
bution for every atom on a center of symmetry,
have been omitted. The contributions from all of
these diagrams can be evaluated folio@ring the rules
given by Covrley. 7

There is only one diagram of first order [Fig.
2(a)] and its contribution to E is

Gx(X i(1o, ) G(Xl1, i(0„,) G(Xq, i(o„) . (5)

The factor 15 comes fxom the number of pairing
schemes. Substituting for the Fourier coefficient
of the Green's function G(X, i&@„) ~

2(o(X) 1
G(X, imp„) =

2n+ (&)

and performing the summations over n„n„and
ns by Poisson's summation formula

f (i~ ) (e gll l Ng) 1)
1

ZIG. 2. Diagrams of order X'.
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fox' the case A, 34k,3. However, the phonons ~p and
A., ax 6 required by wave-vectol- consexvatlon to
correspond to the same wave vector, so that in the
case of a Bravais lattice there is a one in three
probability that ja=j3 .

It is therefore necessary to considex this case
explicitly. The curly bracket then becomes

( [-,'+n(~, )]/&o(~, )+Pall(X, ) [1+)4 (X,)]].

Diagram 2(c) is similar in structure to diagram
l(b) and the summations over ~„can be performed

in exactly the same may to give

120
V(A.I, )l» X4) V(- AI, —)).» —A.4, —X4, X4)

)t1kak3X4

x [2n(X4)+1] f(X„X„X,), (13)

where f ()ll, ~3, ~4) 18 defined 111 Eq. 3(b) alld the fac-
tor 120 corresponds to the product of the number of
topologically equivalent diagrams (2 in the present
case) and 60 pairing schemes.

The contribution of the last of the two-vertex
d1agrams [Fig. 2(e)j 18 glvell by

x24 Q V(XI, Xa, )14, )14) V(- AI, —X~, —X4, - A4)
1 (-P)'
p 2f

A 1Agh, 3)t4

x Z G(& Iiv„)G(& mice„) G(X»i(d„) G(X4, i&@„--ie„i(d„-).
1 3"3

The factor 24 arises from the number of pairing schemes.
When Eq. (6) is substituted for the various propagators appearing in the above equation with different

arguments and the product is resolved into partial fractions, a total of 16 terms have to be summed over
e1, n2, and n3. However, all of these terms can be vrritten in the following general form:

1

n n n (~I+i~l~n ) (+3+i~2+n )((( 4+i~s +n )[~4+@4 (~n ++n +((n )]

where the 16 terms correspond to the various combinations of 4&=+1, i=1, 2, 3, 4. The summation over
n„n2, and 14, can be performed as before and the final result for diagram 2(e} is

12 P
~

( ) ~

4 g )'ll)'I 8)'I@4

X1)t2)t3X4 a1eaa3a4 &1&1+&3(d3+&3 &3

x(N, NzN4+NIN4N3+ NIN4N3 —NININ4+ N4N4+N1N4 +NIN4+N4 f, (16)

6xp N; =n, for-)t;=+1, and N;= (n, +1) fo-r -)1, , = —1, i=1 . . . n .

In this equation, and in similax' equations later, k1, k2, etc. , are to be summed over the values +1. The
suIDIQations over k1 ka k3 k4 can be performed and the terms rearranged to give

) y(~ g g g )~& (n 1I)+(n, +l)(n, +l)(n 14)+-n n, InIl4
3% 4

QP1+ {d3+ (d3 + QP4

n, (n, +))(n, +1)(n, +1)—(n, +1)n,n, n, n, eg(N, +n, ))-n, ,(n, +n, +)))labe 3
(d2+ 4)3+604 —601 (d1+ Cda —(d3 —404

where n(A, , )=n;, &o(X,)=or;, i =1, 2, 3. . . .
The contributions from the two third-order diagrams [Figs. 2(d) and 2(g}] can be evaluated similarly.

