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Based on the pseudopotential formalism, a calculation for vacancy formation energy and
formation volume in metals has been formulated. The calculation is carried out in three steps:
First, the structural energy required to create the vacancy is calculated; then the lattice-
statics method is used to calculate the relaxed vacancy configuration and the energy; finally,
the dilatation of the whole defect lattice is determined according to the equilibrium condition.
When applying this calculation to alkali metals, it was found that {a) the contribution from
the volume-dependent lattice energy to the vacancy formation energy is very large compared
to that due to the relaxation around the vacancy. Therefore, such energy must be considered
in calculating vacancy volume and energy. (b) The relaxed displacements near the vacancy are
highly anisotropic and quite large but the related relaxation energy contributes only about 25 Ip

of the formation energy. A local potential and an optimized nonlocal potential were chosen as
pseudopotentials in the calculation, both of which have corrections for the electron exchange
and correlation interactions in the screening f'unction. The results are in quantitative agree-
ment with the available experimental data of alkali metals. Some general problems about de-
fect calculations for metals are also discussed.

I. INTRODUCTION

There are three basic problems in the atomistic
calculation of defect properties in metals. The
first and probably the most important one is how
to construct a realistic interatomic potential which
can take into account the nature of the metallicbond.
The second is how to calculate properly the defect
volume and energy in the presence of the volume-
dependent lattice energy, which is usually large in
metals, and the origin of which can be attributed to
the conduction electrons. The last problem is how
to calculate self-consistently the electron redistri-
bution around the defect. All these problems can
be attributed to the many-body nature of the inter-
action between the conduction electrons and the
ions, which is complicated even for metals with
relatively simple electronic structures.

Since the classical work by Huntington and Seitz'
on copper, many defect calculations have been per-
formed for metals. Most of the interatomic poten-
tails used are empirical Born-Mayer- and Morse-
type potentials. Such potentials when determined
according to suitable lattice and defect properties
have yielded believable results. Nevertheless,
their use is probably due to their simplicity and,
more likely, because of the lack of better potentials.
The defect volume is usually determined by a
matching scheme, in which the displacements of the
boundary atoms in a discrete region are matched
to the elastic displacements outside this region.
The reliability of this procedure has been sub-
jected to question recently, particularly for elasti-
cally ani. sotropic materials such as alkali metals.

In a lattice-statics calculation of vacancy relaxa-
tion of alkali metals, Flocken and Hardy~ showed
that the displacement does not approach the elastic
limit even after 15 shells. Perhaps a more funda-
mental objection to the matching scheme arises
from the effect of the volume-dependent part of the
cohesive energy in determining defect properties.
For example, the average kinetic energy per elec-
tron is 0. 6Ez (Ez, the Fermi energy) which will
contribute about 1 eV to the vacancy formation en-
ergy E& of Na if the formation volume is about half
the atomic volume. This 1 eV is more than twice
the measured E& of Na. Clearly, the volume-de-
pendent energies must be taken into account when
calculating defect properties. Generally, the de-
fect properties depend on the relaxation of the whole
crystal and not just the relaxed configuration around
the defect. Consequently, in order to calculate the
defect energy, one must extend the calculation to
find the dilatation of the defect crystal.

The problem of calculating charge redistribution
around the defect is a difficult one since it must be
treated self-consistently. Huntington' made the
first serious attempt for this problem in his work
on copper according to a variational method. Fumi'
used a simplified approach by calculating the phase
shift of the free-electron wave function near the de-
fect according to the Friedel su~ rule. March and
co-workers6 have also considered this problem by
calculating the screening charge around the defect
which is considered as a point charge. In general,
electron redistribution for defects with high sym-
metry such as vacancy has been calculated and
shown to have a significant effect on the defect ener-
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gy. In these calculations the effect of the relaxation
around the defect on the charge redistribution has
not been taken into account. In later calculations
of using empirical two-body force models, this
problem is generally ignored.

It is the purpose of this paper to apply the pseudo-
potential formalism for calculating the formation
energy and formation volume for vacancies in alkali
metals. The theory of pseudopotentials has been
developed recently based on the cancellation theorem
of the ionic potential in an orthogonal-plane-wave
(OPW) expansion of the wave functions for the con-
duction electrons. ' According to this theory, the
total lattice energy can be separated into two parts:
One depends only on the crystal volume and the oth-
er, the so-called structural energy, depends on the
detailed atomic arrangement. This energy partition
is very convenient in calculating crystal atomic
properties. Feit and Huntington9 have calculated the
migration energy of interstitials based on the change
of the structural energy due to relaxation around the
defect. An effective interionic potential can be de-
rived from the structural energy, which was used
to calculate the relaxed configuration and energy for
vacancies in alkali metals. ' ' ' The relaxation ener-
gy obtained for Na is significantly smaller than that
obtained based on Morse potentials. '

Besides the fact that we base our calculation on
pseudopotentials, there are two other aspects mak-
ing our work different from most of the previous
defect calculations. First, we use the lattice-
statics method to calculate the relaxed configuration
and energy around the vacancy. It is found that the
relaxation is of a long-range oscillatory nature and
difficult to be matched by elastic displacements.
The second aspect is that we determine the vacancy
energy and volume by minimizing the total energy
of the defect lattice. This turns out to be an important
criterion since we found that the volume-dependent
energy has significant effect on the vacancy prop-
erties and must be taken into account in addition to
the structural energy.

used in our calculation. Then in Sec. IV we will
report our results and compare them with experi-
mental values and other calculations.

A. Structural Energy of Vacancy

In the pseudopotential theory, the total lattice en-
ergy per atom can be written as

Uz = Up+ U, + Uq,

where Up is the volume-dependent energy. For mo-
novalent metals, it has the form, in atomic units,

Uo = 1.105/r, —0. 458/r, —(0. 0575 —0. 0155 lnr, )

+Z„&~~~~~), (2)

where the first term in Up is the average kinetic en-
ergy (0. 6Er) of the electron, the second and third
terms are the exchange and correlation energies'
of the free-electron gas, and the last term is the
'average value of the electron-ion interaction in the
pseudopotential. The value of the last term can be
calculated according to the form of the pseudopoten-
tial and is inversely proportional to the atomic vol-
ume. The charge density parameter r, is defined
in terms of the atomic volume Ap by

4 33m', =OP .

The sum of the electrostatic energy U, and the
band-structure energy U, is the structural energy.
The expression of U, was first derived by Fuchs
as

z+'('" mz+'
p, =P' S(q)S*(q)E,(q) +Z q/(r') — i/2

lCp

(4)

where

2mZ*
'e-"'4'

&.(q) =
~ --a
Qp q

II. METHOD OF CALCULATION

This calculation is carried out in three steps.
First, the vacancy is introduced through the struc-
ture factor and the structural energy required to
produce the vacancy is calculated (Sec. IIA). Then
the relaxed configuration about the defect is calcu-
lated by the lattice-statics method under the condi-
tion of constant atomic volume (Sec. IIB). Finally,
the whole lattice containing the vacancy is allowed
to relax to its equilibrium configuration, i.e. , the
minimum-energy configuration by a uniform dilata-
tion (Sec. IIC).

The formulation in this section is intended to be
general so it is applicable for any pseudopotential.
In Sec. III, we will show our choice of the potentials

1 N

S(q)=- Ze "'
s

(5)

Z* is the effective valence charge, and $ is a pa-
rameter to be chosen to optimize the convergence
of two series sums. The last two terms in Eq. (4)
can be considered as the self-energies of the ion
and the background negative charges, respectively.
They correspond to the zero-point terms excluded
from the sums as indicated by the prime on the
summation. The S(q) is the structure factor which
is defined for a lattice containing N atoms as
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For a perfect lattice 8(q) vanishes except when q
is a reciprocal-lattice vector qo, then S(q») = l.

The band-structuxe energy can be expressed as

U» =Z '~(q)~*(q)E»(q),

+- Z'~[&g(q)- I][~&(q)+~2(q)]~E(q)N ~

+„-' Z'
I &,(q)+&,(q) j'E(q) . (Io)

where E»(q) is the energy-wave-number character-
istic. ' The detailed expression of E»(q) depends on
the pseudopotential chosen, which will be given in
Sec. III. Here it is sufficient to know that E»(q) is
an explicit function of Qo, q, and k~, the Fermi
wave vector.