There are two types of contribution coming from diagram 2(d). The general expression is

X3X216 p 1 (gl, y&, y4) p'( y4 y4 y» y&) V(-Xa, —)).3, —X4) Z G(XI, i )(G4)n(A»i(dn )
1 (-P)'
P 3f

1)tRA3X4)t5 515353

X G(}).„i(()n ) G(X,, i&On ) G(X4, —i((In —i((In ) . (16)
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The factors 3 and 216 denote, respectively, the number of topologically equivalent diagrams and the num-
ber of pairing schemes. Substituting for the propagators and performing the summations exactly in the
same manner as in diagram 2(e), for the case where all X„Xs, Xs, Xs, Xs are different, we find

108
+

(@)s
Z V(&s, &s, &s) V(-&s, &s, -As, Xs) V(-Xs, —Xs, —Xs) [2ss(Xs)+ I]

X1X2)t3X4XS

k&k k kq N&N&-N&Nq N&N+q+Nq N~&-NP' +N&%&+A }
4

k2QP2 k1(d1 k1%1+k3QP3 —k4(04 k4(d4- k3(d3 k2(d2

At this stage it is convenient to leave this expression in N notation, although one could write it in I nota-
tion as we have done before. There is a finite probability that Xq=hs in Fig. 2(d) and in this case G(X„iur„, )
=G(Xs, i&@„). Performing the summations as before but now keeping in mind that there are poles of order

fl1

2, we find that the large parentheses in the previous expression are replaced by

(Ns —Ns)(Ns+I)+Ns(Ns+1) k Ns(N&+l)(N4 —Ns)

1 (ks+s+ksurs ksco4)3 4 + I
(k s(0s +k s (d s

—k4 (d s )

ksk4 (Ns +Ns+ 1)N4 NsNs (Ns Ns)N4+ (Ns + 1) Ns+2 ~ +
2(d1 1+ k3 +3 k4 co4 401 —k3 {d3+k4 (04

The contribution from the only remaining three-vertex diagram 2(g) is

1 (-P)' x3x216 Q V(Xs, Xs, As) V(-Xs, —Xs, Xs, As) V(- Xs, -Xs, —&s)
P 3)

1)12X3X4XS

G(Xs, s~„)G(Xs, s~„)G(Xs, -Ao„iv) „)-G(ks, sv„)G(&s, ia&„+s&, —s&, ) .
123

The factors 3 and 216 have the same origin as before in diagram 2(d). Performing the summations over
Pl j, &2, Ple we find

—108 k1k2 ks k4 ks
(@)s

Z V(Xs, Xs, Xs) V(- Xs, —Xs, Xs, Xs) V(- Xs, —Xs, —Xs) Z
(k k k )X13,2XSX4)(,5 k1kysk4a5 11+ 2 2 3 +3

X (N4Ns —NsN4 —NsNs —Ns) (Ns +Ns+ 1) N/Ns(Ns+ Ns+ 1)—N/N5 (Ns +Ns+ 1)
+ (22)

k5Q)g+k4(04 —k3(da kg(05+k4(d4 —k2{d2- k1C01

Finally, we evaluate the contributions coming from the two four-vertex diagrams [Figs. 2(f} and 2(h)].
From diagram 2(f} there are two types of contribution. In general the contribution is

—x6x3241 (-P)'
p 4! V(Xs, Xs, Xs) V(- Xs, —A4, Xs) V(- Xs, Xs, Xs) V(-Xs, —&s, —&s)

x Z G(Xs, ho„) G(Xs, j&g„-st„)G(X&,iver„)G(Xs, —s&o„)G(Xs,sar„)G(Xs, iv)„-ice„) . (23)
1"2 3

The factors 6 and 324 arise from the number of topologically equivalent diagrams and the number of pairing
schemes, respectively. Now, for the case where X& and X2 are different, we can perform the summations
as before and the final result is

V(Xs, Xs, As)V(-Xs, —Xs, Xs)V(- Xs, Xs, Xs) V(- ys, —Xs, —Xs)
81

X1X2X3%,4A, S)i,6

x ~ kskskskskske (Ns+Ns+1)(Ns+Ns+1) N'+1+ N'+1
k1k243k4kskg +1 D2
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{NB+1)'(N4+ 1)(NB+NB+1) {NB+l){NB+1){NB+N4+1)
+

D3
+

D4
(a4)