By the structm. al energy of the vacancy E„we
imply the change in the structural energy of the
crystal when a vacancy is created without any lat-
tice relaxation. The vacancy is created by remov-
ing an atom at r =0 and placing it on the crystal
surface. This gives the structure factor for the
defect lattice

In this expression, the first term is V, for a per-
fect lattice, called U, . The last two terms are at
least of linear order in P, so they are part of the
relaxation energy. The second and third terms
come from changes ln the structural energy due to
the addition of the vacancy and the surface atom,
therefore, they are part of E,. The sum in the sec-
ond term is not limited only to the reciprocal-lat-
tice vectors but includes all allowed Bloch states.
It can be converted into an integral in the q space

~ Z'E(q)=
2
', i"E(q)d'q

N+l
g~(q) Z &-ia.r

We consider first the changes in both V~ and the
first term in V, . The sum of these two terms after
the vacancy is introduced can be written as

U,'= ~ Z'&' (q)&'*(q)E(q) —Z'E(q). ,

wh~~~ E(q) = E,(q)+E, (q). The last term which sums
only over the reciprocal-lattice vectors qo accounts
for the change in structural energy for that surface
atom which was removed from the origin. "

Now we expand U, in terms of the atomic dis-
placement $' from the equilibrium position ro,
(The expansion ls carrted out here for convenience
of later relRZRtlon cRlculRtloD; lt 18 Dot necessRry
for calculating E, )Let r' =r.o+ P and expand 8 (q)
to harmonic terms in $' we have

S'(q) = S,(q)+S,{q)+S,(q)- I/Z,

j X+1
g

g (q) Z e /lr~f»

l

~g(q)=-g Z & ""'(jP),
X+1

g (q) Z e-Pq'r)(f t/P

&ubsti«ting Eq. (9) into Eq. (8) and after some
manipulation, we obtain

U,'= x Z'E(q) Z+' E(q) - Z' E(q)—
00 o

Qo gg t-1/2
=

(2„')» E»(q) d q+, i/3

where the last expression is obtained by separating
E(q) into E»(q) and E,(q) and carrying out the integra-
tion on E,(q).

To complete the calculation for E„we have to
considex the change of the last three terms in U,'.
We shall omit the details of the calculation here
since they are quite similar to that for U, and given
only the results. '6 For the defect lattice, we call
the total sum of these terms for N atoxns U„, which
has the expression

0 l&a

'Z Z ~('. .. &'.~,'. (»)
2 gl' e{8 e&oe+8

Again, the second and third terms are part of E,
Rnd the 1Rst two terms Rre pRrt of the relaxatlon en-
ergy, and U„ is the energy sum for the perfect lat-
tice,

Summing up the contributions from U,
' and U„', we

obtain the total structural energy required for cre-
ating the vacancy,

Of Z+
E,=(2 ', E,(q)d'q-Z'E, (q)+ 22v

where the last term is the negative electrostatic
energy for an ion; n is the Madelung's constant,
being l. 79$ 86 for bcc metals, The fj.rst two terms
are contributions from the band-structure energies
associated with the vacancy Rnd the surface atom,
respectively. Because of the shape of E,(q), the
integral term is very large compared to the discrete
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sum. The magnitudes of these two terms depend
on the pseudopotential used.

After solving the ao in Eq. (15), one can obtain the
relaxation energy

B. Relaxed Configuration Around a Vacancy E„= Z G„(q)a, . (18)

We apply the lattice-statics method to calculate
the relaxation around the vacancy. This method
was originally formulated by Kanzaki, ' then modi-
fied by Hardy and reformulated by Flinn and
Maradudin. ' The advantage of using this method is
that the displacements from the equilibrium posi-
tion, i, e. , 5 's, are solved simultaneously for all
the atoms around the defect by minimizing the re-
laxation energy. However, the solution is exact
only in the harmonic approximation; hence, its
validity is open to question for large relaxation
displacements.

First, $ is expanded in terms of the normal co-
ordinates a. .

~t gr (g e-ail r~
a~g Rl t&

) (14)

for all Q .

This condition yields a set of equilibrium equations
for each a+, which can be written as

Q~ V~~(q)aq—- G~(q), o. , P= 1, 2, 3 (15)

where"

where Q sums over all the Bloch states in the Bril-
louin zone.

For the relaxation energy E~, we have to consider
only the last two terms in both U,'and U„'. Substitut-
ing Eq. (14) into these terms, we obtain an expres-
sion for E„as a function of a@'s. The calculation is
involved and will not be shown in detail here. How-
ever, it is very similar to that used in lattice dy-
namics except that in addition to the usual quadratic
terms in a, we have also linear terms due to the
presence of the vacancy. E& can be minimized by
setting

The relaxation displacement (' can also be calcu-
lated according to Eq. (14). Due to the symmetry
of the vacancy, one can show that ao- —ag; then

(.'=-2fZae sing r' .

C. Formation Energy and Formation Volume

To sum up the results obtained so far, we have
for the total energy of the defect lattice

NUr=NUO+ U, + U„+E, +E„. (18)

k ~ = k ~(1 - 1/3N) (1 + 5) .

Expanding NU& in terms of 5 to the second order,
we see then' can be determined according to

8NUr (5)
85

The formation volume is related to 6 simply by

The calculation has been carried out under the con-
dition of constant atomic volume. To calculate the
formation volume and energy, we can let the whole
defect lattice dilate uniformly by 6 and then mini-
mize the change in NU~ with respect to 6. For met-
als, there is one complication when applying this
procedure to calculate vacancy properties, i. e. , in
the defect lattice there is one extra atomic cell but
no change in the number of electrons. Accordingly,
if the lattice dilatation is expressed as

r' = r'0(1 —5),
then

q = qo(1+ 5),
but kz relaxes first by the factor (1 — 1/3N), then

by (1+5), so that

G (Q) =& [(qo- Q).&(qo - Q)- (qo+Q).&(qo+Q)] Qy ——Qo(1 —3N5) . (19)

—2Q &(Q)++
g 8&o, r-rl

V. (Q)=(N+ lpga[(qo- q).(qo- q) S'(qo- q)
fo

+ (co+ Q).(co+ Q)BE(co+ Q) 2qo sos&—(qo))

We obtain the expression for 5

5 =X/E,
where

4 . 2 0458
3 rg 3'

(20)

+ 2Q Qg&(Q)f+ (N+ 1)Z p "8e '~' nz* 00 &E„s g, sE~
2r, (2v)') sq "q', sq

'f

oi sp(& ) oo Y' os

8x Bxo 8 r=r&
+ —Z'

(
/')- kr+ Z G (Q) ——

Q ao
1, PE, sG (Q)
3, 80~ qbq 8Q
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a=3 ',"--'"'-0.0158+12Z' kl~lk
rg s ih

nZ+ ~g 8 E~

q0

—E (21a)

The formation energy E& is the difference between
the energies for the dilated defect lattice and the
perfect lattice. We find that

potential, both of which have taken into account,
though by slightly different:forms, the exchange
and correlation corrections. The nonlocal poten-
tials are the optimized model potentials recently
published by Shaw and Pynn and the local potentials
were determined by us according to the measured
elastic constants. " The local potential is less desir-
able in principle, but its relatively simple form of
F,(q) significantly reduces the labor of numerical
calculation.

For local pseudopotentials, the energy-wave-
number characteristic can be written as

where E,(q) = [u (q)]'x(q)/e(q), (22)

E„=(-.' —N6)

'4 ' 0. 4155 —4Z (kl4'I4))2. 21 0. 458
y.

where so(q) is the Fourier transform of the bare-ion
potential, x(q) is the so-called perturbation char-
acteristic, and e (q) is the dielectric function.

For the bare-ion potential, we use a simplified
Heine- Abarenkov form:

N6 Z4 B ~ nZ* lg4 BEq kz
Bq 2r, 3, B(kz/q) q

(21b)

v'"(r) = —v, for r&R~

for x& R„, (23)

Based on our results, we note that:
(a) In deriving Q& and E&, we have used the equi-

librium condition for the perfect lattice, i.e. ,
BUr/BQ= 0 at Qo. Therefore, in our calculation it
is important to satisfy this equilibrium condition
when choosing the lattice pseudopotential.

(b) The value of E„depends on 6; therefore, in
order to calculate E&, one has to determine 0& also.

(c) Harrison has calculated the contribution from
the electrostatic energy to E& without lattice dilata-
tion, which corresponds to our ease when N5 = 3.
He obtained the value of ——,'U„ in agreement with
our result of —(1 —N6)U, [ the sum of the last term
in Eq. (13) and the second term in the square brack-
et of E„ in Eq. (21b)].