{11o1 k2 +3) (k44 4 kl+1+k3+3) {kB+5 kl+1+k5 +5)&

D3= (k3(d3 —k1(d1) (k4(d4 —k3}'d3+k3lo3) (kB(oB—k3(o3+k5(05),

D3= (k4M4+k3e3 —k14o1) {kBMB—k3(o3-k4(o4) (kB(oB k4&4+kB&5 k3&3)i

D4 = (kB(d5+k5 (d5 -k19)1) (k3(o3 —k5 (o5 —kB(dB) (k3(o3+k4 }'d4 —k5(o5 —kBQ&B),

when X1 = XB, the quantity inside the square brackets in the previous expression [Eq. (a4)] is to be replaced

1 {NB+N4+ l){NB+ l)(NB+ 1) (NB+1)(N4+ 1)(NB+NB+ 1)
}}1}}+4}}5}}B kB B1ok++55 k4 td4 k3 4 3 ~ (kltd1 k 5 +5 kB &5) (k1 &1 k3 &3 k4 &4)

{N1 + 1)(NB+N4+ l)(NB+NB+ 1)
+ +

(k3 413 +k4 (o4 k QP1)(1k5 }d5 + kB 'tdB —k1&o1) (k3 &o3 +k4 co4 —k11o1) (k5 }d5 +kB &05 —k1&o1)

%3+%4+1 N5+Nq+1

0304@506 2(d(dg

ng+ 1 Sg

(}bldg+}tgfdg —tag}(} M4+}! ta -Id'} (ltgul ~ +}!Stds Id'}glsfdg }gtdg+Idg})

(N, +1)(N4+1)(N, +N, ~1)
(k4(@4+kB(@3+(o1)(k4&o4+k3(o3-4o1)(kB&@5+kB(o5-k4(o4-k3(o3)

(NB+ l)(NB+ l)(NB+NB+ 1)
(kB (oB+k5 (o5+ (o1)(kB&oB+k5 (o5 —(o,)(k3 ro3+ k4 (o4 - k5 (o5 - k 5 (oB)

~ as)

The contribution from the remaining four-vertex diagram, one of the most complicated ones encountered
sofar, is

xgx$2961 (-P)'
p 4!

Alp f 13313 ' X45 X$$ X6

V(X1, &3, XB)V(- X1, X4, XB)V(- A3, —XB, XB) V(- XB, —X4, —XB)

G(X1, i(o„)G(XB, i(o„)G (!}3,—i(o„- i(g„) G (X4, i(y„)G(XB, i1o„-i(o„)G (XB,i(o„+i(o„) .
5pp3

(as)

The factor 1296 equals the number of different pairing schemes corresponding to one topologically equivalent
diagram Su.bstituting for G's from Eq. (a), the general term can be easily written down. Performing the
summations over n&, n2, n3, the final result is

Z V(X1, X3, XB)V(- X1, X4, XB)V(- XB, —}}.5, XB)
54

1, ,}}3.13.14, 15, }}5

&&V(-X3, —X4, —XB) Z k1k3k3k4k5kBH(k1, k3, k3, k4, k5, kB),
0) Bkg3 033 A'43 kg3 A6

(av)

where

H(k1, .. . , kB) =H1+HB+HB+H4+HB+HB,
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(N5 —N2) [(Nf —N5)(N4 + 1) + N5 (Nf + 1)]
Hf ——

(k3 (O3 —k2fO2 klfO1)(kf fO5 —k4 (O4 —k2fO2)(k5 fO5+k4 &4 —kffOf)

(N4 —Nf) [(N3 —N5)(N5+1)+N, (N3+1)]
(kffO1+k2&O2 —k3(O3)( 55O5+ 5 5 3 3)(k5&O5+k45O4 —kf &Of)

'

N2(N5 + 1)(N5+ 1) + N5 (Nf + 1)(N5+ 1) —N2(Nf + 1)(N5+ 1)—N5 (Nf + 1)(N2+ 1)2 5 6

(kf5Of +k25O2 —k3 fO3)(k5 &O5 —k4 5O4 —kf fO2) (kf fO5+ k5 fO5 —k2 fO2 —kf &Of )

(N3 —N5)[(N5 —N2)(N4+ 1)+ N2(N5 + 1)]
(kffOf +k2&O2 —k3 fO3)(kf fO5 —k, &O4 —kf fO2)(k55O5+kf fO5 —k3fO3)

(26)

N3(Nf + 1)(N5+ 1)—Nf(N3+ 1)(N4+ 1)+ (Nf + 1)(N4+ 1)(N5+ 1) —(N3+ 1)(N4+ 1)(N5+ 1)3 1 6 1 3 4 f. 4 6 3

(kf5Of +kf fO2 —k3(O3) (k5(O5+k4fO4 —kffOf)(k5(O5 —k4(O4 —k3 F3+ kf fOf )

H,. =--(N2+ 1)(N4+ 1)(N5+ 1) —N5(N3+ 1)(N4+ 1) —(N2+ 1)(N3+ 1)(N4+ 1)—N2N5(N3+ 1)
(kf(Of +k2(O2 k3 (O3)(k5 (O 3+k 5(O5 k3 (O3) (k5 &O5 +k4 &O4 —k3 &O3+k2 (O2)

In the high-temperature limit, the expressions contributing to I'" from all the diagrams discussed in this
section, viz. , l(a), l(b), and 2(a)-2(h), have been presented in Table I.

Finally, if there are n lines joining two vertices, the contribution to F has been evaluated and presented
in the Appendix.

III. NUMERICAL RESULTS

We have evaluated each of the contributions de-
scribed in Sec. II, in the high-temperature limit,
for a model of a face-centered-cubic crystal with

a nearest-neighbor central interaction in the
leading- term approximation. In this approxima-
tion, the tensor derivatives of the two-body po-
tential at the point (x, y, 2), at distance r, are ap-
proximated by

Diagram

1(a)

1(b)

2(a)

2(b)

2(c)

2(d)

2(e)

2(f)

2(g)

2 (h)

TABLE I. High-temperature limits for the various contributions to the free energy.

High-temperature limit

8 2 Q V{Af, —Xf, g, —g)
P 0 f' 2 cu(A. )cu(A. )

i V(xf, Z2, Z3) i
5

P h f 2 3 +(A, f)(d(A, 2)Cu(A, 3)

15 2 Q V(kf, —)ff, Xf, -Q, X3, —)%3)

P I f' 2' 3 cO{A, )co{A, )cOP }

88 2 4 g V()j.f, —Zf, )f, Z3)V(-X, , —Z3, )4. 4, —Z4)
p3 I' ~f ~2 ~3 ~4 CO(A, f)(L){A 2)M(A 3)CO(A 4)

V()j. f ~ Xf» )f, 3) V(—»f, f )j.f )f. 3 X4 ~
)f, 4)

P I' ' 2' '" &(~ f) (A,2) (A. 3) P. 4)

108 2 Q V()j.f ~ )f3» )f 4) V( 13» )4 3» )f 4) V( Xf»)j 2» ~5» )f 5)

P I ' 3' ' 5 ~(A, )&(A, )co(A, )u(g ) (p„ )

~ V(rf, Z„Z„X4)i'
P I' f' 2' 3' 4 (2)(g f)+{/ )~(g )(ff)(g )

81 2 Q V(A, f» X3» X4)V(- Xf» X5» X5)V(X2» —X3» X4)V(—Xf» ~5» )I 5)
p3 I Xf f)t23)t33 143)t53)16 ~ (y )~ (y )~ (g )~ (y )~ (y ) (g (y )

108 2 ' Q V(A. f, X2, )f. 4, + V(-)f. f» Xf )I.3)V( X3~
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xy z
8x 8y ~ ~ - Bg y'"

where!t!" is the nth derivative of the potential!t!
with respect to the scalar distance r, evaluated
at the nearest neighbor xo. Leech and Beissland
have recently given an example of the size of error
which this approximation can cause, about 30/0 in
their case. However, the simplifications in the
numerical procedures which result from the ap-
proximation are considerable, so that it seems
reasonable to make it in a first evaluation of the
higher-order diagrams.