III. SELECTION OF PSEUDOPOTENTIAL

To carry out the calculations described in Sec.
II, we need to choose a pseudopotential. Several
pseudopotentials have been determined according
to various experimental guantities for alkali metals.
Recently Coulthard2' and Shaw and Pynn22 have in-
vestigated the effects on phonon dispersion curves
due to the locality and screening correction for elec-
tron exchange and correlation of the pseudopoten-
tials. They found that in general it is important to
take into account the exchange and correlation cor-
rections in order to obtain good agreement with ex-
perimental results. It was further concluded that
when such corrections were made, Shaw's nonlocal
model potential consistently gave the best results.
However, the local Heine-Abarenkov (HA) pseudo-
potentials were found to give also satisfactory re-
sults. In the present calculation we choose a non-
local model potential and a local HA-type pseudo-

which has the Fourier transform

27r
s(q) = — 3

Q(y

V0 sinqR„
+ (Z —VoR„)cosqR„

q

(24)

We have also

4Z 4 44' —4' 24„'+4
)x q)=- —+ ln

4E~ 2 8k~ q 2k„—q

and

e(q) = 1 —(8w/Qq') [1—f (q)] x(q) . (28)

The factor 1-f(q) is the approximate . correction for
the exchange and correlation. For f(q), we adopt
a form similar to that used by Hubbard and Sham

(2&)

For this model potential, we can derive an explicit
expression for Z~ (k )m I k) as

4mZ2g (k ) w ) k) =,+ lim nr (q)
OQ q 0

2' Z 2V0

V0, R„, and p were considered to be adjustable
parameters which can be determined according to
the measured elastic constants. In addition, the

equilibrium condition was imposed at 0, i.e. ,

BUr/BQ(no=0, Because of this extra condition, our
potential parameters have been redetermined. They



4040 PAUL S Ho

TABLE I. Local pseudopotential parameters and some
relevant data for alkali metals (atomic units).

I.O

Li Na K Rb Cs

0.698 0.570 0.379 0.402 0.373

1 68 2 40 3 04 3 54 3 95

1.84 1.81 1.77 1.76 1.74

13.30 7.329 3.563 2.784 2.112
(13.25) (7.528) (3.657) (2.825) (2.127)

0.5

0
I.O

I.O 2.0

a
(lattice
parameter)

6.58 8.01 9.90 10.60 11.47 FN (q)

0.5

Na

Given are the calculated and the measured (in parenthe-
sis) isothermal bulk moduli. Units are 10 dyn/cm .
The effective charge is taken to be unity for the local po-
tentials. 0

I.O
I.O 2.0

differ somewhat from those listed in Ref. 23. For
alkali metals, it was found that it is possible to find
a set of Vo, R~, and g to satisfy these conditions
reasonably well. Table I lists the potential param-
eters together with the bulk moduli and lattice pa-
rameters for alkali metals.

The nonlocal forms of E~(q) for Li, Na, and K can
be found in Ref. 22. The normalized energy-wave-
number characteristics E„(q) of the local and non-
local potentials are compared for these three met-
als in Fig. 1. In Shaw's potential the value of

g, (k Isv Ik) is not given, even though it could have
been determined when calculating F,(q). In this pa-
per, calculation of this term was not attempted, in-
stead it was determined simply according to the lattice
equilibrium condition. Also, the complex functional
dependence of Shaw's potential on k~ and Qp was not
unraveled, which is needed to calculate the vari-
ous derivatives for determining 6 and E„. Such
values were obtained by extrapolation according to
the results from the local potentials. Fortunately,
it was possible to calculate exactly most of the large
terms in E„and 5; nevertheless, the extrapolated
terms contribute a certain uncertainty in our re-
sults for Shaw's potential. It would be very desir-
able to repeat the calculation for Shaw's potential
in a more exact manner.

IV. RESULTS

0.5

I.O 2.0

FIG. 1. Normalized energy —wave-number character-
istics E~(q) obtained from the local (solid line) and the
nonlocal (dash line) pseudopotentials for Li, Na, and K

[EN(q) —= (q Qp/2 mrs+ ) E{q)],

TABLE II. Results of the relaxed vacancy configuration
and energy for Na calculated according to the local and

nonlocal pseudopotentials. (Displacements are expressed
in percent of the lattice parameter. )

Atom
position gl

(units = 2a) (Nonlocal potential)

l

(Local potential)

cept along the symmetry directions of (100), (110),
and (111). The relaxed vacancy configuration
shown displays a cubic symmetry characteristic of
the anisotropic interaction of the alkali atoms. The
atom displacements on the (100) and (110) planes are

In the calculation, 422 Q's were included in the
first Brillouin zone and the summation was extended
over qo to 2. 5b (b = 2v/a). In real space, this cor-
responds to a discrete region consisting of 422
atoms and extending to the 22nd shell. These sum-
mations were found to give the convergence of $'to
approximately 1%, which is sufficiently accurate
for calculating E~ since Es is only about 25% of Ez.
The calculated P' for Na is tabulated in Table II.
The displacements, in general, are not radial ex-

0.11)
(200)
(220)
(311)
(222)
(4oo)
(331)
(420)
(422)
(333)
(511)
(44o)

—4. 19
4. 96

—0.67
0.13

—10 73
0.13

—0.42
0.19
0.76

—0.72
0. 24

—0.51

—4. 19
0
0

0.70
1 ~ 73
0

0.18
0

—0.02
—0.72

0.11
0

0.108

—4. 19
0

—0.67
0.70

—l.73
0

—0.42
—0.44
—0.02
—0.72

0.11
—0.51

—3.06
5.08

—0. 58
0. 20

—1, 15
0.03

—0.30
0.18
0.69

—0.54
0.19

—0.39

—3.06
0
0

0.71
—1.15

0
0.10

0
—0.01
—0.54

0.06
0

0.064

—3.06
0

—0.58
0.71

—1.15
0

—0.30
—0.34
—0.01
—0.54

0.06
—0.39
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[ooi] TABLE IV. Comparison of the present work with other
calculations on vacancy relaxed configuration and ener-
gy. (For simplicity we compare only the magnitude of
the displacements. Units in percent of radial distance. )

(IOO)
PLANE

[oiO]

(i io)
PLANE

CELL
UNDARY

Atom
position

(111)
(200)
(220)
(311)
(222)
(4oo)
(331)
(420)
(422)
(333)

—10.0
3.2

—1.2
0. 7

—11.53
3.45

—1.59
0. 34
2 ~ 27
0.38

—0.36
0. 05

—4. 77
2. 66

—0.62
0.44

—O. 86

—5. 86
3. 18

—0. 95
0. 32

—1.43
0. 10

—0. 34
0, 03
0. 05

—0. 51

WG GR SBF FH
(Ref. 12b) (Ref. 12c) (Ref. 10) (Ref. 3)

—8, 18
3. 41

—1.20
0. 47

—2. 00
0. 30

—0. 37
0. 08
0 ~ 08

—0.69

8. 38
4. 96
0. 67
0.61
1.73
0. 07
0. 29
0.20
0. 31
0. 48

TG Present
(Ref. 11) work

E~(eV) —0.'446 —0. 520 —O. 071 —0. 045 —0. 113 —0. 108

FIG. 2, Relaxed configuration around the vacancy for
Na calculated according to the locaI pseudopotentiaI.
The vectors show the direction and magnitude of the dis-
placements projected on the (100) and (110) planes. The
numbers associated with the lattice points are the atom
positions in units of ye.

TABLE III. Results of vacancy calculation for alkali
metals.

Li
La NL

3.02

Ev —2. 56

Eg —0.093

Ey 0.37

Qy 0.53

3.96

—2. 88

—0.20

0.88

Na
I NL

2. 67
2. 90

—2.17
—2.42

—0, 11
—0.06

0 ~ 39
0.42

0.54

K
L NL

2.32
2. 59

—1.84
—2. 10

—0.12
—0.07

0.36
0.42

0.53

Rb Cs
L L

2.14 1.99

—1.68 1.56

—0.11 —0.10

0.35 0.33

0.52 0.52
0.59 0.62 0.57

lLThe results in L column are for the local potentials and
NL for nonlocal potentials.