The most important merit of the model is that
certain sums can be carried out analytically. In
particular, Maradudin et al. have shown that, if
(l, lq, l„) is a vector separating an atom from one
of its nearest neighbors,

+ + e,(qj)e8(qj)l l,
[ ( -)] ms

g(~. )
— 1 —cos q 1 =

4 pp . (30)

The sum over qj is over the 3N independent nor-
mal modes of the crystal, with eigenvector e(q j)
and frequencies!d(q j). N is the number of unit
cells and m is the atomic mass. This expression
appears in the contribution from any diagram con-
taining closed loops, and the use of the above re-
lation allows all such loops to be evaluated. A

second useful relation is

&or 1(b): —O. 05808&(k,r)'[~'"]'/[y "]'. (35)

The numerical coefficient in 1(a) is exact.
Using the same techniques the diagrams (a) and

(b) of Fig. 2 can be evaluated analytically to give

o. 015825~(k, r)'y "/[y" ]', (38for 2(a):

for 2(b): —0. 046875K(k T)' [y"j'/[y "] . (37)

from the wave vector (0, 0, 0) was omitted and the
sums were normalized by a factor of 1371.

A second method of calculation is to perform
each of the sums over the normal modes for a
finite mesh of wave vectors distributed uniformly
through the Brillouin zone. The calculation is
then straightforward, the only subtle feature being
the normalization of the sums. This has been dis-
cussed for diagram 1(b) by Klein, Goldman, and

Horton, 0 and similar precautions can be taken
for all of the diagrams. We have evaluated each
of the diagrams requiring numerical calculation
by both techniques. In the results which follow
the method which seemed most appropriate is in-
dicated for each diagram separately.

Using the techniques outlined above, Maradudin
et al. evaluated the two diagrams (a) and (b) of
Fig. 1, in the high-temperature limit, to give

tor 1(a): O. 18V5X(k, r)'y'"/[y" j',

1Rl8e0! (qual) eg (q ja) [1 ( 1)]
s i ~(qA)~(qj~)~'

(31)

The second sum is over the twelve nearest-neigh-
bor positions.

A number of diagrams cannot be evaluated ana-
lytically. For these we use the plane-wave expan-
sion to eliminate the 6 functions, which express
wave-vector conservation at each vertex. That is,
we write

Diagrams 2(c) and 2(d) can be related analytically
to diagram (b) of Fig. 1, and using the previously
quoted result we get

for 2(c); —0. 02805K(ks T)3!t!"'Q'/[0" ]~, (38

for 2(d): 0. 0420'(ksr) [Q"']~!t!'"/[!t!"]5 . (38)

Diagram 2(e) can be evaluated by almost exactly
the same technique as described by Maradudin
et a/. for diagram (b) of Fig. 1, to give

N+(qy + ' ' ' +q() =Q!!exp [Tn' (qg + ~ ~ ' +q()] . (32) for 2(e): —0. 00813K(ksr)3[/'"]~/[Q" ] . {4o)

g e (qi)e~(qj)
2(~.)

cos(q n) .
(d qj (33)

Our procedure was to tabulate these sums for a
large number of values of the vector n. The
Brillouin-zone summations were then done once
only, with a mesh of points corresponding to 1372
wave vectors in the whole zone. The contribution

The sum is over all vectors of the real lattice, but
the expressions which result when this substitution
is made in the free-energy contribution converge
sufficiently rapidly with n for the technique to be
useful. All of the sums over the Brillouin zone
which remain can be put in the form

The coefficient was calculated by the plane-wave
method, values of n out to (3, 2, 1) were considered,
but the contributions from vectors larger than

(2, 2, 0) were negligible. The direct summation
method gave the same answer to within &%, with a
mesh of 107 finite wave vectors in the whole zone,
but required considerably longer computing time.

The plane-wave method is much less suitable for
diagram (i), the reason being that there are three
independent values of the vectors n to be summed
over, as opposed to one independent value for
diagrams 1(b) and 2(e). Qn the other hand, the
direct summation method is well suited and with a
mesh of 499 finite wave vectors we obtained
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for 2(f): —0. 00956M(ksT) [Q"'j /[Q ] . (4l, )

and we estimate the uncertainty in the coefficient
to be + 0. 0005. Fortunately this is the smallest
contribution, so that this large percentage uncer-
tRlnty 1S not important,

IV. DISCUSSION

In order to make a direct comparison of the
magnitude of the various contributions evaluated in
Sec. III, it is necessary to assume some form for
the two-body potential. We assume here a 12-6
fol m

P = e [(~Jr)"—2(~Jr)'] (44)

and assume further that the separation t'0, cor-
responding to the minimum of P, is the nearest-
neighbor separation in the crystal. The ratios of
derivatives which occur in the different contribu-
tions to the free energy ean then each be written
Rs R dlmensionless number d1V1ded by 6, Rnd the
contributions to the free energy of order ~, in the
high-temperature limit, contain a common factor
of N(k&T)~/e . The contributions in these units
are listed in Table II. The first column gives the
label of the diagram in Fig. 2, and the second
column gives the contribution to the free energy
arising from the diagram. The numbers in the
third column are the sums of the first two contri-
butions, of the first four, of the first six, and of
all the diagrams, respectively. They are grouped
in this way because, of the diagrams we have con-
sidered, the first two are included in the set sum-

The best value obtained with the plane-wave meth-
od was within 20/q of this, and the sums were clear-
ly not fully converged.

For diagram 2(g) we obtain the result

0. 0196+(a,r)sy" [y"']'/[y" ]'. (42)

The coefficient is an average of the values obtained
using the two methods, the two separate answers
agreeing to 1%. For the direct summation a mesh
of 499 finite wave vectors was used, and in the
plane-wavemethod sevenindependent pairs of n's,
equivalent by symmetry to a total of 1621 yairs,
were included in the summation. Neither method
is clearly superior for this diagram.

Diagram 2(h) is time consuming whichever method
is used. In the direct summation method the sums
over the phonons are nested very deeply, and we
were able to use only a mesh of 63 finite wave
vectors. In the plane-wave method there are again
three independent n's to be summed, and the con-
vergence was very slow, as for diagram 2(f). The
final result we obtain is

for 2(h): —0. 0023K(k 7)' [y"']'/[y" ]', (43)

TABLE II. Contributions to the free energy of 0(X), for
the 12-6 potential, in units of N(k~g /& .

Diagram

2{a)
2(b)
2(c)
2{d)
2(e)

2(g)
2(h)

Contribution

0.345
—l.244
—0.732

l.328
—0.216
—0.359

0.619
—0.086

Partial total

E(SC1)=—0.899

S{ISC)=-0.303

S(SC2) =-0.878

E(A, ) = —0.345

med in the SC1 theory, the first four are included
in ISC, and the first six in SC2. In particular,
diagrams 2(c) and 2(d) represent the effect of using
the smeared potential Rnd the self-consistent basis
functions in the evaluation of diagram 1(b).

Diagrams 2(g) and 2(h) are not included in any
of the approximate schemes. Thus, the numbers
in the third column of Table II give some indica-
tion of the relative merits of the various approxi-
mate schemes in selecting the most important
diagrams of this order. Because of the iterative
feature of the self-consistent schemes, the com-
parison is not exact.

It is clear that none of the approximations is
really successful, and that the Van Hove ordering
scheme is in fact very good. As yredicted by
Choquard, the more highly connected diagrams
give the smallest contributions. This can be seen,
for example, in the series of diagrams 2(b), 2(c),
and 2(e). The most highly connected diagram,
2(h), makes the smallest contribution, but even it
is equal to a quarter of the total. Of the three
partial sums, only ISC gives a subtotal which is
close to the complete value, but this is due to the
large cancellation which occurs between the ne-
glected diagrams rather than because these dia-
grams individually give small contributions.

One qualification must be made to the above con-
clusions. We have evaluated each of the diagrams
using the harmonic phonons as basis functions,
whereas in the various self-consistent schemes,
the basis functions are the self-consistent phonons.
This can alter the magnitudes of the neglected
contributions and, hopefully, reduce them. As an
example of this, consider diagram 1(b). This is
the most important diagram neglected in the SC1
theory, and it gives a negative contribution to the
free energy. Diagrams 2(c) and 2(d) together give
the lowest-order change in the value of this dia-
gram when it is evaluated using the self-consistent
basis functions, and from TaMe II it can be seen
that the over-all effect is to reduce the contribution
from the diagram. There seems to be no rigorous
argument to show that the use of the self-consistent
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basis functions always leads to smaller values for
the neglected contributions, but such may often be
the case, and the self-consistent approximations
are probably better than the comparison made here
suggests.