~All energies are expressed in eV.

shown in Fig. 2: Generally g' displaces inward to-
ward the vacancy near the (110) and (111)directions
and away from the vacancy near the (100) directions.
Since the lattice-statics method guarantees mini-
mum energy for the final relaxed configuration, the
outward displacements of some atoms must result
from the inward displacements of the other atoms
in order to minimize the relaxation energy. The
relaxed configurations were found to be very simi-
lar for all the alkali metals with $' slightly in-
creased for heavier atoms, e. g. , the displacements
for the nearest-neighbor atom are, in terms of a,
-0.068 for Li, -0.072 for Na, —0. 076 for K,
—0. 077 for Rb, and —0. 078 for Cs.

In Table III, the results of our calculation are
summarized based on the local and nonlocal poten-
tials. It is seen that the results based on these two

potentials are very close for Na and K but not for
Li, which is very probably because of the differ-
ence in Ii,(q) of Li." Our results show that for all
alkali metals except Li, E& decreases for heavier
elements whereas ~& is about constant. However,
the change is generally quite small. The relaxa-
tion energy is found to be about 0. 1 eV for all al-
kali metals, which is only about 25% of the forma-
tion energy.

For comparison with experiments there are the
recent Simmons-Balluffi-type measurements of E&
for26 Li and4 Na, and earlier resistivity measure-
ments on E& for Li, Na, and K; for 0& there is
no direct measurement except that of the activation
volume of diffusion for Li and Na. 8 In Table IV,
the results in this paper are compared with the ex-
perimental values. The agreement is satisfactory
except for 0& of Li. In case of Li, even if the mi-
gration volume is negligible, the measured value
is considerably smaller than our calculated ~&,
which indicates that the actual lattice dilatation, and

possibly the relaxation around the vacancy, may be
bigger than what we calculated. However, the mea-
sured entropy of formations for Li is only 0.9k" as
compared to 5. Sk for Na. If the entropy is a cor-
rect measure of the vacancy relaxation, then the
experimental values do not indicate a more relaxed
configuration for Li than for Na. At present, there
appears to be no satisfactory explanation for these
discrepancies. Further investigation on Li, par-
ticularly in measuring 0& and determining better
pseudopotentials, is needed. Except for the 0&
of Li, our results appear to support the fact that
the defects observed in Li, Na, and K are single
vacancies.

Concerning the previous theoretical investigations
of alkali metals, the effort seems to be concen-
trated on the calculation of the relaxed vacancy con-
figuration and energy. There are several such cal-
culations based on pseudopotentials" '" and sever-
al others based on Morse potentials. '2 For E&, there
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is only the work by Fumi' and a short note by Koji-
ma, ' and there is no calculation on 0&. The var-
ious relaxation calculations of Na are compared in
Table IV and the calculated and measured values of
Ef and 0& in Table V. In Table V, the work of par-
ticular interest to us is that of Torrens and Gerl"
who used a different relaxation method but based
their calculation on a local pseudopotential which
is almost identical to ours. Their results are gen-
erally in good agreement with ours. This is very
pleasing and useful in checking the numerical com-
putations in both papers. The value of Ez obtained
by Shyu et al. ' is close to our value but their relax-
ation is about 50/q of our value. Both the relaxed
displacement and energy obtained by Flocken and
Hardy3 are only about half of our value. The re-
sults based on the Morse potentials yield too large

~g
E& and ( as compared to ours, which is apparently
due to the difference in potentials. [See Fig. 1(c)
in Ref. 11 for the large difference between Morse
potential and the interionic potential derived from
Na pseudopotential. j If the contribution of Es to E&
is indeed as small as calculated, then the Morse
potential used in previous calculations must be con-
siderably larger than the actual potential. Fumi's
calculation' neglected both the relaxation about the
vacancy and the lattice dilatation. In comparing his
E& values our E~ value was subtracted but no at-
tempt was made to calculate the energy change due
to lattice dilatation in his formulation. If such en-
ergy is included, then his E& would probably be
further reduced.