As far as the convergence of the perturbation
expansion is considered, in the high-temperature
limit the ratio of the total contribution of order A.

to that of order A.
~ j.s

F(A. )/F(A )= —0. 554(keT/e) (45)

for the model we have used. For the inert-gas
crystals, the potential well depth e corresponds
to a temperature of approximately twice the melting
temperature. The convergence of the perturbation
expansion is, then, in our opinion, just sufficiently
good for the expansion to be useful. However,
this estimate could be changed if, for example,

the leading-term approximation was not made.
The difficulty, a common one in calculations of
anharmonic properties, is that the cancellation be-
tween the various diagrams is strong.

It is found that none of the diagrams can be ig-
nored, although the subset of diagrams included
in ISC theory gives a result close to the final total
because of cancellations in the remaining terms.

The lowest-order approximation is then inad-
equate for temperatures greater than about one-
third of the melting temperature, in agreement
with the conclusions of Klein et al. ~~
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APPEND1X

The general sum for diagram l(b), in the notation explained in Sec. II along with z =i~„,
&=1, 2, . . . , t/, is

Z Z 1

«1,«2, «3 n1, n2 (~1+ 121)(~2+k222)(~3+k3+1+k3+2) (Al)

Performing the summations over n& and n~, this is equal to

[N(- (u 1/kk) —N(- (a) 3/k 3)] [N(- (u 2/k 2) —N((u1 /k1 —(o3 /k 3)]Z (- 1) k1kkk3
k3z3 —k&e~ -k&+21' 2' 3

(A2)

When the summations over k1, k2, k, are carried out, this yields the same equation as Eq. (3) in Sec. II.
Similarly, for diagram 2(e) the general sum is

Z Z
«1,«2, «3, «k n1, nk, n3 (k11+ 1~1)(~u2+k2~2)(+3+k3+3)(~3+k«21+k«22+k423)

which is equal to

Z (- l)3k,kkkkkk
o~, a~, k3, k4

x [N(- (u1/k1) —N(- (uk/kk)] [N(- &u2/k2) —N((uk /k1 —(uk/kk)] [N(- tu3/k3) — (N(/ukk1(u+/2k2 —

(uk�/kk)]

k44- kyg kp3 (A4)

after performing the summations over n~, nz, and v3.
If there are n lines connecting the two vertices, the diagram would be similar to Fig. 2(e) and the general

sum will be given by

n -1 n»1

II(~, +k, z, ) ~„+k„Z 2,.., k nj, ~ .~, ff&„f i=1 (A5)

Performing the summations over n&, . . . , n„&, this is equal to
l
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[N(-(o, /k, )-N((o, Ik, -(o„/k„)] ~ ~ (N(-(o„,/k„.,)-N[ 2 ((o, /k, -(o„/k„)])
&n+n &n-j.n-a ' '&1&4'i

(A6)

and the contribution to the Helmholtz free energy is equal to

G(~g, f&~ ) G(~2~&&g )' ' 'G(~n-2~~&n-1) G( ni ~+n~ ~+n~ ' ~+n

(AV)
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Superconductivity and Lattice Dynamics of White Tin
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%'e present the results of a tunneling investigation and the details of the electron-phonon
interaction in superconducting tin. From an iterative solution of the Eliashberg gap equations,
the phonon spectrum, weighted by the square of the electron-phonon coupling constant, is
determined. Comparison of this result with neutron scattering data suggests that, as in Pb,
off-symmetry directions must be considered carefully in any determination of the tin phonon
spectrum. The resolution and reproducibility of the tunneling technique is discussed at some
length; in particular, we show that the Coulomb pseudopotential p* is extremely sensitive
to small experimental errors. We suggest that a value of p* near the theoretical value of
0.10 can be taken as an indication of acceptably accurate experimental measurements.

I. INTRODUCTION

During the past six years a new technique for
the study of both superconductivity and lattice dy-
namics has been developed. This technique, using
electron tunneling into a superconductor, allows
us to probe the details of the electron-phonon in-
teraction that determines the superconductivity of
the material. In this paper we present the results
of such an investigation of the properties of white

tin. The phonon spectrum, weighted by the square
of the electron-phonon coupling constant, is deter-
mined. Comparison of this result with neutron
scattering data suggests that, as in Pb, off-sym-
metry directions must be considered carefully in
any determination of the tin phonon spectrum.

The first measurement of a supercondueting
property using the tunneling technique was made
by Giaever' when he demonstrated the existence of
the energy gap and, above the energy gap, the