V. DISCUSSIONS

It has been stressed in this paper that to calculate
the vacancy formation energy in metals, one must
consider the change in the volume-dependent lattice
energy Uo due to the lattice dilatation. Such energy
arises because of the many-body nature of the elec-
tron-ion interactions, part of which cannot be yroy-
erly expressed in terms of pairwise potentials. E&
usually depends on the dilatation I5, so to calculate
Ef, one has to determine 5 first, which can be done
by minimizing the total energy of the defect lattice
with respect to 5. This point is particularly impor-
tant for metals with small 0&, such as the alkali met-
als. For such metals, the dilatation is large, con-
sequently the contribution of Uo to E& will be signif-
icant. Our results show that in Na, the structural
energy required to create a vacancy is 2. 67 eV and
the energy gained by relaxing the atom around the
vacancy is only 0. 11 eV, but an energy of 2. 17 eV
is gained because of lattice dilatation.

In calculating the relaxed vacancy configuration,
the boundary was extended to include the 22nd shell.
"the resultant displacements are highly anisotropic;
'. ~ fact the displacements for atoms along and near
'he (100) directions are outward, even up to the

TABLE V. Comparison of theoretical and em erimen-
tal E~ and &~~ for alkali metals.

~, '(calc)

Ey (expt)

~g (calc)
~a (expt)

Li

0.37
0. 46
0. 34+0. 04
0.40'

0.53
0. 28

Na

0.39
0.42
0. 42 +0 03
0. 39

0. 54
0. 41

0. 36
0. 24

0.39

0. 53

The values of Ey in row 1 and ~~ (calc) are our results
based on the local potentials. The values of Ey in row
2 are those of Fumi's with Eg subtracted.

Reference 26.
Reference 4.

dReference 27.
'Reference 28. Given is the activation volume of

diffusion.

boundary. Recently Lie and Koehler" have solved
the elasticity equation for general point forces in an
anisotropic cubic crystal. However, because of
difficulties with convergence caused by the large
elastic anisotropy of alkali metals (for Li the an-
isotropy factor is about 8), they were unable to ob-
tain the elastic relaxation about a vacancy. Even if
the elastic solution can be obtained, it would still
be difficult to obtain a reliable 0& by matching the
discrete atom displacement to the elastic relaxation
since both the direction and the magnitude of the dis-
placements for the boundary atoms are not expected
from the elastic continuum theory.

Even though our results are in good agreement
with experimental measurements, there are several
basic problems concerning the application of model
potential to defect calculations. Qne basic objection
is that the pseudopotential theory, which is based
on perturbation theory, cannot be adequately used
for point-defect calculations, particularly for the
vacancies since there is an extreme change incharge
density at the vacant site. ' The second problem is
the effect of electron redistribution near the vacan-
cy. In our formulation, the change in the electron
density near the defect was not calculated. Finally,
there is the problem of anharmonic corrections to
the relaxation around the vacancy. Displacements
were obtained for the first two neighbors as high as
8 and 5% of the radial distance, respectively; since
the lattice-statics method calculates the displace-
ments only to the harmonic order, such large dis-
placements may require anharmonic corrections.

It is quite difficult to give really satisfactory an-
swers to the first two questions without carrying out
detailed calculations. Nevertheless, Ziman in ad-
vocating the "pseudoatom" concept for defect calcu-
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lations pointed out that when a vacancy is introduced
through the structure factor in the pseudopotential
formulation, what one removes is the (weak) quasi-
potential associated with the ion together with its
self-consistent screening charge as seen by the con-
duction electrons. The electrons are still in Bloch
states which are readjusted in a "Eeroth-order"
manner by a uniform dilatation. As a result, the
change in the charge density does not have to be
drastic and it might not be such a poor approxima-
tion to apply perturbation method for calculating de-
fect problems. For the second problem, the change
in the electron wave functions. was indeed not in-
cluded, but when the relaxed-vacancy configuration
was calculated, not only the position of the bare
ions was obtained, but also the displacements of

their associated screening charges. Therefore,
the charge redistribution can be considered to be
accounted for in such an approximate manner. The
approximation is not a particularly good one since
the change in the screening charge near the vacancy
was not considered self-consistently.

In principle, it is possible to include anharmonic
corrections in the lattice- statics calculation. Such
a calculation was not attempted, mainly because of
the small effect of such a correction to the resultant
formation energy and the labor required in actual
numerical calculation. The contribution of E~ to
E& is about 25%%uo, the anharmonic correction would

be, at most, a few percent of E&, which is quite in-
significant if one considers all the other approxima-
tions used in determining the pseudopotentials.
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